大学物理第十四章习题解答和评分标准

合集下载

大学物理第十四章相对论习题解答

大学物理第十四章相对论习题解答

§14.1 ~14. 314.1 狭义相对论的两条基本原理为相对性原理;光速不变原理。

14.2 s ′系相对s 系以速率v=0.8c ( c 为真空中的光速)作匀速直线运动,在S 中观测一事件发生在m x s t 8103,1×==处,在s ′系中测得该事件的时空坐标分别为t =′x 1×108 m 。

分析:洛伦兹变换公式:)t x (x v −=′γ,)x ct (t 2v −=′γ其中γ=,v =β。

14.3 两个电子沿相反方向飞离一个放射性样品,每个电子相对于样品的速度大小为0.67c , 则两个电子的相对速度大小为:【C 】(A )0.67c (B )1.34c (C )0.92c (D )c分析:设两电子分别为a 、b ,如图所示:令样品为相对静止参考系S , 则电子a 相对于S 系的速度为v a = -0.67c (注意负号)。

令电子b 的参考系为动系S '(电子b 相对于参考系S '静止),则S '系相对于S 系的速度v =0.67c 。

求两个电子的相对速度即为求S '系中观察电子a 的速度v'a 的大小。

根据洛伦兹速度变换公式可以得到:a a a v cv v 21v v −−=′,代入已知量可求v'a ,取|v'a |得答案C 。

本题主要考察两个惯性系的选取,并注意速度的方向(正负)。

本题还可选择电子a 为相对静止参考系S ,令样品为动系S '(此时,电子b 相对于参考系S '的速度为v'b = 0.67c )。

那么S '系相对于S 系的速度v =0.67c ,求两个电子的相对速度即为求S 系中观察电子b 的速度v b 的大小。

14.4 两个惯性系存在接近光速的相对运动,相对速率为u (其中u 为正值),根据狭义相对论,在相对运动方向上的坐标满足洛仑兹变换,下列不可能的是:【D 】(A )221c u/)ut x (x −−=′; (B )221cu/)ut x (x −+=′ (C )221c u /)t u x (x −′+′=; (D )ut x x +=′ 分析:既然坐标满足洛仑兹变换(接近光速的运动),则公式中必然含有2211cv −=γ,很明显答案A 、B 、C 均为洛仑兹坐标变换的公式,答案D 为伽利略变换的公式。

大学物理第14章习题解答

大学物理第14章习题解答

第十四章习题解答1选择题:⑴ B ;⑵ B ;⑶ D ;⑷ B ;⑸ B 。

2填空题:⑴ /sin λθ;⑵ 4;⑶ 变疏,变疏;⑷ 3.0nm ;⑸ N 2,N 。

3计算题:1 用波长为nm 3.589=λ的单色平行光,垂直照射每毫米刻有500条刻痕的光栅.问最多能看到第几级明纹?总共有多少条明纹?解:5001=+b a mm 3100.2-⨯= mm 由λϕk b a =+sin )(知,最多见到的条纹级数k max 对应的2πϕ=, 所以有3max 2.010 3.39589.3a bk λ+⨯==≈,即实际见到的最高级次为3max =k 总共可见7条明纹。

2 试指出当衍射光栅的光栅常数为下述三种情况时,哪些级次的衍射明条纹缺级? (1) a+b=2a ;(2)a+b=3a ;(3)a+b=4a 。

解:由光栅明纹条件和单缝衍射暗纹条件同时满足时,出现缺级.即⎩⎨⎧=''±==±=+)2,1(sin ),2,1,0(sin )( k k a k k b a λϕλϕ 可知,当k ab a k '+=时明纹缺级. (1) a b a 2=+时,⋅⋅⋅=,6,4,2k 偶数级缺级;(2) a b a 3=+时,⋅⋅⋅=,9,6,3k 级次缺级;(3)a b a 4=+,⋅⋅⋅=,12,8,4k 级次缺级.3 若以白光垂直入射光栅,不同波长的光将会有不同的衍射角.问(1) 零级明条纹能否分开不同波长的光? (2) 在可见光中哪种颜色的光衍射角最大?不同波长的光分开程度与什么因素有关?解:(1)不能。

(2)红光。

与波长有光。

4 一双缝,两缝间距为0.1mm ,每缝宽为0.02mm ,用波长为480nm 的平行单色光垂直入射双缝,双缝后放一焦距为50cm 的透镜.试求:(1)透镜焦平面上单缝衍射中央明条纹的宽度;(2)单缝衍射的中央明条纹包迹内有多少条双缝衍射明条纹?解:(1) 中央明纹宽度为:60480105010220.02l f a λ-⨯⨯⨯==⨯mm 4.2=cm (2) 由缺级条件:λϕk a '=sin ,λϕk b a =+sin )(知:k k a b a k k '='=+'=502.01.0 ⋅⋅⋅=',2,1k 即⋅⋅⋅=,15,10,5k 缺级. 中央明纹的边缘对应1='k ,所以单缝衍射的中央明纹包迹内有4,3,2,1,0±±±±=k 共9条双缝衍射明条纹.5 一束具有两种波长λ1和λ2的平行光垂直照射到一衍射光栅上,测得波长λ1的第三级主极大衍射角和λ2的第四级主极大衍射角均为30°.已知λ1=560 nm (1 nm= 10-9 m),试求:(1) 光栅常数a +b(2) 波长λ2解:(1)()sin a b k θλ+=,01()sin 303a b λ+=,6()=3.3610a b m -+⨯(2)12()sin 34a b θλλ+==,2=420nm λ6某种单色光垂直入射到每厘米有8000条刻线的光栅上,如果第一级谱线的衍射角为30°那么入射光的波长是多少?能不能观察到第二级谱线? 解:41() 1.25108000cm a b cm -+==⨯,0=(a+b)sin30625nm λ= 22sin 1()()k a b a b λλθ===++,02=90θ故不能观察到。

《新编基础物理学》第14章习题解答和分析

《新编基础物理学》第14章习题解答和分析

第14章 波动光学14-1.在双缝干涉实验中,两缝的间距为,照亮狭缝S 的光源是汞弧灯加上绿色滤光片.在远处的屏幕上出现干涉条纹,测得相邻两明条纹中心的距离为.试计算入射光的波长,如果所用仪器只能测量5mm x ∆≥的距离,则对此双缝的间距d 有何要求?分析:由杨氏双缝干涉明纹位置公式求解。

解:在屏幕上取坐标轴Ox ,坐标原点位于关于双缝的对称中心。

屏幕上第k 级明纹中心的距坐标原点距离:λdD kx ±= 可知dD d D k d D k x x x k k λλλ=-+=-=∆+)1(1 代入已知数据,得545nm xd Dλ∆== 对于所用仪器只能测量5mm x ∆≥的距离时0.27mm D d x λ≤=∆14-2.在杨氏双缝实验中,设两缝之间的距离为.在距双缝1m 远的屏上观察干涉条纹,若入射光是波长为400nm 至760nm 的白光,问屏上离零级明纹20mm 处,哪些波长的光最大限度地加强?(91nm=10m -)分析:由双缝干涉屏上明纹位置公式,求k 取整数时对应的可见光的波长。

解:已知:d =,D =1m ,x =20mm 依公式λk d D x =∴ 4000nm dxk Dλ==故k =10 λ1=400nmk =9 λ2 k =8 λ3=500nm k =7 λ4 k =6 λ5这五种波长的光在所给的观察点最大限度地加强.14-3.如题图14-3所示,在杨氏双缝干涉实验中,若3/1212λ=-=-r r P S P S ,求P 点的强度I 与干涉加强时最大强度I max 的比值.分析:已知光程差,求出相位差.利用频率相同、振动方向相同的两列波叠加的合振幅公式求出P 点合振幅。

杨氏双缝干涉最大合振幅为2A 。

解:设S 1、S 2分别在P 点引起振动的振幅为A ,干涉加强时,合振幅为2A ,所以2max 4A I ∝ , 因为λ3112=-r r所以S 2到P 点的光束比S 1到P 点的光束相位落后()3π23π2π212=⋅=-=∆λλλϕr r 题图14-3P 点合振动振幅的平方为:22223π2cos2A A A A =++ 因为2I A ∝ 所以22max1==44I A I A14-4. 在双缝干涉实验中,波长550nm λ=的单色平行光, 垂直入射到缝间距4210m d -=⨯的双缝上,屏到双缝的距离2m D =.求:(1) 中央明纹两侧的两条第10级明纹中心的间距; (2) 用一厚度为66.610m e -=⨯、折射率为 1.58n =的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处?分析:(1)双缝干涉相邻两条纹的间距为 ∆x =D λ / d ,中央明纹两侧的两条第10级明纹中心的间距为20∆x .(2)不加介质片之前,两相干光均在空气中传播,它们到达屏上任一点P 的光程差由其几何路程差决定,中央明纹对于O 点的光程差0δ=,其余条纹相对O 点对称分布.插入介质片后,两相干光在两介质薄片中的几何路程相等,但光程不等。

大学物理第14章思考题解

大学物理第14章思考题解

《大学物理学》(下册)思考题解第14章 电磁感应14-1 在电磁感应定律i d dtΦ=-¶中,负号的含义是什么? 如何根据负号来判断感应电动势的方向?答:电磁感应定律i d dtΦ=-¶中的负号来自于楞次定律。

由于磁通量Φ变化而引起感应电动势i ¶变化、从而产生感应电流,这个电流的磁场将阻碍原磁通量Φ的变化。

例如原磁通量Φ正在增加,所激发的感应电动势的感应电流的感应磁场将阻碍这个Φ增加。

14-2 如题图所示的几种形状的导线回路,假设均匀磁场垂直于纸面向里,且随时渐减小。

试判断这几种形状的导线回路中,感应电流的流向答:14-3 将一磁铁插入一个由导线组成的闭合电路线圈中,一次迅速插入,另一次缓慢插入。

问:(1)两次插入时在线圈中的感生电荷量是否相同? (2)两次手推磁铁的力所做的功是否相同?(3)若将磁铁插入一个不闭合的金属环中,在环中间发生什么变化? 答:始末两态的磁通1Φ、2Φ不变,所以 (1) 感生电荷量12q RΦ-Φ=,与时间、速度无关,仅与始末两态的磁通有关,所以两次插入线圈的感生电荷量相同。

(2)从感应电流作功考虑,W I t =∆¶,定性地判断:两种情况下I t q ∆=不变,12d dttΦ-ΦΦ=∆=-¶分子不变分母有区别,所以两次手推磁铁的力,慢慢插入的作功少,快速插入的作功多。

(3) 若将磁铁插入一个不闭合的金属环中,在环的两端将产生感应电动势。

14-4 让一块很小的磁铁在一根很长的竖直钢管内下落,若不计空气阻力,试定性说明磁铁进入钢管上部、中部和下部的运动情况,并说明理由。

答:把小磁铁看作磁矩为m的磁偶极子,下落至钢管口附近时,由于钢管口所围面积的磁通量发生了变化,管壁将产生感生电动势和感生电流,感生电流将激发感生磁场'1B ,由于磁矩m 自己产生的磁感B 在管口产生的磁通正在增加,根据楞次定律,它所激发的感生磁场'1B 将阻碍这个增加,因此,'1B 与B 反方向。

大学物理答案第14章

大学物理答案第14章
解:氧气(分子)离解为氧原子O2→2O,温度T→2T,分子质量m→m/2,
由分子平均速率公式 ,得:
分子平均速率变为原来的2倍。
17、一定量的理想气体,在容积不变的条件下,当温度降低时,试分析分子的平均碰撞次数和平均自由程变化情况。
解:由碰撞频率气体公式:
而平均速率: 容积不变n不变

气体分子平均自由程: n不变
6、我们说分子运动是有规则的,但又说分子运动服从统计规律,这是否有矛盾?应当如何去理解?
解:由于气体分子数目十分庞大,分子之间由于互相碰撞频繁,其运动是无规则的,要根据力学规律对每个分子作计算是不可能的,但是对大量分子整体而言,可用统计平均方法,找出大量分子集体表现出的统计规律性,这与每个分子运动无规则并不矛盾。
第十四章气体动理论
1、如果在封闭容器中,储有处于平衡态的A、B、C三种理想气体。A种气体分子数密度为n1,压强为P1;B种气体分子数密度为2n1;C种气体分子数密度为3n1。求混合气体的压强。
解:由P=nkT,
对于A气体:P1=n1kT;
对于B气体:P2=n2kT=2n1kT;
对于C气体:P3=n3kT=3n1kT;
(4)两种气体内能相等;
解:内能: ,分子的平均动能: 都与自由度i=t+r有关,
平均速率: 与分子量m有关,分子的平均平动动能: 。
而 , ,选
(1)
13、在标准状况下,若氧气(视为刚性双原子分子理想气体)和氦气的体积比为 ,则其内能之比 为多少?
解:O2和He为理想双原子分子气体,标准状况下,压强P和温度T相等。
7、在宏观上理想气体是如何定义的?在微观上应当如何去认识它?其宏观定义与微观假设是否一致?
解:宏观上,理想气体定义为满足三条实验定律的气体,即宏观量(P、V、T)满足状态方程的气体;微观上,理想气体可看成是由许多自由的无规则运动的弹性小球的集合,理想气体是真实气体在低压、高温时的极限情形,分子之间作用力和相互作用势能可忽略,从理想气体微观模型出发,可得到与其宏观性质相符的结论。

湖南大学物理(2)第14,15章课后习题参考答案

湖南大学物理(2)第14,15章课后习题参考答案

第14章 稳恒电流的磁场 一、选择题1(B).2(D).3(D).4(B).5(B).6(D).7(B).8(C).9(D).10(A) 二、填空题(1). 最大磁力矩.磁矩 ; (2). R 2c ;(3).)4/(0a I μ; (4).RIπ40μ ;(5).i .沿轴线方向朝右. ; (6). )2/(210R rI πμ. 0 ;(7). 4 ; (8). )/(lB mg ; (9). aIB ; (10). 正.负.三 计算题1.一无限长圆柱形铜导体(磁导率0).半径为R .通有均匀分布的电流I .今取一矩形平面S (长为1 m.宽为2 R ).位置如右图中画斜线部分所示.求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小.由安培环路定律可得: )(220R r rRIB ≤π=μ因而.穿过导体内画斜线部分平面的磁通1为⎰⎰⋅==S B S B d d 1 Φr r RI Rd 2020⎰π=μπ=40Iμ在圆形导体外.与导体中心轴线相距r 处的磁感强度大小为 )(20R r rIB >π=μ因而.穿过导体外画斜线部分平面的磁通2为⎰⋅=S B d 2Φr r I R Rd 220⎰π=μ2ln 20π=Iμ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40I μ2ln 20π+Iμ1 m2. 横截面为矩形的环形螺线管.圆环内外半径分别为R 1和R 2.芯子材料的磁导率为.导线总匝数为N .绕得很密.若线圈通电流I .求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.解:(1) 在环内作半径为r 的圆形回路, 由安培环路定理得NI r B μ=π⋅2. )2/(r NI B π=μ 在r 处取微小截面d S = b d r , 通过此小截面的磁通量r b rNIS B d 2d d π==μΦ穿过截面的磁通量⎰=SS B d Φr b rNId 2π=μ12ln2R R NIbπ=μ (2) 同样在环外( r < R 1 和r > R 2 )作圆形回路, 由于0=∑iI02=π⋅r B ∴ B = 03. 一根很长的圆柱形铜导线均匀载有10 A 电流.在导线内部作一平面S .S 的一个边是导线的中心轴线.另一边是S 平面与导线表面的交线.如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率0 =4×10-7T ·m/A.铜的相对磁导率r ≈1)解:在距离导线中心轴线为x 与x x d +处.作一个单位长窄条. 其面积为 x S d 1d ⋅=.窄条处的磁感强度 202RIxB r π=μμ所以通过d S 的磁通量为 x RIxS B r d 2d d 20π==μμΦ通过1m 长的一段S 平面的磁通量为⎰π=Rr x R Ix20d 2μμΦ60104-=π=Ir μμ Wb4. 计算如图所示的平面载流线圈在P 点产生的磁感强度.设线圈中的电流强度为I .解:如图.CD 、AF 在P 点产生的 B = 0x2EF DE BC AB B B B B B+++=)sin (sin 4120ββμ-π=aIB AB . 方向其中 2/1)2/(sin 2==a a β.0sin 1=β ∴ a I B AB π=240μ. 同理, aI B BC π=240μ.方向.同样 )28/(0a I B B EF DE π==μ.方向⊙.∴ aI B π=2420μaIπ-240μaIπ=820μ 方向.5. 如图所示线框.铜线横截面积S = 2.0 mm 2.其中OA 和DO '两段保持水平不动.ABCD 段是边长为a 的正方形的三边.它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B 中.B 的方向竖直向上.已知铜的密度 = 8.9×103 kg/m 3.当铜线中的电流I =10 A 时.导线处于平衡状态.AB 段和CD 段与竖直方向的夹角 =15°.求磁感强度B 的大小.解:在平衡的情况下.必须满足线框的重力矩与线框所受的磁力矩平衡(对OO '轴而言).重力矩 αραρsin sin 2121gSa a a gS a M +⋅= αρsin 22g Sa =磁力矩 ααcos )21sin(222B Ia BIa M =-π=平衡时 21M M =所以 αρsin 22g Sa αcos 2B Ia =31035.9/tg 2-⨯≈=I g S B αρ T6. 如图两共轴线圈.半径分别为R 1、R 2.电流为I 1、I 2.电流的方向相反.求轴线上相距中点O 为x 处的P 点的磁感强度. 解:取x 轴向右.那么有 2/322112101])([2x b R I R B ++=μ 沿x 轴正方向 2/322222202])([2x b R I R B -+=μ 沿x 轴负方向21B B B -=[2μ=2/32211210])([x b R I R ++μ]])([2/32222220x b R I R -+-μ若B > 0.则B 方向为沿x 轴正方向.若B < 0.则B的方向为沿x 轴负方向.P7. 如图所示.一块半导体样品的体积为a ×b ×c .沿c 方向有电流I .沿厚度a 边方向加有均匀外磁场B (B的方向和样品中电流密度方向垂直).实验得出的数据为 a =0.10 cm 、b =0.35 cm 、c=1.0 cm 、I =1.0 mA 、B =3.0×10-1T.沿b 边两侧的电势差U =6.65 mV.上表面电势高.(1) 问这半导体是p 型(正电荷导电)还是n 型(负电荷导电)?(2) 求载流子浓度n 0 (即单位体积内参加导电的带电粒子数). 解:(1) 根椐洛伦兹力公式:若为正电荷导电.则正电荷堆积在上表面.霍耳电场的方向由上指向下.故上表面电势高.可知是p 型半导体。

大学物理14.第十四章思考题

大学物理14.第十四章思考题

1、在夫琅和费单缝衍射实验中,波长为λ的单色光垂直入射在宽度为4λ的单缝上,对应的衍射角为30°,则单缝处的波阵面可以划分成多少个半波带? 【答案:4】详解:依题意,在衍射角为30°的方向上的最大光程差为λλθ230sin 4sin == a因此单缝处的波阵面可划分的半波带数目为42/sin =λθa 2、一束波长为的平行单色光垂直入射在单缝AB 上,装置如图14-11所示。

在屏幕E 上形成衍射图样,如果P 是中央亮纹一侧第一条暗纹的位置,则BC 的长度是波长的多少倍?【答案:1】详解:由于P 是中央亮纹一侧第一条暗纹的位置,因此λθ==sin a BC即BC 的长度是波长的1倍。

3、在如图14-12所示的夫琅和费单缝衍射实验中,如果将单缝沿透镜光轴方向向透镜平移,则屏幕上的衍射条纹间距如何变化? 明暗条纹的位置是否发生变化?【答案:屏幕上的衍射条纹间距和明暗条纹的位置都不变】详解:由于屏幕上的衍射条纹间距和明暗条纹的位置与单缝和透镜之间的距离无关,因此当单缝沿透镜光轴方向向透镜平移时,屏幕上的衍射条纹间距和明暗条纹的位置都不改变。

E 图14-11 P λAB LfCE图14-12λL f(移动方向)4、在夫琅和费单缝衍射实验中,波长为的单色光垂直入射到单缝上。

在衍射角等于30°的方向上,单缝处的波面可以划分成4个半波带,则狭缝宽度a 等于的多少倍? 【答案:4】详解:依题意有42/30sin =λa解之得λ4=a即此时狭缝宽度a 等于的4倍。

5、波长为500nm 的单色光垂直照射到宽度为0.25mm 的单缝上,单缝后面放置一块凸透镜,在凸透镜的焦平面上放置一个用来观测衍射条纹的屏幕。

测得屏幕上中央明条纹两侧的第三条暗条纹之间的距离为12mm ,则凸透镜的焦距f 等于多少? 【答案:1m 】详解:中央明条纹两侧的第k 条暗条纹之间的距离为λafkx 2=∆ 由此解得凸透镜的焦距为λk x a f 2∆=933105003210121025.0---⨯⨯⨯⨯⨯⨯=m)(1= 6、在如图14-13所示的夫琅和费单缝衍射实验中,中央明纹的衍射角范围很小。

大学物理答案第十四章 干涉习题答案

大学物理答案第十四章 干涉习题答案
e (2k 1)
B.

4n1
k e 2n1
e (2k 1)
D.

4n2
3.双缝干涉实验中,入射光波长为λ , 用玻璃纸遮住其中一缝,若玻璃纸中 光程比相同厚度的空气大2.5 ,则屏上 原0级明纹处( )
A.仍为明条纹 B.变为暗条纹 C.非明非暗 D.无法确定是明纹还是暗纹
4.两块平板玻璃构成空气劈尖,左边为 棱边,用单色平行光垂直入射,若上 面的平板玻璃以棱边为轴,沿逆时针 方向作微小转动,则干涉条纹的( A ) A.间隔变小,并向棱边方向平移 B.间隔变大,并向远离棱边方向平移 C.间隔不变,向棱边方向平移 D.间隔变小,并向远离棱边方向平移


6.双缝干涉实验中,当双缝在双缝所在 平面上沿缝取向垂直方向上作微小移 动,则干涉图样( )
A.作与双缝移动方向相同方向的移动 B.作与双缝移动方向相反方向的移动 C.中心不变,干涉图样变化 D.没有变化
7.在双缝干涉实验中,为使屏上的干涉 条纹间距变大。可以采取的办法是 ( ) A.使屏靠近双缝 B.使两缝的间距变小 C.把两缝的宽度稍微调窄。 D..改有波长小的单色光源。
一、选择题 1.当光从光疏媒质射向光密媒质时 ( ) A.反射光有半波损失 B.透射光有半波损失 C.入射光有半波损失 D.入射、反射、透射光均无半波损失
2.若在一折射率为n1的光学元件表面镀 一层折射率为n2(n2<n1)的增透膜, 为使波长为 的入射光透射最多,其厚 度应为(e4 4
由于
x e /
7 得 x 4
第四条明条纹的位移为
7 同理可证 x' 4 '
7 7 7 ( ' ) x x' x 4 ' 4 4 '
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十四章光学习题及解答和评分标准
1.题号:
分值:10分
在杨氏双缝干涉实验中,用波长= nm 的纳灯作光源,屏幕距双缝的距离d’=800 nm ,问:(1)当双缝间距1mm 时,两相邻明条纹中心间距是多少(2)假设双缝间距10 mm ,两相邻明条纹中心间距又是多少
解答及评分标准:
(1) d =1 mm 时mm d d x 47.0'==
∆λ (5分)
(2) d =10 mm 时mm d
d x 047.0'==
∆λ (5分) 2.题号:
分值:10分
洛埃镜干涉如图所示光源波长m 7102.7-⨯=λ,
试求镜的右边缘到第一条明纹的距离。

解答及评分标准: λd
d x '21⋅=
∆ (6分) m m x 57105.4102.722.0302021--⨯=⨯⨯⨯+⨯=∆∴(4分)
3.题号:3
分值:10分
在双缝干涉实验中,用波长=的单色光照射,屏幕距双缝的距离d’=300 mm ,测得中央明纹两恻的两个第五级明纹的间距为, 求两缝间的距离。

解答及评分标准:
λd d x '=
∆ (4
分)
mm N x 22.110
2.122.12==∆=∆Θ (4分) mm x d d 134.01022.1101.54610300'3
9
3=⨯⨯⨯⨯=∆=∴---λ (2分) 4. 题号:
分值:10分
在双缝干涉实验中,两缝间的距离,用单色光垂直照射双缝, 屏与缝之间的距离为,测得中央明纹两恻的两个第五级暗纹的间距为, 求所用光的波长。

解答及评分标准:
λd
d x '=
∆ (4分) 531.29
78.2278.22==∆=∆N x Θ (4分) nm d xd 8.6321020.130.0531.2'3=⨯⨯=∆=∴λ (2分)
5.题号:
分值:10分
单色光照射到相距为的双缝上,双缝与屏幕的垂直距离为1m ,求:(1)从第一级明纹到同侧的第四级明纹间的距离为,求单色光的波长;(2)若入射光的波长为600nm ,求相邻两明纹间的距离。

解答及评分标准:
(1)λ)(141414k k d
d x x x -'=-=∆; (4分) nm k k d x d 5001
414=-'∆=∴λ (3分) (2)nm d
d x 0.3='=
∆λ (3分) 6. 题号:
分值:10分 用一束8.632=λnm 激光垂直照射一双缝, 在缝后处的墙上观察到中央明纹和第一级明纹的间隔为14cm. 求(1)两缝的间距;(2)在中央明纹以上还能看到几条明纹
解答及评分标准: (1)m x d d 69
100.914
.0108.6320.2--⨯=⨯⨯=∆'=λ (5分) (2)由于2π
θ<, 按2
πθ=计算, 则 3.14/'/sin =∆==x d d k λθ 应取14即看到14条明纹. (5分)
7. 题号:
分值:10分
一透镜的折射率n c =,为使垂直入射的波长λ=500nm 的光尽可能少反射,在透镜表面镀了一层折射率n f =的透明薄膜,求镀膜的最小厚度t 。

解答及评分标准: 反射干涉相消得:22λ
δ=⋅=t n f (6分)
f n t 4λ
=∴
(2分) m nm 81006.938.14
500-⨯=⨯=
(2分)
8. 题号:
分值:10分
一透镜的折射率n c =,为使垂直入射的波长λ=500nm 的光尽可能少反射,在透镜表面镀了一层折射率n f =的透明薄膜,求镀膜的最小厚度t 。

解答及评分标准: 反射干涉相消得:22λ
δ=⋅=t n f (6分)
f n t 4λ
=∴
(2分)
m nm 81006.938.14
500-⨯=⨯=
(2分) 9. 题号:
分值:10分
用钠灯(nm 3.589=λ)观察牛顿环,看到第k 条暗环的半径为mm 4=r ,第5+k 条暗环半径mm 6=r ,求所用平凸透镜的曲率半径R 。

解答及评分标准:
由牛顿环暗环公式 r=λkR (3分) 据题意有 r=mm kR 4=λ; r=mm R k 65=+λ)( (3分) 所以:k=4,代入上式,可得:R= (4分)
10.题号:
分值:10分
一块厚μm 2.1的折射率为50.1的透明膜片。

设以波长介于nm 700~400的可见光.垂直入射,求反射光中哪些波长的光最强
解答及评分标准:
由反射干涉相长公式有
)3,2,1(22Λ==+
k k ne λλ (3分) 得 nm k k k ne 1
272001212005.14124-=-⨯⨯=-=λ (3分) nm k nm k 554,7;655,
6====λλ (2分) nm k nm k 424,9;480,
8====λλ (2分)
11.题号:
白光垂直照射到空气中一厚度为nm h 380=的肥皂膜上,肥皂膜的折射率为n=,在可见光范围内(400nm-760nm ),哪些波长的光在反射中增强
解答及评分标准:
反射光干涉相长条件
λλk nh =+
22 (4分) 212+=λ
nh k 212-=k nh λ nm nm 760400≤≤λ
32≤≤k (4分)
则k=2时,nm 9.673=λ
k=3时,nm 3.404=λ (2分)
12.题号:
分值:10分
两块长度10 cm 的平玻璃片,一端互相接触,另一端用厚度为 mm 的纸片隔开,形成空气劈形膜.以波长为500 nm 的平行光垂直照射,观察反射光的等厚干涉条纹,在全部10 cm 的长度内呈现多少条明纹(1 nm=10-9 m)
解答及评分标准:
设空气膜最大厚度为e ,
)3,2,1(22Λ==+k k e λλ
(4分)
5.1622=+

λe k (4分) ∴ 明纹数为16. (2分)
13.题号:
分值:10分
当牛顿环干涉仪中透镜与玻璃之间充以某种介质时,第十条明纹的直径由变为。

求液
解答及评分标准:
λR k r d k k )2
1(22-== (4分) 充液体后 n R k r d kn kn λ)21(22-== (4分)
22.127.140.1222=⎪⎭⎫ ⎝⎛==n d d kn k
(2分)。

相关文档
最新文档