向量法解圆锥曲线中的最值
圆锥曲线解题技巧和方法综合全

圆锥曲线的解题技巧一、常规七大题型:〔1〕中点弦问题具有斜率的弦中点问题,常用设而不求法〔点差法〕:设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式〔当然在这里也要注意斜率不存在的请款讨论〕,消去四个参数。
如:〔1〕)0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(*0,y 0),则有0220=+k b y a x 。
〔2〕)0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(*0,y 0)则有02020=-k by a x 〔3〕y 2=2p*〔p>0〕与直线l 相交于A 、B 设弦AB 中点为M(*0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。
过A 〔2,1〕的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。
〔2〕焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(*,y)为椭圆x a y b 22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。
〔1〕求证离心率βαβαsin sin )sin(++=e ;〔2〕求|||PF PF 1323+的最值。
〔3〕直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的根本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。
y p x p x y t x 210=+>+=()()〔1〕求证:直线与抛物线总有两个不同交点〔2〕设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
专题23 圆锥曲线中的最值、范围问题 微点1 圆锥曲线中的最值问题试题及答案

例7.
7.已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为− .记M的轨迹为曲线C.
(1)求C的方程,并说明C是什么曲线;
(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.
(i)证明: 是直角三角形;
最值问题不仅解答题中分量较大,而且客观题中也时常出现.
一、常用方法
解决圆锥曲线中的最值问题,常见的方法有:
(1)函数法:一般需要找出所求几量的函数解析式,要注意自变量的取值范围.求函数的最值时,一般会用到配方法、均值不等式或者函数单调性.
(2)方程法:根据题目中的等量关系建立方程,根据方程的解的条件得出目标量的不等关系,再求出目标量的最值.
题型三、与向量有关的最值问题
例6.
6.如图,已知椭圆C1: + =1(a>b>0)的右焦点为F,上顶点为A,P为椭圆C1上任一点,MN是圆C2:x2+(y-3)2=1的一条直径,在y轴上截距为3- 的直线l与AF平行且与圆C2相切.
(1)求椭圆C1的离心率;
(2)若椭圆C1的短轴长为8,求 · 的最大值.
题型二、与角度有关的最值问题
例5.
5.在平面直角坐标系 中,椭圆 : 的离心率为 ,焦距为 .
(Ⅰ)求椭圆 的方程;
(Ⅱ)如图,动直线 : 交椭圆 于 两点, 是椭圆 上一点,直线 的斜率为 ,且 , 是线段 延长线上一点,且 , 的半径为 , 是 的两条切线,切点分别为 .求 的最大值,并求取得最大值时直线 的斜率.
专题23 圆锥曲线中的最值、范围问题 微点1 圆锥曲线中的最值问题
专题23圆锥曲线中的最值、范围问题
专题(19)巧用向量法求解圆锥曲线问题

高三第二轮专题复习专题(19)——巧用向量法求解圆锥曲线问题一、 利用向量的数量积解决夹角(钝、锐、直)问题例1、过抛物线22(0)y px p =>的焦点F 作直线交抛物线于A B 、两点,O 为坐标原点.求证:ABO ∆是钝角三角形.说明:(1)确定三角形的角时,若三边长易算用余弦定理;若三边长不易计算则考虑向量的数量积;(2)更为一般地,我们有如下重要结论:①过点(,0)(0)M t t >的直线交抛物线22(0)y px p =>于A B 、两点.当02t p <<时,AOB ∠为钝角;当2t p =时,AOB ∠为直角;当2t p >时,AOB ∠为锐角.②过点(0,)(0)M t t >的直线交抛物线22(0)x py p =>于A B 、两点.当02t p <<时,AOB ∠为钝角;当2t p =时,AOB ∠为直角;当2t p >时,AOB ∠为锐角.③抛物线22(0)y px p =>上异于原点O 的动点A B 、满足OA OB ⊥u u r u u u r ,则直线AB 必过定点(2,0)p ;反之,亦成立. ④抛物线22(0)x py p =>上异于原点O 的动点A B 、满足OA OB ⊥u u r u u u r ,则直线AB 必过定点(0,2)p ;反之,亦成立.变式:已知椭圆22:184x y E +=,是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A B 、,且O A O B ⊥u u r u u u r ?若存在,写出该圆的方程;若不存在,请说明理由.答案:2283x y +=. 说明:已知椭圆2222:1(0)x y E a b a b+=>>,直线l 与椭圆E 交于A B 、两点,在AOB ∆中,AB 边上的高为OH .(1)若2221112||AOB OH a bπ∠=⇔=+; (2)若2221112||AOB OH a b π∠<⇔<+; (3)若2221112||AOB OH a b π∠>⇔>+. 本例中22221113883r r a b =+=⇒=,则圆的方程为2283x y +=.二、 利用向量知识解决共线问题例2、在平面直角坐标系xoy 中,经过点(0,且斜率为k 的直线l 与椭圆22:12x E y +=有两个不同的交点P Q 、.(1)求实数k 的取值范围;(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A B 、,是否存在常数k ,使得向量OP OQ +u u u r u u u r 与AB uu u r 共线?如果存在,求k 值;如果不存在,请说明理由.答案:不存在.变式:设A B 、是椭圆22:12x E y +=上的两点,(2,0)N -满足NA NB λ=u u r u u u r .当11[,]53λ∈时,求直线AB 斜率的取值范围.答案:121[,[,]2662--.三、利用向量解决参数的取值范围问题例3、已知C 为圆22(1)8x y ++=的圆心,P 是圆上的动点,点Q 在圆的半径CP 上,且有点(1,0)A 和AP 上的点M 满足0,2M Q A P A P A M ⋅==u u u r u u u r u u u r u u u r .(1)当点P 在圆上运动时,求点Q 的轨迹方程;(2)若斜率为k 的直线l 与圆221x y +=相切,与(1)中所求点Q 的轨迹交于不同的两点,F H ,O 是坐标原点,且满足3445OF OH ≤⋅≤uu u r uuu r ,求k 的取值范围.答案:(1)2212x y +=;(2)[]22U .四、由向量形式给出的圆锥曲线的几何关系例4、在平面直角坐标系xoy 中,1的线段的两端点,C D 分别在,x y 轴上滑动,CP PD =uu r uu u r ,记点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)经过点(0,1)作直线与曲线E 相交于,A B 两点,OM OA OB =+uuu r uu r uu u r ,当点M 在曲线E 上时,求四边形AOBM 的面积.答案:(1)2212y x +=;(2五、圆锥曲线中求向量数量积的取值范围例5、已知椭圆22122:1(0)y x C a b a b+=>>与抛物线22:2(0)C x py p =>有一个公共焦点,抛物线2C 的准线l与椭圆1C 有一个坐标是的交点.(1)求椭圆1C 与抛物线2C 的方程;(2)若点P 是直线l 上的动点,过点P 作抛物线的两条切线,切点分别为,A B ,直线AB 与椭圆1C 分别交于点,E F ,求OE OF ⋅u u u r u u u r 的取值范围.答案:(1)22212:1,:884y x C C x y +==;(2)(8,2]-.。
专题14 圆锥曲线切线方程 微点1 圆锥曲线切线方程的求法

专题14 圆锥曲线切线方程 微点1 圆锥曲线切线方程的求法专题14 圆锥曲线切线方程 微点1 圆锥曲线切线方程的求法 【微点综述】圆锥曲线的切线方程问题侧重于考查圆锥曲线的性质、标准方程以及直线方程的几种形式.此类问题的难度一般不大,对同学们的抽象思维和分析能力的要求较高.下面主要探讨一下求圆锥曲线的切线方程的方法及常用结论. 一、圆锥曲线切线方程方法 1.向量法在求圆的切线方程时,可巧妙利用圆心和切点的连线垂直于切线的性质来建立关系式.在运用向量法解题时,可先给各条线段赋予方向,求得各条直线的方向向量,然后根据“互相垂直的两个向量的数量积为0”的性质建立圆心、切点、切线之间的关系式,从而求得切线的方向向量以及直线的方程. 例11.已知圆O 的方程是()()222x a y b r -+-=,求经过圆上一点()00,M x y 的圆的切线l 的方程. 2.变换法设椭圆方程为22221x y a b +=,我们作变换:,,x au y bv =⎧⎨=⎩则可把椭圆化为单位圆:221u v +=,从而可将求椭圆的切线方程问题转化为求圆的切线问题. 例22.求过椭圆221169x y +=上一点M ⎛ ⎝⎭的切线l 方程. 3.判别式法可以利用一元二次方程根的判别式来求圆锥曲线的切线方程,这种方法也是中学阶段的常用方法之一.思维导图:设切线方程⇒联立切线与椭圆的方程⇒消去y (或x )得到关于x (或y )的一元二次方程⇒Δ0=求切线斜率⇒写出切线方程. 注意:过双曲线的对称中心不可能作出直线与双曲线相切. 例33.求经过点()2,1M 的双曲线:2222x y -=的切线l 的方程. 4.导数法我们知道,导数的几何意义是:该函数曲线在某一点上的切线的斜率,那么在求圆锥曲线的切线方程时,可对曲线的方程进行求导,便可得到曲线在切点处切线的斜率或切点的坐标,根据直线的点斜式方程即可求得切线的方程. 例44.设为,A B 曲线2:4x C y =上两点,,A B 的横坐标之和为4.设M 为曲线C 上一点,C在M 处的切线与直线AB 平行,且AM BM ⊥,求直线AB 的方程. 例55.证明:过椭圆C :22221x y m n+=(m >n >0)上一点Q (x 0,y 0)的切线方程为00221x x y y m n +=.5.几何性质法通过对椭圆、双曲线以及抛物线的几何性质的研究,我们知道:(1)若焦点为12,F F 的椭圆或双曲线上有一点M ,则12F MF ∠的平分线一定与圆锥曲线相切;(2)若焦点为F 的抛物线上有一点M ,过M 作准线的垂线,垂足为N ,则FN 的中点P 与M 的连线PM 必与抛物线相切.据此,我们也可以利用圆锥曲线的几何性质作出其切线,然后再求出切线的方程. 例66.求抛物线2:8C y x =上经过点()8,8M 的切线l 的方程. 例77.过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点. 例8(2022乙卷理科)8.已知抛物线C :()220x py p =>的焦点为F ,且F 与圆M :()2241y x ++=上点的距离的最小值为4. (1)求p ;(2)若点P 在M 上,P A ,PB 为C 的两条切线,A ,B 是切点,求△P AB 面积的最大值. 【强化训练】(2022桃城区校级模拟)9.已知圆22:1C x y +=,直线:2l x =,P 为直线l 上的动点,过点P 作圆C 的切线,切点分别为A ,B ,则直线AB 过定点( )A .1,02⎛⎫ ⎪⎝⎭B .(0,2)C .(2,1)D .1,12⎛⎫ ⎪⎝⎭(2022聊城一模)10.已知圆22:1C x y +=,直线:20l x y ++=,P 为直线l 上的动点,过点P 作圆C 的两条切线,切点分别为A ,B .则直线AB 过定点( ) A .11,22⎛⎫-- ⎪⎝⎭B .()1,1--C .11,22⎛⎫- ⎪⎝⎭D .11,22⎛⎫- ⎪⎝⎭(2022迎泽区校级月考)11.已知圆()22:14C x y -+=.动点P 在直线280x y +-=上,过点P 引圆的切线,切点分别为,A B ,则直线AB 过定点______.12.过圆2216x y +=外一点P (4,2)向圆引切线. (1)求过点P 的圆的切线方程;(2)若过点P 的直线截圆所得的弦长为(3)若过P 点引圆的两条切线,切点分别为1P 、2P ,求过切点1P 、2P 的直线方程. (2021春·黑龙江期中)13.已知点(10,3)P 在椭圆222:199x y C a +=上.若点()00,N x y 在圆222:M x y r +=上,则圆M 过点N 的切线方程为200x x y y r +=.由此类比得椭圆C 在点P 处的切线方程为( )A .13311x y+= B .111099x y += C .11133x y += D .199110x y += (2020.新课标△)14.已知△M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作△M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( ) A .210x y --= B .210x y +-= C .210x y -+= D .210x y ++=(2022宿州期末)15.定义:若点()00,P x y 在椭圆()222210x y a b a b+=>>上,则以 P 为切点的切线方程为:00221x x y y a b +=.已知椭圆 22:132x y C +=,点M 为直线260x y --=上一个动点,过点M 作椭圆C 的两条切线 MA ,MB ,切点分别为A ,B ,则直线AB 恒过定点( ) A .11,23⎛⎫- ⎪⎝⎭B .11,23⎛⎫- ⎪⎝⎭C .12,23⎛⎫- ⎪⎝⎭D .12,23⎛⎫- ⎪⎝⎭(2022金安区校级期末)16.已知椭圆具有如下性质:若椭圆的方程为()222210x y a b a b+=>>,则椭圆在其上一点()00,A x y 处的切线方程为00221x x y ya b+=,试运用该性质解决以下问题;椭圆221:12x C y +=,点B 为1C 在第一象限中的任意一点,过B 作1C 的切线l ,l 分别与x 轴和y 轴的正半轴交于,C D 两点,则OCD 面积的最小值为( ) A .1BCD .2(2022吉安期末理)17.过圆222x y r +=上一定点(),o o P x y 的圆的切线方程为20o x x y y r +=.此结论可推广到圆锥曲线上.过椭圆221124x y +=上的点()3,1A -作椭圆的切线l .则过A 点且与直线l 垂直的直线方程为( ) A .20?x y +-= B .30x y --= C .2330x y +-= D .3100x y --=(2022大连期末)18.已知()11,M x y 为圆22:1C x y +=上一点,则过C 上点M 的切线方程为________,若()22,N x y 为椭圆2222:1(0)x y E a b a b+=>>上一点,则过E 上点N 的切线方程为_____________. (2022泸县校级一模)19.椭圆223144x y +=上点P (1,1)处的切线方程是______.(2022金安区校级模拟)20.一般情况下,过二次曲线Ax2+By2=C (ABC ≠0)上一点M (x0,y0)的切线方程为Ax0x+By0y=C ,.若过双曲线22221(0,0)x y a b a b -=>>上一点M (x0,y0)(x0<0)作双曲线的切线l ,已知直线l 过点N 0,2b ⎛⎫⎪⎝⎭,且斜率的取值范围是⎣,则该双曲线离心率的取值范围是______. (2022兴庆区校级一模)21.已知()00,P x y 是抛物线()220y px p =>上的一点,过P 点的切线方程的斜率可通过如下方式求得在22y px =两边同时求导,得:2'2yy p =,则'py y=,所以过P 的切线的斜率0p k y =.试用上述方法求出双曲线22y x 12-=在P 处的切线方程为_________.(2022亳州期末)22.已知椭圆C 的方程为()222210x y a b a b+=>>,离心率12e =,点P (2,3)在椭圆上.(1)求椭圆C 的方程(2)求过点P 的椭圆C 的切线方程(3)若从椭圆一个焦点发出的光线照到点P 被椭圆反射,证明:反射光线经过另一个焦点.(2022福州二模)23.已知椭圆C :()222210x y a b a b+=>>的离心率为12,点31,2⎛⎫ ⎪⎝⎭在椭圆C 上.(1)求椭圆C 的方程;(2)若椭圆C 的两条切线交于点M (4,t ),其中t R ∈,切点分别是A 、B ,试利用结论:在椭圆22221x y a b+=上的点()00,x y 处的椭圆切线方程是00221x x y y a b +=,证明直线AB 恒过椭圆的右焦点2F ;(3)试探究2211AF BF +的值是否恒为常数,若是,求出此常数;若不是,请说明理由. (2022香坊区校级三模)24.已知点1(,2)2D -,过点D 作抛物线21:C x y =的两切线,切点为,A B .(1)求两切点,A B 所在的直线方程;(2)椭圆22221(0)x y a b a b +=>>(1)中直线AB 与椭圆交于点P ,Q ,直线,,PQ OP OQ 的斜率分别为k ,1k ,2k ,若123k k k +=,求椭圆的方程. (2022渝中区校级月考)25.已知椭圆22122:1x y C a b+=()0a b >>的离心率为12,过点)E的椭圆1C 的两条切线相互垂直.(△)求椭圆1C 的方程;(△)在椭圆1C 上是否存在这样的点P ,过点P 引抛物线22:4C x y =的两条切线12,l l ,切点分别为,B C ,且直线BC 过点()1,1A ?若存在,指出这样的点P 有几个(不必求出点的坐标);若不存在,请说明理由. (2022杭州模拟)26.已知曲线1C 上任意一点到()0,1F 的距离比到x 轴的距离大1,椭圆2C 的中心在原点,一个焦点与1C 的焦点重合,长轴长为4.(1)求曲线1C 和椭圆2C 的方程;(2)椭圆2C 上是否存在一点M ,经过点M 作曲线1C 的两条切线,MA MB (,A B 为切点)使得直线AB 过椭圆的上顶点,若存在,求出切线,MA MB 的方程,不存在,说明理由.参考答案:1.()()()()200x a x a y b y b r --+--=【分析】设切线l 上任意一点N 的坐标是(),x y ,利用0OM ON ⋅=化简整理可得. 【详解】设切线l 上任意一点N 的坐标是(),x y ,由已知得圆心(),O a b ,()()0000,,,OM x a y b MN x x y y ∴=--=--,又0OM ON ⋅=,即()0000()()()0x x x a y y y b --+--= 所以()()()()()()00000x a x a x a y b y b y b ----+----=⎡⎤⎡⎤⎣⎦⎣⎦, △过圆上的点()00,M x y 的圆的切线l 的方程是:()()()()()()220000x a x a y b y b x a y b --+--=-+-,又()()22200x a y b r -+-=,△所求圆的切线l 的方程为()()()()200x a x a y b y b r --+--=.2.340x y +-=【分析】令,43yx u v ==,利用伸缩变换求得椭圆和点M 在新坐标系下的方程和坐标,然后由圆的切线方程和伸缩变换公式可得.【详解】令,43y x u v ==,则椭圆在新坐标系uOv 下的方程是:221u v +=,点M ⎛ ⎝⎭在新坐标系uOv 下的坐标是:⎝⎭,设过圆221u v +=上的点⎝⎭的切线方程为(22v k u -=-(易得斜率必存在),即(v k u =221u v +=整理得2221(1)(1)(21)02k u k u k k +-+--=由题意可知,22222(1)2(1)(21)0k k k k k =--+--=Δ,整理得2(1)0k +=即1k =-,所以切线方程为(v u =-,即:u v +=∴过椭圆上一点M 的切线l的方程是:43x y+340x y +-=. 3.10x y --=【分析】设直线,与双曲线联立,结合判别式分析,即得解【详解】若直线斜率不存在,过点()2,1M 的直线方程为:2x =,代入2222x y -=可得21y =,与双曲线有两个交点,不是切线;若直线斜率存在,设l 的方程是:()12y k x -=-,即:21y kx k =-+,将它代入方程2222x y -=整理得:()()()222214218840k x k k x k k ---+-+=,由已知20210,k -∆=≠,即()()()2224214218840k k k k k -----+=⎡⎤⎣⎦,解得:1k =,故所求切线l 的方程为:21y x =-+,即:10x y --=. 4.7y x =+【分析】在求得直线AB 的斜率后,便可运用导数法对抛物线的方程求导,得出点M 的坐标,再根据韦达定理和弦长公式求得切线的方程.【详解】设()()1122,,,A x y B x y ,则2212121212,,,444x x x x y y x x ≠==+=,于是直线AB 的斜率为121212121212()()14()4y y x x x x x x k x x x x -+-+====--, 由24x y =,得2x y '=. 设()33,M x y ,由题意可知:312x =,解得32x =,()2,1M ∴. 设直线AB 的方程为y x m =+,故线段的中点为()2,2N m +,1MN m =+将y x m =+代入24x y =得2440x x m --=,当()1610m ∆=+>,即当1m >-时,12x =+22x =-从而可得12AB x =-= 因为AM BM ⊥,且BN AN =,因为直角三角形斜边上的中线等于斜边的一半, 所以BN AN MN ==,所以2AB MN =,即()21m =+, 解得7m =,直线AB 的方程为7y x =+. 5.证明见解析【分析】方法一:分0y >,0y <和0y =,当0y >,0y <时,利用导数求切线方程可得; 方法二:设直线方程联立椭圆方程,利用判别式等于0求切点横坐标,然后可得切线方程. 【详解】法一:由椭圆C :22221x y m n+=,则有22221y x n m =-当0y >时,y =2nx y m '=-,△当00y >时,2000222001x n n n k x x y mm m y n =-=-=-⋅. △切线方程为()200020x n y y x x m y -=-⋅-,整理为:222222220000n x x m y y m y n x m n +=+=,两边同时除以22m n 得:00221x x y ym n+=. 同理可证:00y <时,切线方程也为00221x x y ym n+=. 当0=0y 时,切线方程为x m =±满足00221x x y ym n+=. 综上,过椭圆上一点00(,)Q x y 的切线方程为00221x x y ym n+=. 法二:当斜率存在时,设切线方程为y kx t =+,联立方程:22221x y m ny kx t ⎧+=⎪⎨⎪=+⎩可得222222()n x m kx t m n ++=,化简可得: 22222222()2()0n m k x m ktx m t n +++-=,△由题可得:42222222244()()0m k t m n m k t n ∆=-+-=, 化简可得:2222t m k n =+,△式只有一个根,记作0x ,220222m kt m kx n m k t =-=-+,0x 为切点的横坐标,切点的纵坐标200n y kx t t =+=,所以2020x m k y n =-,所以2020n x k m y =-,所以切线方程为:2000020()()n x y y k x x x x m y -=-=--,化简得:00221x x y ym n+=. 当切线斜率不存在时,切线为x m =±,也符合方程00221x x y ym n+=, 综上:22221x y m n+=在点00(,)x y 处的切线方程为00221x x y y m n +=.6.280x y -+=【分析】根据线段NF 的垂直平分线经过点M 即可求得切线方程.【详解】由抛物线2:8C y x =可得其焦点()2,0F , 准线方程为:2x =-, 过点()8,8M 作准线的垂线,设垂足为N ,则N 的坐标为()2,8-, 又设FN 的中点为P ,则P 的坐标为()0,4,如图所示:故直线PM 的方程为:84480y x --=-, 即280x y -+=,△切线l 的方程为280x y -+=. 7.答案见解析.【分析】根据两切线方程分别为:()11y y p x x =+,()22y y p x x =+,且均过均过点P ,可知弦AB 方程为:02p y y p x ⎛⎫=- ⎪⎝⎭.【详解】以22y px =(p >0)为例说明.设点00(,)Q x y 是抛物线22y px =上的任意一点,则过点00(,)Q x y 且与抛物线相切的直线方程为00()y y k x x -=-,联立2002()y pxy y k x x ⎧=⎨-=-⎩得:222222000000(222)20k x k x p ky x k x y kx y -+-++-=,因为二者相切,所以Δ0=,即222222000000(222)4(2)0k x p ky k k x y kx y +--+-=,化简得:0p k y =,又2002y px =, 代入00()y y k x x -=-得:()00y y p x x =+,即抛物线22y px =在00(,)Q x y 处的切线方程为()00yy p x x =+. 设准线上任一点0,2p P y ⎛⎫- ⎪⎝⎭,切点分别为()11,A x y 、()22,B x y ,则切线方程分别为:()11y y p x x =+,()22y y p x x =+两切线均过点P ,则满足1012p y y p x ⎛⎫=-+ ⎪⎝⎭,2022p y y p x ⎛⎫=-+ ⎪⎝⎭.故过两切点的弦AB 方程为:02p y y p x ⎛⎫=- ⎪⎝⎭,则弦AB 过焦点.【点睛】(1)点()00,P x y 是抛物线()220y mx m =≠上一点,则抛物线过点P 的切线方程是:()00y y m x x =+;(2)点()00,P x y 是抛物线()220x my m =≠上一点,则抛物线过点P 的切线方程是:()00x x m y y =+.8.(1)p =2(2)【分析】(1)先求42pFM =+,点F 到圆M 上的点的距离的最小值即为FM r -. (2)求出AB =和点P 到直线AB的距离d =322(6)2144PABb S ⎛⎫--+= ⎪⎝⎭△,根据b 的范围即可求最大值.(1)0,2p F ⎛⎫⎪⎝⎭到圆心4(0,)M -的距离42p FM +,所以点F 到圆M 上的点的距离的最小值为4142pFM r -=+-=, 解得p =2; (2)由(1)知,抛物线的方程为24x y =, 即214y x =,则12y x '=, 设切点()11,A x y ,()22,B x y , 则易得PA l :21124x x y x =-,△PB l :22224x x y x =-,△联立△△可得1212,24x x x x P +⎛⎫⎪⎝⎭,设AB l :y kx b =+,联立抛物线方程,消去y 并整理可得2440x kx b --=, △216160k b ∆=+>,即20k b +>, 且124x x k +=,124x x b =-, △(2,)P k b -△AB ==点P 到直线AB 的距离d =△()322142PABS AB d k b ==+△△,又点(2,)P k b -在圆M :()2241y x ++=上, 故()22144b k --=,代入△得,332222(6)2112154444PAB b b b S ⎛⎫--+⎛⎫-+-== ⎪ ⎪⎝⎭⎝⎭△, 而[]5,3p y b =-∈--,△当b =5时,()max=PAB S【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式. 9.A【分析】设(2,)P t ,圆心C 的坐标为(0,0),可得以线段PC 为直径的圆N 的方程,两圆方程作差,得两圆公共弦AB 的方程可得答案. 【详解】因为P 为直线l 上的动点,所以可设(2,)P t , 由题意可得圆心C 的坐标为(0,0),以线段PC 为直径的圆N 的圆心为1,2⎛⎫⎪⎝⎭t P所以方程为2220x y x ty +--=,两圆方程作差,即得两圆公共弦AB 的方程为210x ty +-=,()210-+=x ty ,所以直线AB 过定点1,02⎛⎫⎪⎝⎭.故选:A. 10.A【分析】由P A △AC ,PB △BC 可知点A 、B 在以PC 为直径的圆上,设点P 坐标,写出以PC 为直径的圆的方程,然后可得直线AB 方程,再由直线方程可确定所过定点. 【详解】根据题意,P 为直线l :20x y ++=上的动点,设P 的坐标为(),2t t --, 过点P 作圆C 的两条切线,切点分别为A ,B ,则P A △AC ,PB △BC , 则点A 、B 在以PC 为直径的圆上,又由C (0,0),(),2P t t --,则以PC 为直径的圆的方程为:()()20x x t y y t -+++=,变形可得:()2220x y tx t y +-++=,则有22221(2)0x y x y tx t y ⎧+=⎨+-++=⎩,联立可得:()120tx t y -++=,变形可得:()120y t x y +--=, 即直线AB 的方程为()120y t x y +--=,变形可得:()120y t x y +--=,则有1200y x y +=⎧⎨-=⎩,解可得1212x y ⎧=-⎪⎪⎨⎪=-⎪⎩,故直线AB 过定点11,22⎛⎫-- ⎪⎝⎭. 故选:A . 11.118,77⎛⎫ ⎪⎝⎭【分析】根据题意,设P 的坐标为(82,)t t -,由圆的切线的性质分析可得则A 、B 在以CP 为直径的圆上,进而可得该圆的方程,进而分析可得直线AB 为两圆的公共弦所在直线的方程,由圆与圆的位置关系分析可得直线AB 的方程,据此分析可得答案. 【详解】根据题意,动点P 在直线280x y +-=上,设P 的坐标为(82,)t t -, 圆22:(1)4C x y -+=,圆心为(1,0),过点P 引圆的切线,切点分别为A ,B ,则PA CA ⊥,PB CB ⊥,则A 、B 在以CP 为直径的圆上,该圆的方程为(1)[(82)](0)()0x x t y y t ---+--=, 变形可得:22(92)(82)0x y t x ty t +---+-=,又由A 、B 在圆C 上,即直线AB 为两圆的公共弦所在直线的方程,则有2222230(92)(82)0x y x x y t x ty t ⎧+--=⎨+---+-=⎩, 则直线AB 的方程为(711)(22)x t x y -=--,则有7110220x x y -=⎧⎨--=⎩,解可得:11787x y ⎧=⎪⎪⎨⎪=⎪⎩;故直线AB 恒过定点11(7,8)7;故答案为:11(7,8)7.【点睛】本题考查直线与圆的位置关系、公共弦方程求法、直线过定点问题,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意两圆相减可得公共弦直线方程的应用. 12.(1)x =4或34200x y +-= (2)y =2或43100x y --= (3)280x y +-=【分析】(1)分k 不存在和k 存在两种情况讨论,利用圆心到直线距离等于半径,求解即可;(22,结合圆心到直线距离公式,可得解; (3)由题意12,,,P O P P 四点共圆,且PO 为直径,写出圆的方程,过切点1P 、2P 的直线即为圆22420x y x y +--=与圆2216x y +=的交线,求解即可. (1)当切线斜率不存在时,过点P (4,2)的直线为x =4,圆心到直线距离等于半径,故x =4为切线;当切线的斜率存在时,设切线方程为()24y k x -=-,即420kx y k --+=.4=,即430k +=解得:34k =-,此时切线方程为34200x y +-=.△过点P 的圆的切线方程为x =4或34200x y +-=; (2)由(1)知,所求切线斜率存在,设直线方程为420kx y k --+=.△r =4,且弦长为△圆心到直线420kx y k --+=的距离2d ==,即2340k k -= 解得k =0或43k =.△所求直线方程为y =2或43100x y --=; (3)由题意,1122,OP PP OP PP ⊥⊥ 故12,,,P O P P 四点共圆,且PO 为直径 △P (4,2),△以PO 为直径的圆圆心为(2,1),半径||2PO r == 故圆的方程为()()22215x y -+-=,由于12,P P 也在圆2216x y +=上,故过切点1P 、2P 的直线为圆22420x y x y +--=与圆2216x y +=的公共弦 两圆方程作差可得过1P 、2P 的直线方程为280x y +-=. 13.C【分析】先根据点在椭圆上,求得2a ,再类比可得切线方程. 【详解】因为点(10,3)P 在椭圆222:199x y C a +=上, 故可得21009199a +=,解得2110a =; 由类比可得椭圆C 在点P 处的切线方程为: 103111099x y +=,整理可得11133x y+=. 故选:C.【点睛】本题考查由椭圆上一点的坐标求椭圆方程,以及类比法的应用,属综合基础题. 14.D【分析】由题意可判断直线与圆相离,根据圆的知识可知,四点,,,A P B M 共圆,且AB MP ⊥,根据 44PAMPM AB SPA ⋅==可知,当直线MP l ⊥时,PM AB ⋅最小,求出以 MP 为直径的圆的方程,根据圆系的知识即可求出直线AB 的方程.【详解】圆的方程可化为()()22114x y -+-=,点 M 到直线l 的距离为2d =>,所以直线 l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAMPM AB SPA AM PA ⋅==⨯⨯⨯=,而PA =,当直线MP l ⊥时,min MP , min 1PA =,此时PM AB ⋅最小. △()1:112MP y x -=-即 1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩. 所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即 2210x y y +--=, 两圆的方程相减可得:210x y ++=,即为直线AB 的方程. 故选:D.【点睛】本题主要考查直线与圆,圆与圆的位置关系的应用,以及圆的几何性质的应用,意在考查学生的转化能力和数学运算能力,属于中档题. 15.C【解析】设()26,M t t +,()11,A x y ,()22,B x y ,即可表示出MA 的方程,又M 在MA 上,即可得到()1126132x t y t++=,即可得到直线AB 的方程,从而求出直线AB 过的定点; 【详解】解:因为点M 在直线260x y --=上,设()26,M t t +,()11,A x y ,()22,B x y ,所以MA 的方程为11132x x y y+=,又M 在MA 上,所以()1126132x t y t ++=△,同理可得()2226132x t y t ++=△; 由△△可得AB 的方程为()26132x t yt++=,即()22636x t yt ++=,即()()431260x y t x ++-=,所以4301260x y x +=⎧⎨-=⎩,解得1223x y ⎧=⎪⎪⎨⎪=-⎪⎩,故直线恒过定点12,23⎛⎫- ⎪⎝⎭故选:C 16.C【解析】设1111(,),(0,0)B x y x y >>,根据题意,求得过点B 的切线l 的方程,即可求得C 、D 坐标,代入面积公式,即可求得OCD 面积S 的表达式,利用基本不等式,即可求得答案. 【详解】设1111(,),(0,0)B x y x y >>,由题意得,过点B 的切线l 的方程为:1112x xy y +=, 令0y =,可得12(,0)C x ,令0x =,可得11(0,)D y ,所以OCD 面积111112112S x y x y =⨯⨯=,又点B 在椭圆上,所以221112x y +=,所以121111121111122x y S x y x y x x y y +===+≥=当且仅当11112x y y x =,即111,x y ==时等号成立, 所以OCD. 故选:C【点睛】解题的关键是根据题意,直接写出过点B 的切线方程,进而求得面积S 的表达式,再利用基本不等式求解,考查分析理解,计算化简的能力,属基础题. 17.A【解析】根据类比推理,可得直线l 的方程,然后根据垂直关系,可得所求直线方程.【详解】过椭圆221124x y +=上的点()3,1A -的切线l 的方程为31124x y-+=, 即40x y --=,切线l 的斜率为1, 与直线l 垂直的直线的斜率为-1, 过A 点且与直线l 垂直的 直线方程为(13)y x +=-一, 即20x y +-=. 故选:A【点睛】本题考查类比推理以及直线的垂直关系,属中档题. 18. 111x x y y +=22221x x y ya b+= 【分析】由OM 垂直切线可求出切的斜率,再利用点斜式可求出过C 上点M 的切线方程;利用导数的几何意义在点()22,N x y 处切线的斜率,再利用点斜式求出直线方程 【详解】解:因为11OM y k x =,切线与直线OM , 所以所求切线的斜率为11x y -, 所以所求的切线方程为1111()x y y x x y -=--,即221111y y y x x x -=-+,得221111x x y y x y +=+,因为点()11,M x y 为圆22:1C x y +=上一点,所以22111x y +=,所以过C 上点M 的切线方程为111x x y y +=; 当20y >时,设0y >,由22221x y a b +=得22221y x b a=- 22222y a x b a -= △22222()b y a x a =-△y = △1'222()(2)2b y a x x a-=-⋅-1222()bx a x a -=--=△过点()22,N x y的切线的斜率为△过点()22,N x y的切线的方程为22)y y x x -=-△点()22,N x y 在椭圆上,△2222221x y a b+=,222222222,a y a y b x a b b=+=, △2222()bx b y y x x a ay -=-⋅-, 即222222()b xy y x x a y -=-- 2222222222a y y a y b x x b x -=-+,2222222222a y y b x x a y b x +=+,△222222a y y b x x a b +=,△所求的切线方程为22221x x y ya b+=, 当20y <时,同理可得其切线方程为22221x x y ya b+=所以过E 上点()22,N x y 的切线方程为22221x x y ya b+=, 故答案为:111x x y y +=;22221x x y ya b+= 【点睛】此题考查圆锥曲线的切线方程的求法,属于中档题 19.340x y +-=【分析】由导数的几何意义即可求得切线方程.【详解】△椭圆223144x y +=,△y >0时,y △23xy -'=, △x =1时,13y '=-,即切线斜率13k =-,△椭圆223144x y +=上点P (1,1)处的切线方程是()1113y x -=--,即340x y +-=. 故答案为:340x y +-=. 20.【分析】求得切线方程,将N 代入切线方程,即可求得M 点坐标,求得切线方程,根据斜率公式及离心率公式即可求得答案. 【详解】双曲线在M (x 0,y 0)的切线方程为00221x x y ya b-=,将N 代入切线方程, 解得y 0=﹣2b ,代入双曲线方程解得:x 0,21y b =,即y2bx +,由斜率的取值范围是⎣1≤b a ≤2, 由双曲线的离心率e =c a1≤22b a ≤4,∴双曲线离心率的取值范围, 故答案为:.【点睛】本题考查双曲线的切线方程的应用及离心率公式,考查转化思想,属于中档题.21.20-=x y【详解】分析:结合题中的方法类比求解切线方程即可.详解:用类比的方法对2212y x =-两边同时求导得,22x yy x y y '∴'==,,0002|2x x x k y y =∴='=, △切线方程为2(y x ,整理为一般式即:20x y -.点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝. 22.(1)2211612x y +=;(2)280x y +-=; (3)证明见解析.【分析】(1)根据已知条件列方程组即可求出,,a b c .(2)由直线与椭圆相切,根据判别式Δ0=即可求出直线斜率k . (3)利用向量数量积证明直线1PF 与2F P 关于直线m 对称即可;【详解】(1)由题意可得:2222212491c a a b c a b ⎧=⎪⎪=+⎨⎪⎪+=⎩,解得216a =,212b =,△椭圆C 的方程为:2211612x y +=;(2)显然,过点P (2,3)的切线存在斜率, 设切线l 的斜率为k ,则l :3(2)y k x -=-,由22116123(2)x y y k x ⎧+=⎪⎨⎪-=-⎩得()()222348231648120k x k kx k k +--+--=, 因为直线l 与椭圆C 相切,∴()()()2222Δ64234341648120k k k k k =--+--=,化为:24410k k ++=,解得12k =-.△求过点P 的椭圆切线方程为280x y +-=. (3)证明:△椭圆C 的方程为:2211612x y +=, 则椭圆左右焦点分别为()12,0F -,()22,0F , △过点P 的椭圆切线方程为280x y +-=, △过点P 的椭圆法线方程为m :210x y --=, 法线的方向向量()1,2m =--, △()14,3PF =--,()20,3PF =-, △1112cos ,PF mPF m PF m⋅==-,2222cos ,PF mPF m PF m⋅==- △直线1PF ,2F P 关于直线m 对称;△从椭圆一个焦点发出的光线照到点P ,被椭圆反射后,反射光线一定经过另一个焦点. 【点睛】求椭圆的标准方程有两种方法:△定义法:根据椭圆的定义,确定a 2,b 2的值,结合焦点位置可写出椭圆方程.△待定系数法:若焦点位置明确,则可设出椭圆的标准方程,结合已知条件求出a ,b ;若焦点位置不明确,则需要分焦点在x 轴上和y 轴上两种情况讨论,也可设椭圆的方程为Ax 2+By 2=1(A >0,B >0,A ≠B ). 23.(1)22143x y +=(2)证明见解析(3)是,常数为43【分析】(1)代入点坐标,结合2221b e a=-求解即可;(2)根据结论设出切线方程,两条切线交于点M (4,t ),可得点A 、B 的坐标都适合方程13tx y +=,求出定点坐标即可; (3)联立直线AB 与椭圆,点点距公式表示22,AF BF ,结合韦达定理化简即得解【详解】(1)△椭圆C :()222210x y a b a b+=>>的离心率为12,点31,2⎛⎫ ⎪⎝⎭在椭圆C 上.△222314b e a =-=,△221914a b +=,△, 由△△得:24a =,23b =,△椭圆C 的方程为22143x y +=. (2)证明:设切点坐标()11,A x y ,()22,B x y ,则切线方程分别为11143x x y y+=,22143x x y y +=. 又两条切线交于点M (4,t ),即1113t x y +=,2213tx y +=,即点A 、B 的坐标都适合方程13tx y +=,令0y =,可得1x = 故对任意实数t ,点(1,0)都适合这个方程,故直线AB 恒过椭圆的右焦点()21,0F .(3)将直线AB 的方程13tx y =-+,代入椭圆方程,得223141203t y y ⎛⎫-++-= ⎪⎝⎭,即2242903t y ty ⎛⎫+--= ⎪⎝⎭, △122612t y y t +=+,1222712y y t =-+, 不妨设10y >,20y <,21AF y =,同理22BF y =,△211212221111y y y y y y AF BF -⎫+=-=⎪⎭1243==,△2211AF BF +的值恒为常数43. 24.(1)2y x =+;(2)2214812x y +=. 【分析】(1)设出切点,利用切点处的导数是斜率,表示出切线方程,1(,2)2D -在切线上,求出两解,分别对应切点,A B 坐标,则方程可求. (2a b 、的一个关系;联立直线和椭圆方程,用上韦达定理,结合123k k k +=,再建立a b 、的一个关系,则椭圆方程可求. 【详解】解:(1)设切点11(,)A x y 22(,)B x y ,则221122,x y x y ==切线的斜率为2y x '=,所以抛物线上过11(,)A x y 点的切线的斜率为12x ,切线方程为()2111112,2y y x x x y x x x -=-=-,1(,2)2D -在切线上,所以21120x x --=,12x =或11x =-, 当12x =时,2114y x ==;当11x =-,2111y x ==,不妨设()(2,4),1,1A B -,1AB k =, 所以两切点,A B 所在的直线方程2y x =+.(2)由e =2234c a =,又222c a b =-,所以224a b =.222244y x x y b=+⎧⎨+=⎩,得225161640x x b ++-=, 21651645P Q P Q x x b x x ⎧+=-⎪⎪⎨-⎪=⎪⎩, 21,Q PP Qk k y y x x ==, 1k =,又因为123k k k +=,()()3,3,223P Q P Q Q P Q Q P P P Q P Q P Qx x x x y y x y x y x x x x x x ++++===+,()2P Q P Q x x x x +=,22161642,1255b b --⨯==,248a =, 所以椭圆的方程2214812x y +=.【点睛】以直线和抛物线、椭圆的位置关系为载体,考查求直线方程、椭圆方程的方法;中档题.25.(△)22143x y +=;(△)满足条件的点P 有两个.【详解】试题分析:(1) 结合椭圆的离心率可求得1c =,则椭圆方程为22143x y +=.(2)由题意首先求得切线方程的参数形式,据此可得直线BC 的方程为002x y x y =-,则点P 的轨迹方程为112y x =-,原问题转化为直线112y x =-与椭圆1C 的交点个数,即满足条件的点P 有两个. 试题解析:(△)由椭圆的对称性,不妨设在x 轴上方的切点为M ,x 轴下方的切点为N , 则1NE k =,NE的直线方程为y x =因为椭圆22122:1x y C a b+= ()0a b >>的离心率为12,所以椭圆22122:143x y C c c+=,所以22221,43y x x y c c ⎧=⎪⎨+=⎪⎩ 0∆=,则1c =, 所以椭圆方程为22143x y +=.(△)设点()11,B x y ,()22,C x y ,()00,P x y ,由24x y =,即214y x =,得12y x '=,△抛物线2C 在点B 处的切线1l 的方程为()1112x y y x x -=-, 即2111122x y x y x =+-, △21114y x =,△112x y x y =-.△点()00,P x y 在切线1l 上,△10012x y x y =-.△ 同理,20022x y x y =-.△ 综合△、△得,点()11,B x y ,()22,C x y 的坐标都满足方程002xy x y =-. △经过()11,B x y ,()22,C x y 两点的直线是唯一的, △直线BC 的方程为002x y x y =-, △点()1,1A 在直线BC 上,△00112y x =-, △点P 的轨迹方程为112y x =-.又△点P 在椭圆1C 上,又在直线112y x =-上, △直线112y x =-经过椭圆1C 内一点()0,1-, △直线112y x =-与椭圆1C 交于两点. △满足条件的点P 有两个.26.(1)21:4C x y =,222:134x y C +=(2)2y =-【分析】(1)依据曲线1C 和椭圆的定义求方程.(2) 假设点M 存在,设切线方程,M 即在抛物线又在椭圆上找到等量关系.【详解】(1)由曲线1C 上任意一点到F (0,1)的距离比到x 轴的距离大1,根据抛物线的定义,曲线1C 为以F (0,1)为焦点的抛物线,则曲线1C :24x y =;设椭圆2C 的方程()222210y x a b a b+=>>,由24a =,a =2,c =1,2223b a c =-=,△椭圆2C :22143y x +=;(2)若存在,由题意设AB 方程:y =kx +2代入24x y =,化简得2480x kx --=,设()11,A x y ,()22,B x y ,则124x x k +=,128x x =-,△ 由于12y x '=,△切线MA 方程为:()11112y y x x x -=-,即2111124y x x x =-,△同理切线MB 方程为:2221124y x x x =-,△ 由△△得1212,24x x x x M +⎛⎫⎪⎝⎭,△M (2k ,-2), 又M (2k ,-2)在椭圆上,24113k +=可得:k =0,△M (0,-2)k =0代入△有:1x =2x =-△椭圆2C 上存在一点M (0,-2)符合题意,此时两条切线的方程为2y =-. 【点睛】本题要证明切点弦过定点,设切点弦的直线方程,得到韦达定理,然后通过切点写出两条切线方程,可以得到交点M 的坐标,由点M 的特性可以求出M 坐标,进而求出切点,写出切线方程.。
新高考方案二轮-数学(新高考版)大题专攻(二) 第1课时 圆锥曲线中的最值、范围、证明问题

(2)已知 O 为坐标原点,M,N 为椭圆上不重合两点,且 M,N 的中点 H
落在直线 y=12x 上,求△MNO 面积的最大值.
[解题微“点”]
(1)利用―A→G ·―B→G =0 及 e= 23构建方程组求 a,b, 即得椭圆方程; 切入点 (2)设出点 M,N 与 H 的坐标,表示出直线 MN 的方 程,与椭圆联立,利用弦长公式和点到直线的距离 公式表示△MNO 的面积后求最大值 障碍点 不要漏掉 Δ>0,利用此条件可求参数的取值范围
解:(1)依题意,2c=6,则 b= 9-5=2,
则双曲线 C:x52-y42=1,B1(0,-2),F2(3,0).
设直线 l:4x+3y+m=0,将 B1(0,-2)代入解得 m=6,
此时 l:4x+3y+6=0,F2 到 l 的距离为 d=158.
(2)设双曲线上的点 P(x,y)满足―PB→1 ·―PB→2 =-2, 即 x2+y2=b2-2,又xa22-by22=1⇒y2=ba22x2-b2,
[对点训练] (2021·济南三模)已知抛物线C:x2=4y,过点P(1,-2)作斜率为k(k>0)的直线l1与 抛物线C相交于A,B两点. (1)求k的取值范围; (2)过P点且斜率为-k的直线l2与抛物线C相交于M,N两点,求证:直线AM、BN 及y轴围成等腰三角形.
解:(1)由题意设直线 l1 的方程为 y+2=k(x-1), 由xy+2=24=y,kx-1, 得到:x2-4kx+4k+8=0, 由题意知 Δ>0,所以 k2-k-2>0,即 k<-1 或 k>2. 因为 k>0,所以 k 的取值范围为(2,+∞).
[提分技巧] 解决范围问题的常用方法
利用待求量的几何意义,确定出极端位置后,利 数形结合法
高考数学一轮复习专题02 圆锥曲线弦长问题(解析版)

解析几何专题二:圆锥曲线弦长问题一、知识储备弦长公式||AB =12||AB x ==-= (最常用公式,使用频率最高)= 二、例题讲解1.(2022·辽宁高三开学考试)已知椭圆C 的标准方程为:22221(0)x y a b a b +=>>,若右焦点为F(1)求椭圆C 的方程;(2)设M ,N 是C 上的两点,直线MN 与曲线222x y b +=相切且M ,N ,F 三点共线,求线段MN 的长. 【答案】(1)2213x y +=;(2【分析】(1)根据椭圆的焦点、离心率求椭圆参数,写出椭圆方程即可.(2)由(1)知曲线为221(0)x y x +=>,讨论直线MN 的存在性,设直线方程联立椭圆方程并应用韦达定理求弦长即可. 【详解】(1)由题意,椭圆半焦距c =c e a =,则a =2221b a c =-=, ∴椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>当直线MN 的斜率不存在时,直线:1MN x =,不合题意:当直线MN 的斜率存在时,设()11,M x y ,()22,N x y 又M ,N ,F 三点共线,可设直线:(MN y k x =,即0kx y -=, 由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立22(13y x x y ⎧=±⎪⎨+=⎪⎩,得2430x -+=,则12x x +=1234x x ⋅=,∴||MN ==2.(2022·全国高三专题练习)过双曲线142x y -=的右焦点F 作斜率为2的直线l ,交双曲线于A ,B 两点.(1)求双曲线的离心率和渐近线; (2)求AB 的长. 【答案】(1)e =,渐近线方程为y =;(2)207.【分析】(1)由双曲线方程得出,a b ,再求出c ,可得离心率,渐近线方程;(2)写出直线方程,代入双曲线方程,设()11,A xy ,()22,B x y,由韦达定理得1212,x x x x +,然后由弦长公式计算弦长. 【详解】解:(1)因为双曲线方程为22142x y -=, 所以2a =,b =则c =所以62cea,渐近线方程为2y x =±. (2)双曲线右焦点为0),则直线l 的方程为2(y x = 代入双曲线22142x y -=中,化简可得27520x -+=设()11,A x y ,()22,B x y 所以12x x +=12527x x ⋅=,所以2120|||7AB x x -==. 【点睛】方法点睛:本题考查双曲线的离心率和渐近线方程,考查直线与双曲线相交弦长.解题方法是直线方程与双曲线方程联立并消元后应用韦达定理求出1212,x x x x +,然后由弦长公式12d x =-求出弦长.3.(2022·全国高三模拟预测)在平面直角坐标系xOy 中,已知()2,0F ,()2,3M -,动点P 满足12OF MP PF ⋅=. (1)求动点P 的轨迹C 的方程;(2)过点()1,0D 作直线AB 交C 于A ,B 两点,若AFD 的面积是BFD △的面积的2倍,求AB . 【答案】(1)28y x =;(2【分析】(1)设(),P x y ,求得,,MP OF PF 的坐标,结合12OF MP PF ⋅=,化简、整理,即可求得抛物线的方程; (2)设()()1122,,,A x y B x y ,不妨设120,0y y ><,由2AFD BFD S S =△△,求得122y y =-,设直线AB 的方程为1x my =+,联立方程组,结合根与系数的关系,求得128y y m +=,128y y =-,进而求得12,,y y m ,利用弦长公式,即可求解. 【详解】(1)设(),P x y ,因为()2,0F ,()2,3M -,则()2,3MP x y =+-,()2,0OF =,()2,PF x y =--. 由12OF MP PF ⋅=,可得2x +=28y x =,即动点P 的轨迹C 的方程为28y x =. (2)设()11,A x y ,()22,B x y , 由题意知112AFD S FD y =⋅△,212BFD S FD y =⋅△, 易知120y y <,不妨设120,0y y ><,因为2AFD BFD S S =△△,所以122y y =,所以122y y =-. ① 设直线AB 的方程为1x my =+,联立281y xx my ⎧=⎨=+⎩消去x ,得2880y my --=,则264320m ∆=+>,可得128y y m +=,128y y =- ② 由①②联立,解得1214,2,4y y m ==-=,所以124(2)AB y =-=--=. 【点睛】本题主要考查了向量的坐标运算,抛物线的标准方程的求解,以及直线与抛物线的位置关系的综合应用,解答此类题目,通常联立直线方程与抛物线方程,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.三、实战练习1.(2022·江门市培英高级中学高三模拟预测)已知椭圆()2222:10x y C a b a b +=>>过点P ⎭,离心率为12. (1)求椭圆C 的标准方程;(2)若1A 为椭圆C 的左顶点,直线l 过右焦点2F 与椭圆C 交于M ,N 两点(M ,N 与1A 不重合),l 不与x 轴垂直,若11A M A N MN k k k +=-,求MN .【答案】(1)22143x y +=;(2)247 【分析】(1)由题意可得关于,,a b c 的方程组,求解,a b 的值,即可求得椭圆C 的标准方程;(2)根据题意设()()1122,,,M x y N x y ,直线l :()1,0x my m =+≠,联立直线方程与椭圆方程,化为关于y 的一元二次方程,利用根与系数的关系结合11A M A N MN k k k +=-,求出m 的值,再根据弦长公式即可求得MN . 【详解】(1)由题意可得:22222123314c a a b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:224,3a b ==,∴ 椭圆C 的标准方程为:22143x y +=; (2)()()211,0,2,0F A -,由题意可设:直线l :()1,0x my m =+≠,()()1122,,,M x y N x y ,联立:221143x my x y =+⎧⎪⎨+=⎪⎩ 得:()2234690m y my ++-=, 则12122269,3434m y y y y m m --+==++, 1112121,,22A M A N MN y y k k k x x m===++, 11121222A M A N y yx k x k ∴+=+++ ()()()()1221122222y x y x x x +++=++()()()()1221213333y my y my my my +++=++()()2122112122339y y y m y y y my m y ++=+++222229623343496393434mm m m m m m m m --⨯+⨯++=--⨯+⨯+++ m =-,又11A M A N MN k k k +=-, 1m m∴-=-, 解得:21,1m m ==±, 故1212226699,347347m y y y y m m --+==±==-++,247MN =.2.(2022·广东执信中学高三月考)已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F三点共线的充要条件是||MN =【答案】(1)2213x y +=;(2)证明见解析.【分析】(1)由离心率公式可得a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN =充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k=+,联立直线与椭圆方程结合弦长公式可得=1k =±,即可得解. 【详解】(1)由题意,椭圆半焦距c =c e a =,所以a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y , 必要性:若M ,N,F 三点共线,可设直线(:MN y k x =即0kx y --=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以121234x x x x +⋅=,所以MN ==所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN === 化简得()22310k -=,所以1k =±,所以1k b =⎧⎪⎨=⎪⎩1k b =-⎧⎪⎨=⎪⎩:MN y x =或y x =-+所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N ,F 三点共线的充要条件是||MN = 【点睛】 关键点点睛:解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.3.(2022·全国高三月考(文))已知椭圆2222:1(0)x y C a b a b+=>>与抛物线24y x =有公共的焦点F ,1A ,2A 分别为椭圆C 长轴的左、右端点,P 为C 上一动点,且12PAA ∆的最大面积为 (1)求椭圆C 的标准方程;(2)直线l 经过点F ,且与C 交于A ,B 两点,若10||3AB =,求直线l 的方程. 【答案】(1)22143x y +=;(20=. 【分析】(1)利用已知条件可以直接得出焦点F 的坐标,当三角形面积最大时P 为短轴端点,从而解出a ,b 的值即可; (2)利用(1)中求出的点F 的坐标,设出直线方程,然后与椭圆方程联立,利用弦长公式即可求出直线的方程. 【详解】(1)抛物线24y x =的焦点F 坐标为()1,0∴椭圆C 中的半焦距为1.由椭圆的几何性质可知,当12PA A ∆面积最大时,P 为椭圆短轴端点,不妨令()0,P b ,则221a b ab ⎧-=⎪⎨=⎪⎩解得2a b =⎧⎪⎨=⎪⎩∴椭圆C 的标准方程为22143x y +=. (2)直线l 经过椭圆C 的右焦点,且10||3AB =∴直线l 的斜率存在,设直线l 的斜率为k ,则直线l 的方程为(1)y k x =-, 与椭圆C 的方程联立可得()22223484120k xk x k +-+-=,0∆>,设()11,A x y ,()22,B x y ,则2122834k x x k +=+,212241234k x x k -=+12||AB x ∴-=()2212110343k k +==+解得k =∴直线l 0=0.【点睛】本题考查椭圆的标准方程、抛物线的几何性质以及直线与椭圆的位置关系,要求较高的运算求解能力,属于中档题.本题的关键点有:(1)韦达定理的应用,韦达定理是联系各个变量之间的桥梁是解决解析几何问题的重要方法; (2)计算能力和计算技巧是解决解析几何问题的关键能力.4.(2022·陕西(文))已知点B 是圆22:(1)16C x y -+=上的任意一点,点(1,0)F -,线段BF 的垂直平分线交BC 于点P .(1)求动点P 的轨迹E 的方程;(2)直线:2l y x m =+与E 交于点M ,N ,且MN =m 的值. 【答案】(1)22143x y +=,(2)1m =±.(1)由条件可得42PC PF PC PB BC FC +=+==>=,然后由椭圆的定义可求出答案;(2)设()()1122,,,M x y N x y ,然后联立直线与椭圆的方程消元,韦达定理得出1212,x x x x +,然后利用MN =出m 的值即可. 【详解】(1)由条件可得42PC PF PC PB BC FC +=+==>=所以动点P 的轨迹E 是以,F C 为焦点的椭圆,设其方程为()222210x y a b a b+=>>所以24,22a c ==,所以2,1,a c b ===所以方程为22143x y += (2)设()()1122,,,M x y N x y联立221432x y y x m ⎧+=⎪⎨⎪=+⎩可得221916+4120x mx m +-= 所以由()22256764120m m ∆=-->得(m ∈2121216412,1919m m x x x x -+=-=因为MN =所以可解得1m =±5.(2022·全国高三专题练习)已知点(A 和B ,动点C到A ,B 两点的距离之差的绝对值为2,记点C 的(1)求轨迹E 的方程;(2)设E 与直线2y x =-交于两点M ,N ,求线段MN 的长度. 【答案】(1)2212y x -=;(2)【分析】(1)设(,)C x y ,由于||||2CA CB -=,||AB =,利用双曲线的定义求解即可; (2)直线和双曲线方程联立消y ,利用韦达定理以及弦长公式求解即可. 【详解】 (1)设(,)C x y , 则||||2CA CB -=,所以点C 的轨迹E 为双曲线22221(0,0)x y a b a b-=>>,且22a =,2||c AB == 则1a =,2222b c a =-=, 所以轨迹E 的方程为2212y x -=;(2)由22122y x y x ⎧-=⎪⎨⎪=-⎩, 得2460x x +-=, 因为0∆>,所以直线与双曲线有两个交点, 设()11,M x y ,()22,N x y , 则124x x +=-,126x x =-,故MN =所以线段MN 的长度为6.(2022·全国高三专题练习)已知双曲线C :22221(0,0)x y a b a b-=>>)是双曲线的一个顶点.(1)求双曲线的方程;(2)经过双曲线右焦点2F 作倾斜角为30的直线,直线与双曲线交于不同的两点A ,B ,求AB . 【答案】(1)22136x y -=;(2【分析】(1)求出,a b ,即可得出双曲线方程;(2)可先求出直线方程为3)y x =-,联立椭圆方程,再利用弦长公式即可求出. 【详解】(1)由题可得c a a ⎧=⎪⎨⎪=⎩3c =,b ,所以双曲线的方程为22136x y-=;(2)双曲线22136x y -=的右焦点为()23,0F所以经过双曲线右焦点2F 且倾斜角为30°的直线的方程为3)y x =-.联立221363)x y y x ⎧-=⎪⎪⎨⎪-⎪⎩得256270x x +-=.设()11,A x y ,()22,B x y ,则1265x x +=-,12275x x =-.所以AB ==【点睛】本题考查双曲线方程的求法,考查直线与双曲线相交弦长的求法,属于基础题.7.(2022·重庆高三模拟预测)已知直线l :4y kx =+与抛物线C :2y ax =交于A 、B 两点,O 为坐标原点,OA OB ⊥. (1)求抛物线C 的标准方程;(2)若过点A 的另一条直线1l 与抛物线C 交于另一点M ,与y 轴交于点N ,且满足||||AN AM =,求BM 的最小值.【答案】(1)214y x =;(2)【分析】(1)先联立直线与抛物线,得到判别式和韦达定理,再根据垂直关系,利用0OA OB ⋅=,求得参数即可;(2)设直线BM 的方程,并与抛物线联立,得到判别式和韦达定理,根据已知关系,判断中点位置,利用坐标关系求得参数m ,最后利用弦长公式计算BM ,利用二次函数判断最小值即可. 【详解】解:(1)依题意,设()()1122,,,A x y B x y ,由24y ax y kx ⎧=⎨=+⎩,消去y ,得240ax kx --=,2121604k a x x a ⎧∆=+>⎪∴⎨=-⎪⎩, OA OB ⊥,12120OA OB x x y y ∴⋅=+=,即2212120x x ax ax +⋅=,即22212120x x a x x +=,所以22440a a a ⎛⎫⎛⎫-+⋅-= ⎪ ⎪⎝⎭⎝⎭,解得14a =,∴抛物线C 的标准方程为214y x =; (2)由题意知,直线BM 的斜率存在,故可设直线BM 的方程为y tx m =+,()33,M x y ,由214y xy tx m ⎧=⎪⎨⎪=+⎩,消去y ,得2440x tx m --=,223231616044t m x x m x x t ⎧∆=+>⎪∴=-⎨⎪+=⎩,由(1)知,1216x x =-,故1123321644x x x x x x m m-===-, 由题意知,,A M N 三点共线,且|AN |=|AM |,即A 为线段MN 的中点,设()0,N n , 则3102x x +=,即13142x x m ==,即8m =,22323161680324t x x x x t⎧∆=+⨯>⎪∴=-⎨⎪+=⎩,23BM x ∴=-=)20t ==≥, 故20t =时,BM最小为=【点睛】 思路点睛:直线与抛物线中的弦长问题,我们常让直线与抛物线方程联立,再利用韦达定理及弦长公式,建立关系式.其中弦长公式:(已知直线上的两点距离)设直线:l y kx m =+,l 上两点()()1122,,,A x y B xy ,所以12AB x =-或12AB y =-,解决相关问题.8.(2022·全国高三模拟预测)已知抛物线()2:20C y px p =>的焦点为F ,点(),2P t -在C 上,且2PF OF =(O 为坐标原点).(1)求C 的方程;(2)若A ,B 是C 上的两个动点,且A ,B 两点的横坐标之和为8,求当AB 取最大值时,直线AB 的方程. 【答案】(1)24yx =;(2)220x ±-=. 【分析】(1)根据题意,列出方程组22242pp t pt⎧+=⨯⎪⎨⎪=⎩,求得p 的值,即可求得C 的标准方程; (2)设()11,A x y ,()22,B x y ,当12x x =时,得到AB 的方程4x =;当12x x ≠时,得到2AB k n =,得到()42nx y n =-+,联立方程组,结合根与系数的关系,得到1212,y y y y +,根据弦长公式和基本不等式,即可求解. 【详解】(1)由题意,点(),2P t -在()2:20C y px p =>上,且2PF OF =,可得22242pp t pt ⎧+=⨯⎪⎨⎪=⎩,解得21p t =⎧⎨=⎩,所以C 的标准方程为24y x =.(2)设()11,A x y ,()22,B x y ,且128x x +=,设AB 中点为(),D m n ,则122x x m +=,122y y n +=, 当12x x =时,:4AB l x =,8AB =; 当12x x ≠时,()212122212121442AB y y y y k x x y y y y n--====--+, 则()2:4AB l y n x n-=-,即()42n x y n =-+,与C 联立方程消去x ,整理得2222160y ny n -+-=, 由22(2)4(216)0n n ∆=--->,解得216n <,且122y y n +=,212216y y n =-,所以2212416102n n AB y ++-=-==, 当26n =时取“=”,所以AB 的最大值为10,此时AB 的方程为220x -=. 【点睛】直线与圆锥曲线的综合问题的求解策略:对于直线与圆锥曲线的位置关系的综合应用问题,通常联立直线方程与圆锥曲线方程,应用一元二次方程根与系数的关系,以及弦长公式等进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力.9.(2022·浙江高三模拟预测)已知直线:4l y kx =+与抛物线2:C y ax =交于A 、B 两点,O 为坐标原点,OA OB ⊥. (1)求抛物线C 的标准方程;(2)若过点A 的另一条直线1l 与抛物线C 交于另一点M ,与y 轴交于点N ,且满足AN AM =,求BM 的最小值. 【答案】(1)24x y=;(2)最小值为【分析】(1)联立直线l 与抛物线C 的方程,列出韦达定理,由已知条件可得出0OA OB ⋅=,利用平面向量数量积的坐标运算结合韦达定理求出a 的值,即可得出抛物线C 的标准方程;(2)设直线BM 的方程为y tx m =+,点()33,M x y ,将直线BM 的方程与抛物线C 的方程联立,列出韦达定理,由已知条件可得1312x x =,代入韦达定理求出m 的值,再利用弦长公式可求得BM 的最小值.【详解】(1)依题意设()11,A x y 、()22,B x y ,由24y ax y kx ⎧=⎨=+⎩消去y ,得240ax kx --=,所以,212160,4.k a x x a ⎧+>⎪⎨=-⎪⎩OA OB ⊥,12120OA OB x x y y ∴⋅=+=,即22212120x x a x x +=,4160a∴-+=,解得14a =,所以,抛物线C 的标准方程为24x y =;(2)由题意知,若直线BM 的斜率不存在,则该直线与抛物线C 只有一个公共点,不合乎题意.所以,直线BM 的斜率存在,故可设直线BM 的方程为y tx m =+,点()33,M x y , 由24x y y tx m ⎧=⎨=+⎩消去y ,得2440x tx m --=,223231616044t m x x t x x m⎧+>⎪∴+=⎨⎪=-⎩, 由(1)知1216x x =-,1123231644x x x x x x m m-∴===-①. 由题意知A 、M 、N 三点共线,且A 为线段MN 的中点,设()0,N n ,则3102x x +=,即1312x x =②,由①②得8m =,22323161680432t x x t x x ⎧+⨯>⎪∴+=⎨⎪=-⎩,23BM x ∴=-=)20t ==≥,当且仅当0t =时,等号成立,故BM 的最小值为【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.10.(2022·全国高三专题练习)如图所示,A ,B 是焦点为F 的抛物线24y x =上的两动点,线段AB 的中点M 在定直线34x =上.(1)求FA FB +的值; (2)求AB 的最大值. 【答案】(1)72;(2)【分析】(1)由抛物线定义有12FA FB x x p +=++,结合已知条件即可求FA FB +;(2)由直线与抛物线位置关系,联立方程得到一元二次方程,结合根与系数关系、弦长公式即可求AB 的最大值. 【详解】(1)由题意知:2p =,抛物线对称轴方程1x =-.设()11,A x y ,()22,B x y ,12324x x +=,则1272FA FB x x p +=++=; (2)点A 和B 在抛物线24y x =上,有2114y x =,2224y x =,两式相减得:()()()1212124y y y y x x -+=-,令3(,)4M m ,∴12122y y x x m -=-,即2AB k m=, ∴设直线AB 的方程为234y m x m ⎛⎫-=- ⎪⎝⎭,即23224m m x y =-+,代入抛物线方程得222230y my m -+-=,∴22248121240m m m ∆=-+=->,得203m ≤<,122y y m +=,21223y y m =-∴12AB y =-=∴当20m=时,max AB = 【点睛】思路点睛:求抛物线焦半径相关线段长度时注意抛物线定义的应用,即抛物线焦点到抛物线上点的距离等于该点到抛物线准线的距离;直线与抛物线相交,求弦长时一般要联立方程应用根与系数关系以及弦长公式.11.(2022·全国高三专题练习)已知抛物线C :22(0)y px p =>的焦点F 与椭圆22143x y +=的右焦点重合,点M 是抛物线C 的准线上任意一点,直线MA ,MB 分别与抛物线C 相切于点A ,B .(1)求抛物线C 的标准方程;(2)设直线MA ,MB 的斜率分别为1k ,2k ,证明:12k k ⋅为定值; (3)求AB 的最小值.【答案】(1)24y x =;(2)证明见解析;(3)4.【分析】(1)由椭圆的方程可得右焦点的坐标,由题意可得抛物线的焦点坐标,进而可得抛物线的方程;(2)可设M 的坐标,设过点(1,)M t -的直线方程为(1)y k x t =++,与抛物线方程24y x =联立,消去x 得:24440ky y k t -++=,利用判别式等于零可得结论;(3)设A ,B 的坐标,由(2)可得参数t ,k 的关系,代入过M 的切线方程与抛物线的方程中,可得A ,B 用参数1k ,2k 表示的坐标,代入弦长公式中求||AB的表达式,由参数的范围求出||AB 的最小值.【详解】(1)由椭圆方程得,椭圆的右焦点为(1,0) ∴抛物线的焦点为(1,0)F ,2p ∴=,所以抛物线的标准方程:24y x =. (2)抛物线C 的准线方程为1x =-. 设(1,)M t -,设过点(1,)M t -的直线方程为(1)y k x t =++,与抛物线方程24y x =联立,消去x 得:24440ky y k t -++=. 其判别式△1616()k k t =-+,令△0=,得:210k kt +-=. 由韦达定理知12k k t +=-,121k k =-, 故121k k =-(定值).(3)设1(A x ,1)y ,2(B x ,2)y ,由210k kt +-=,得21k t k-=,故2222214244444440k ky y k t ky y k ky y k y k k k -⎛⎫-++=-++⨯=-+=-= ⎪⎝⎭,所以2y k=,代入抛物线方程得21x k =,所以211(A k ,12)k ,221(B k ,22)k ,||AB=因为121k k =-,12k k t +=-,所以12|||AB k k -244t =+,当且仅当0t =时取等号. 当且仅时取等号. 故||AB 的最小值为4.【点睛】求曲线弦长的方法:(1)利用弦长公式12l x -;(2)利用12l y =-;(3)如果交点坐标可以求出,利用两点间距离公式求解即可.12.(2022·广西河池·高三期末(理))已知抛物线2:4C y x =的焦点为F ,斜率为2的直线l 与抛物线C 相交于A 、B 两点.(Ⅰ)若直线l 与抛物线C 的准线相交于点P ,且PF =l 的方程; (Ⅱ)若直线l 不过原点,且90AFB ∠=︒,求ABF 的周长.【答案】(Ⅰ)2y x =;(Ⅱ)15+【分析】(Ⅰ)设直线l 的方程为2y x m =+,则点P 的坐标为()1,2m --,联立直线与抛物线,由判别式大于0可得12m <,由PF =0m =或4m =(舍去),从而可得结果;(Ⅱ)设直线l 的方程为()20=+≠y x b b ,并代入抛物线2:4C y x =,根据韦达定理和0FA FB ⋅=可解得12b =-,根据弦长公式可得||AB =||||AF BF +,进一步可得ABF 的周长. 【详解】(Ⅰ)由抛物线2:4C y x =可知(1,0)F ,准线为1x =-, 设直线l 的方程为2y x m =+,则点P 的坐标为()1,2m --,联立方程242y x y x m⎧=⎨=+⎩,消去y 后整理为()224440x m x m +-+=,又由()22441616320m m m ∆=--=->,可得12m <,由点F 的坐标为()1,0,有PF ==, 解得0m =或4m =(舍去), 故直线l 的方程为2y x =.(Ⅱ)设直线l 的方程为()20=+≠y x b b , 点A 、B 的坐标分别为()11,x y ,()22,x y ,联立方程242y x y x b⎧=⎨=+⎩,消去y 后整理为()224440x b x b +-+=,可得121x x b +=-,21214x x b =,()()()()222121212122242212y y x b x b x x b x x b b b b b b =++=+++=+-+=又由()22441616320b b b ∆=--=->,可得12b <. 又由()111,FA x y =-,()221,FB x y =-,可得()()()1212121212111FA FB x x y y x x x x y y ⋅=--+=-+++ ()22111123044b b b b b =--++=+=,得0b =(舍去)或12b =-.由12b =-,可得1213x x +=,1236x x =,所以AB ===()()121211215AF BF x x x x +=+++=++=,故ABF 的周长为15+ 【点睛】本题考查了直线与抛物线的位置关系,考查了抛物线的定义,韦达定理和弦长公式,考查了运算求解能力,属于中档题.。
2022上海高二数学考试满分攻略(沪教版2020第一册)第2章圆锥曲线(新文化与压轴30题专练)解析

第2章圆锥曲线(新文化与压轴30题专练)一、单选题1.(2021·上海·高二专题练习)开普勒第二定律的内容是“在相等的时间内,行星与恒星所连线段扫过的面积相等”,如图,已知行星绕恒星运动的轨道是一个椭圆,恒星在椭圆的一个焦点F 处.从行星位于长轴端点P 这一位置开始计算,它再次运行到点P 所经过的时间为T .根据开普勒第二定律,从P 开始经过4T时间,行星的位置可能在( )A .A 点处B .B 点处C .C 点处D .D 点处【答案】A 【解析】根据开普勒第二定律即可得 【详解】因为在相等的时间内,行星与恒星所连线段扫过的面积相等,P 点到F 的距离较远,经过4T时间,14BPFS S椭圆,所以4T 时间后未到B 点,可能在A 处故选:A.本题考查椭圆对称性的应用,属于基础题.2.(2020·上海市进才中学高二期末)若直线y=x+b 与曲线3y =b 的取值范围是A .1,1⎡-+⎣B .1⎡-+⎣C .1⎡⎤-⎣⎦D .1⎡⎤⎣⎦【答案】C 【详解】试题分析:如图所示:曲线3y = (x-2)2+(y-3)2=4(-1≤y≤3), 表示以A (2,3)为圆心,以2为半径的一个半圆,直线与圆相切时,圆心到直线y=x+b 的距离等于半径2,当直线过点(4,3)时,直线与曲线有两个公共点,此时b=-1结合图象可得1- 故答案为C3.(2020·上海·华东师范大学附属周浦中学高二期末)设点M 、N 均在双曲线22:143x y C -=上运动,1F 、2F 是双曲线C 的左、右焦点,则122MF MF MN +-的最小值为( )A .B .4C .D .以上都不对【答案】B根据向量的运算,化简得|MF 1⃗⃗⃗⃗⃗⃗⃗⃗ +MF 2⃗⃗⃗⃗⃗⃗⃗⃗ −2MN ⃗⃗⃗⃗⃗⃗⃗ |=|2MO 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ −2MN ⃗⃗⃗⃗⃗⃗⃗ |=2|NO ⃗⃗⃗⃗⃗⃗ |,结合双曲线的性质,即可求解. 【详解】由题意,设O 为12,F F 的中点,根据向量的运算,可得|MF 1⃗⃗⃗⃗⃗⃗⃗⃗ +MF 2⃗⃗⃗⃗⃗⃗⃗⃗ −2MN ⃗⃗⃗⃗⃗⃗⃗ |=|2MO ⃗⃗⃗⃗⃗⃗ −2MN ⃗⃗⃗⃗⃗⃗⃗ |=2|NO ⃗⃗⃗⃗⃗⃗ |, 又由N 为双曲线22:143x y C -=上的动点,可得|NO⃗⃗⃗⃗⃗⃗ |≥a , 所以|MF 1⃗⃗⃗⃗⃗⃗⃗⃗ +MF 2⃗⃗⃗⃗⃗⃗⃗⃗ −2MN ⃗⃗⃗⃗⃗⃗⃗ |=2|NO ⃗⃗⃗⃗⃗⃗ |≥2a =4, 即|MF 1⃗⃗⃗⃗⃗⃗⃗⃗ +MF 2⃗⃗⃗⃗⃗⃗⃗⃗ −2MN ⃗⃗⃗⃗⃗⃗⃗ |的最小值为4. 故选:B. 【点睛】本题主要考查了向量的运算,以及双曲线的标准方程及简单的几何性质的应用,其中解答中利用向量的运算,合理化简,结合双曲线的几何性质求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.4.(2020·上海市实验学校高二期中)数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C ; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是 A .① B .②C .①②D .①②③【答案】C将所给方程进行等价变形确定x 的范围可得整点坐标和个数,结合均值不等式可得曲线上的点到坐标原点距离的最值和范围,利用图形的对称性和整点的坐标可确定图形面积的范围. 【详解】由221x y x y +=+得,221y x y x -=-,2222||3341,10,2443x x x y x ⎛⎫-=-- ⎪⎝⎭, 所以x 可为的整数有0,-1,1,从而曲线22:1C x y x y +=+恰好经过(0,1),(0,-1),(1,0),(1,1), (-1,0),(-1,1)六个整点,结论①正确.由221x y x y +=+得,222212x y x y +++,解得222x y +≤,所以曲线C 上任意一点到原点的. 结论②正确.如图所示,易知()()()()0,1,1,0,1,1,,0,1A B C D -,四边形ABCD 的面积13111122ABCD S =⨯⨯+⨯=,很明显“心形”区域的面积大于2ABCD S ,即“心形”区域的面积大于3,说法③错误.故选C. 【点睛】本题考查曲线与方程、曲线的几何性质,基本不等式及其应用,属于难题,注重基础知识、基本运算能力及分析问题解决问题的能力考查,渗透“美育思想”.5.(2021·上海·高二专题练习)已知椭圆22195x y +=过右焦点F 作不垂直于x 轴的弦交椭圆于A ,B 两点,AB 的垂直平分线交x 轴于N ,则|NF |:|AB |等于( )A .12 B .13C .23D .14【答案】B 【分析】设出直线AB 的参数方程,代入椭圆方程,化简后写出韦达定理.利用直线参数的几何意义表示出,NF AB ,由此求得两者的比值. 【详解】依题意可知,椭圆的右焦点为()2,0.设直线AB 的参数方程为2cos sin x t y t αα=+⎧⎨=⎩(t 为参数,α为直线AB 的倾斜角,π2α≠).代入椭圆22195x y +=,化简得()2254sin 20cos 250tt αα++⋅-=,所以12122220cos 25,54sin 54sin t t t t ααα+=-=-++.设AB 的中点为C ,则中点C 对应的参数1232t t t +=,所以312cos 2cos t t t NF αα+==.而12AB t t =-所以NFAB===13===.故选:B.【点睛】本小题主要考查直线和椭圆的位置关系,考查运算求解能力,属于中档题.6.(2021·上海·高二专题练习)设直线系():cos 2sin 1M x y θθ+-=,02θπ≤≤,对于下列四个命题:(1)M 中所有直线均经过一个定点; (2)存在定点P 不在M 中的任意一条直线上;(3)对于任意整数n ,3n ≥,存在正n 边形,其所有边均在M 中的直线上; (4)M 中的直线所能围成的正三角形面积都相等;其中真命题的是( ) A .(2)(3) B .(1)(4) C .(2)(3) (4) D .(1)(2)【答案】A 【解析】首先发现直线系()():cos 2sin 102M x y θθθπ+-=≤≤表示圆()2221x y +-=的切线集合,再根据切线的性质判断(1)(3)(4),以及观察得到点()0,2不在任何一条直线上,判断选项. 【详解】因为点()0,2到直线系()():cos 2sin 102M x y θθθπ+-=≤≤中每条直线的距离1d ==,直线系()():cos 2sin 102M x y θθθπ+-=≤≤表示圆()2221x y +-=的切线集合.(1)由于直线系表示圆()2221x y +-=的所有切线,其中存在两条切线平行,所有M 中所有直线均经过一个定点不可能,故(1)不正确;(2)存在定点P 不在M 中的任意一条直线上,观察知点()0,2M 符合条件,故(2)正确;(3)由于圆的所有外切正多边形的边都是圆的切线,所以对于任意整数()3n n ≥,存在正n 变形,其所有边均在M 的直线上,故(3)正确;(4)如下图,M 中的直线所能围成的正三角形有两类,一类如ABE △,一类是BCD △,显然这两类三角形的面积不相等,故(4)不正确.故选:A 【点睛】本题考查含参直线方程,距离公式,轨迹问题的综合应用,重点考查转化与变形,分析问题的能力,属于偏难习题,本题的关键是观察点()0,2到直线系()():cos 2sin 102M x y θθθπ+-=≤≤中每条直线的距离1d ==,直线系()():cos 2sin 102M x y θθθπ+-=≤≤表示圆()2221x y +-=的切线集合,再判断选项就比较容易.7.(2021·上海·高二专题练习)已知曲线4422:1C x y mx y ++=(m 为常数),给出下列结论:①曲线C 为中心对称图形; ②曲线C 为轴对称图形; ③当1m =-时,若点(,)P x y 在曲线C 上,则||1x ≥或||1y ≥; 其中,正确结论是( ) A .①② B .②③C .①③D .①②③【答案】D 【分析】在曲线C 上任取一点(),P x y ,得到44221x y mx y ++=;将点()1,P x y --代入曲线方程,可验证点()1,P x y --在曲线上,同理可得点()2,P x y -、()3,P x y -都在曲线C 上,得到①②正确;当1m =-时,得到222213124x y y ⎛⎫=-+ ⎪⎝⎭,反设1x <且1y <,根据题意,推出矛盾,即可得出③正确. 【详解】在曲线C 上任取一点(),P x y ,则44221x y mx y ++=,将点()1,P x y --代入曲线C 的方程可得()()()()44221x y m x y -+-+--=,同理可知,点()2,P x y -、()3,P x y -都在曲线C 上, 则曲线C 关于原点和坐标轴对称,①②正确;当1m =-时,2442222213124x y x y x y y ⎛⎫=+-=-+ ⎪⎝⎭,反设1x <且1y <,则201x ≤<,201y ≤<,∴22111222x y -<-<,则22211024x y ⎛⎫≤-< ⎪⎝⎭,∴2442222213124x y x y x y y ⎛⎫+-=-+< ⎪⎝⎭,这与44221x y x y +-=矛盾.∴假设不成立,∴1x ≥或1y ≥,命题③正确. 故正确命题的序号为:①②③. 故选:D. 【点睛】方法点睛:判定曲线对称性的方法,一般任取曲线上的点(),x y ,结合曲线方程,列出式子;再验证(),x y -,(),x y -,(),x y --是否满足曲线方程,即可得出其对称性.8.(2021·上海宝山·高二期末)如果一个多边形的所有顶点均在某个函数的图象上,那么称此多边形为该函数的内接多边形.设函数()32141f x x x x =---,()2222x f x x =-+,若四边形ABCD 为函数()()12y f x f x =+的内接正方形,则此正方形的面积为( ) A .15或7 B .10或7C .10或17D .15或17【答案】C 【分析】分析可得39()12f x x x =-+关于(0,1)M 对称,即可得正方形的对称中心,设出直线AC 的方程,即可得直线BD 方程,将直线与()f x 联立,可得2192x k =+,同理22912x k =-,由AM BM =,化简整理,可得1k k-的值,再利用,AM BM 表示出面积S ,化简计算,即可得答案. 【详解】函数()()312912y f x f x x x =+=-+,设39()12f x x x =-+,则()()2f x f x -+=,所以函数()f x 关于点(0,1)M 对称,这显然也是正方形的对称中心, 由正方形性质可得,AC BD ⊥于M ,且AM BM CM DM ===,不妨设直线AC 的方程为1(0)y kx k =+>,则直线BD 方程为11y x k=-+,设1122(,),(,)A x y B x y ,则1122(,2),(,2)C x y D x y ----,联立直线AC 与函数()y f x =方程:31912y kx y x x =+⎧⎪⎨=-+⎪⎩,可得3902x k x ⎛⎫-+= ⎪⎝⎭, 所以2192x k =+,同理22912x k =-,又120,0AM BM =-=-, 所以229191(1)122k k k k ⎛⎫⎛⎫⎛⎫++=+- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即2219102k k k k⎛⎫++-= ⎪⎝⎭,整理得2112940k k k k ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭,解得14k k -=-或112k k -=-,所以1k k +=,所以12122ABCD S AM BM x x k k ⎛⎫===+ ⎪⎝⎭1210k k ⎛=+ ⎝或17故选:C 【点睛】解题的关键是读懂题意,根据函数对称性,得到正方形对称中心,再根据正方形性质,利用弦长公式,化简计算,即可得答案,属难题9.(2021·上海·高二专题练习)双纽线最早于1694年被瑞士数学家雅各布·伯努利用来描述他所发现的曲线.在平面直角坐标系xOy 中,把到定点()1,0F a -,()2,0F a 距离之积等于2a (0a >)的点的轨迹称为双纽线C .已知点()00,P x y 是双纽线C 上一点,下列说法中正确的有( )①双纽线C 关于原点O 中心对称; ②022a ay -≤≤;③双纽线C 上满足12PF PF =的点P 有两个; ④PO . A .①② B .①②④ C .②③④ D .①③【答案】B 【分析】对①,设动点(,)C x y ,把(,)x y 关于原点对称的点(,)x y --代入轨迹方程,显然成立; 对②,根据12PF F △的面积范围证明即可.对③,易得若12PF PF =则P 在y 轴上,再根据()00,P x y 的轨迹方程求解即可. 对④,根据题中所给的定点()1,0F a -,()2,0F a 距离之积等于2a ,再画图利用余弦定理分析12PF F △中的边长关系,进而利用三角形三边的关系证明即可.【详解】对①,设动点(,)C x y ,由题可得C 22222)][()]x a y x a y a ,把(,)x y 关于原点对称的点(,)x y --代入轨迹方程显然成立.故①正确; 对②,因为()00,P x y ,故12121212011||||sin ||22PF F SPF PF F PF F F y =⋅⋅∠=⋅. 又212||||PF PF a ⋅=,所以2120sin 2a F PF a y ∠=⋅,即012sin 22a ay F PF =∠≤,故022a a y -≤≤.故②正确;对③, 若12PF PF =则()00,P x y 在12F F 的中垂线即y 轴上. 故此时00x =,22222)][()]x a y x a y a ,可得00y =,即()0,0P ,仅有一个.故③错误;对④,因为12POF POF π∠+∠=,故12cos cos 0POF POF ∠+∠=,即222222112212||||||||||||02||||2||||OP OF PF OP OF PF OP OF OP OF +-+-+=⋅⋅, 因为12||||OF OF a ==,212||||PF PF a ⋅=故2222122||2||||OP a PF PF +=+.即()22212122||2||||2||||OP a PF PF PF PF +=-+⋅, 所以()22122||||||OP PF PF =-.又1212||||||2PF PF F F a -≤=,当且仅当12,,P F F 共线时取等号. 故()()222122||||||2OP PF PF a=-≤, 即22||2OP a ≤,解得||OP ≤.故④正确.故①②④正确. 故选:B 【点睛】本题主要考查了动点轨迹方程的性质判定,因为该方程较复杂,故在作不出图像时,需要根据题意求出动点的方程进行对称性的分析,同时需要结合解三角形的方法对所给信息进行辨析.属于难题.二、填空题10.(2021·上海市大同中学高二开学考试)设直线l 与抛物线24y x =相交于,A B 两点,与圆()()22250x yr r -+=>相切于点M ,且M 为线段AB 的中点. 若这样的直线l 恰有4条,则r 的取值范围是__________. 【答案】(2,4) 【详解】设直线l 的方程为x ty m =+,()11A x y ,,()22B x y ,把直线l 的方程代入抛物线方程24y x =,整理可得:2440y ty m --= 则�=16t 2+16m >0,124y y t +=,124y y m =-则()()2121242x x ty m ty m t m +=+++=+∴线段AB 的中点()222M t m t +,由题意可得直线AB 与直线MC 垂直,且()50C ,当0t ≠时,有1MC AB K K =- 即2201125t t m t-⨯=-+-,整理得232m t =- 把232m t =-代入到�=16t 2+16m >0 可得230t ->,即203t <<由于圆心C 到直线AB 的距离等于半径即2d r ==24r ∴<<,此时满足题意且不垂直于x 轴的直线有两条当0t =时,这样的直线l 恰有2条,即5x r =±, 05r ∴<<综上所述,若这样的直线l 恰有4条,则r 的取值范围是()24,点睛:本题主要考查的知识点是直线与抛物线,圆的位置关系,考查了学生分析解决问题的能力,属于中档题.设直线l 的方程为x ty m =+,()11A x y ,,()22B x y ,,把直线l 的方程代入抛物线方程24y x =,根据判别式求得线段AB 的中点M 的坐标,分别讨论0t ≠时,0t =时r 的取值范围,即可得到答案11.(2019·上海市奉贤区奉城高级中学高二期末)双曲线2213x y -=绕坐标原点O 旋转适当角度可以成为函数()f x 的图象,关于此函数()f x 有如下四个命题:① ()f x 是奇函数;② ()f x 的图象过点3)2或3)2-;③ ()f x 的值域是33(,][,)22-∞-+∞;④ 函数()y f x x =-有两个零点;则其中所有真命题的序号为________.【答案】①② 【分析】根据双曲线关于坐标原点对称,则旋转后得到的函数的()f x 图象也关于原点对称,即有()f x 为奇函数;根据双曲线的顶点、渐近线方程可得旋转后的()f x 的图象的渐近线,再由对称性可得()f x 的图象过3)2或3)2-;根据()f x 的图象按逆时针旋转60位于一三象限由图象可得顶点为点,不是极值点,则()f x 的值域不是33(,][,)22-∞-+∞,也不是33(,][,)22-∞-+∞;分()f x 的图象所在的象限讨论,得出()f x 的图象与直线y x =没有交点,函数yf xx 没有零点.【详解】解:双曲线2213x y -=关于坐标原点对称,可得旋转后得到的函数的()f x 图象关于原点对称,即有()f x 为奇函数,故①对;由双曲线的顶点为30,,渐近线方程为y x =,可得()f x 的图象的渐近线为0x =和y =,图象关于直线y =对称,可得()f x 的图象过32⎫⎪⎪⎝⎭或32⎫-⎪⎪⎝⎭. 由对称性可得()f x 的图象按逆时针60旋转位于—三象限; 按顺时针旋转60位于二四象限;故②对;()f x 的图象按逆时针旋转60位于一三象限由图象可得顶点为点32⎫⎪⎪⎝⎭或32⎫-⎪⎪⎝⎭..不是极值点,则()f x 的值域不是33(,][,)22-∞-+∞;()f x 的图象按顺时针旋转60位于二四象限,由对称性可得()f x 的值域也不是33(,][,)22-∞-+∞,故③不对;当()f x 的图象位于一三象限时,()f x 的图象与直线y x =有两个交点,函数y f xx 有两个零点;当()f x 的图象位于二四象限时,()f x 的图象与直线y x =没有交点,函数y f xx 没有零点故④错.故真命题为:①② 故答案为:①② 【点睛】本题考查双曲线的性质和函数图象的对称性、极值、零点,属于中档题.12.(2020·上海市洋泾中学高二期末)几何学史上有一个著名的米勒问题:“设点M 、N 是锐角AQB ∠的一边QA 上的两点,试在边QB 上找一点P ,使得MPN ∠最大”,如图,其结论是:点P 为过M 、N 两点且射线QB 相切的圆的切点,根据以上结论解决以下问题:在平面直角坐标系xOy 中,给定两点()1,2M -、()1,4N ,点P 在x 轴上移动,当MPN ∠取最大值时,点P 的坐标为___________ 【答案】()1,0【分析】设△PMN 的外接圆的圆心为(),a b ,根据题设中给出的结论可构建关于,a b 的方程组,解方程组后可得P 的坐标. 【详解】延长NM 交x 轴于K ,则NKO ∠为锐角,由题设,当P 在射线KO 上时,若MPN ∠取最大值,则有PMN 的外接圆与x 轴相切且切点为P , 设Q 为x 轴上的动点且在K 的左侧,则NQM NQK PKN ∠<∠<, 由MPN ∠为最大值角可得MPN PKN ∠>∠, 故当P 为x 轴上的动点且MPN ∠取最大值时,P 在射线KO 上且PMN 的外接圆与x 轴相切且切点为P .设该圆的圆心为(),a b ,则0b >且圆的半径为b ,故()()()()2222221214a b ba b b ⎧++-=⎪⎨-+-=⎪⎩,整理得到22245028170a a b a a b ⎧+-+=⎨--+=⎩,解得12a b =⎧⎨=⎩或710a b =-⎧⎨=⎩, 又直线MN 的方程为3y x,故()3,0K -,故710a b =-⎧⎨=⎩舍去,故PMN 的外接圆的圆心为()1,2,故()1,0P . 故答案为:()1,0. 【点睛】方法点睛:本题为即时应用类问题,注意根据给出的背景或结论来构建所设变量的方程组,另外对不适合题设给出的背景的另一类问题的讨论.13.(2021·上海·曹杨二中高二阶段练习)如图,已知抛物线24y x =的焦点为F,直线l 过点F 且依次交抛物线及圆()22114x y -+=于A 、B 、C 、D 四点,则9AB CD +的最小值为_____.【答案】11 【分析】利用抛物线的定义表示出1||2A AB x =+,1||2D CD x =+,对直线l 的斜率是否存在进行讨论:当直线l 的斜率不存在时,1D A x x ==,915AB CD +=,当直线l 的斜率存在时,设l :()1y k x =-,用设而不求法表示出1A D x x =,利用基本不等式求最值. 【详解】解:抛物线24y x =的准线为1x =-,所以1A AF x =+,因为1||||2AF AB =+,由圆()22114x y -+=的半径为12,所以1||2A AB x =+.同理1||2D CD x =+,当直线l 的斜率不存在时,1D A x x ==,915AB CD +=, 当直线l 的斜率存在时,设l :()1y k x =-,由24(1)y x y k x ⎧=⎨=-⎩得()2222240k x k x k -++=,所以1A D x x =,所以||9||59511A D AB CD x x +=++≥+,(取等号的条件为=9A D x x ,即=3=31A D x x ,)综上,9AB CD +的最小值为11.故答案为:11【点睛】解析几何中的最值问题一般的求解思路:①几何法:利用图形作出对应的线段,利用几何法求最值;②代数法:把待求量的函数表示出来,利用函数或基本不等式求最值.14.(2021·上海·华师大二附中高二期末)在xOy平面上,将双曲线的一支221 916x y-=(0)x>及其渐近线43y x=和直线0y=、4y=围成的封闭图形记为D,如图中阴影部分,记D绕y轴旋转一周所得的几何体为Ω,过(0,)y(04)y≤≤作Ω的水平截面,计算截面面积,利用祖暅原理得出Ω体积为________【答案】36π.【详解】分析:由已知中过(0,y)(0≤y≤4)作Ω的水平截面,计算截面面积,利用祖暅原理得出Ω的体积.详解:在xOy平面上,将双曲线的一支221916x y-=(0)x>及其渐近线43y x=和直线y=0,y=4围成的封闭图形记为D,如图中阴影部分.则直线y=a与渐近线43y x=交于一点A(34a,a)点,与双曲线的一支221916x y-=(0)x>交于B a)点,记D 绕y 轴旋转一周所得的几何体为Ω. 过(0,y )(0≤y≤4)作Ω的水平截面,则截面面积S=22394ππ⎡⎤⎛⎫-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 利用祖暅原理得Ω的体积相当于底面面积为9π高为4的圆柱的体积, ∴Ω的体积V=9π×4=36π, 故答案为36π点睛:本题考查的知识点是类比推理,其中利用祖暅原理将不规则几何体的体积转化为底面面积为9π高为4的圆柱的体积,是解答的关键.祖暅原理也可以成为中国的积分,将图形的横截面的面积在体高上积分,得到几何体的体积.15.(2021·上海·华师大二附中高二阶段练习)瑞士数学家欧拉(LeonhardEuler )1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知ABC 的顶点()4,0-A ,()0,4B ,其欧拉线方程为20x y -+=,则顶点C 的坐标可以是_________ 【答案】()2,0或()0,2- 【分析】设(,)C x y ,依题意可确定ABC ∆的外心为(0,2)M ,可得出,x y 一个关系式,求出ABC ∆重心坐标,代入欧拉直线方程,又可得出,x y 另一个关系式,解方程组,即可得出结论. 【详解】设(,),C x y AB 的垂直平分线为y x =-,ABC 的外心为欧拉线方程为20x y -+= 与直线y x =-的交点为(1,1)M -,∴22||||(1)(1)10MC MA x y ==++-=① 由()4,0-A ,()0,4B ,ABC 重心为44(,)33x y -+, 代入欧拉线方程20x y -+=,得20x y --=② 由 ①②可得2,0x y ==或 0,2x y ==-. 故答案为:()2,0或()0,2-. 【点睛】本题以数学文化为背景,考查圆的性质和三角形的外心与重心,考查逻辑思维能力和计算能力,属于较难题.16.(2021·上海市金山中学高二期末)古希腊数学家阿波罗尼斯在他的巨著《圆锥曲线论》中有一个著名的几何问题:在平面上给定两点,A B ,动点P 满足PA PBλ=,(其中a 和λ是正常数,且1λ≠),则P 的轨迹是一个圆,这个圆称之为“阿波罗尼斯圆”.现已知两定点()1,0M -和()2,1N ,P 是圆22:3O x y +=PN +的最小值为________【分析】在x 轴上取()3,0S -,由MOP POS 可得PS PN SN +≥,利用两点间距离公式可求得结果. 【详解】如图,在x 轴上取点()3,0S -,OM OP OPOS=MOP POS ∠=∠,∴△MOP ∼△POS ,PS ∴=,PN PS PN SN +=+≥(当且仅当P 为SN 与圆O 交点时取等号), )minPNSN ∴+==.【点睛】PN +的最值求解转化为PS PN +的最值求解问题,从而由三点共线确定最小值.17.(2021·上海·高二专题练习)如图,在平面直角坐标系xoy 中,椭圆()2222:10x y a b a bΓ+=>>的左右焦点分别为1F ,2F ,椭圆Γ的弦AB 与CD 分别垂直于x 轴与y 轴,且相交于点P .已知线段PA ,PC ,PB ,PD 的长分别为2,4,6,12,则12PF F △的面积为___________.【答案】【解析】根据图形以及线段PA ,PC ,PB ,PD 的长求出()()()4,4,8,2,4,2A C P ,将()()4,4,8,2A C 代入22221x y a b +=,可得228020a b ⎧=⎨=⎩,然后利用三角形面积公式可得答案.【详解】因为椭圆Γ的弦AB 与CD 分别垂直于x 轴与y 轴,且相交于点P , 线段PA ,PC ,PB ,PD 的长分别为2,4,6,12,由图可知,,,A P C 是第一象限的点,根据椭圆的对称性可得, 12444,44822A P c P PD PC x x PC x x PC ++==-=-==+=+=, 2622,22422C P A P PA PB y y PA y y PA ++==-=-==+=+=, 即()()()4,4,8,2,4,2A C P ,将()()4,4,8,2A C 代入22221x y a b +=, 可得2222161616441a b a b⎧+=⎪⎪⎨⎪+=⎪⎩,解得228020a b ⎧=⎨=⎩,c =则12PF F △的面积为12112222p F F y ⨯⨯=⨯⨯=故答案为:【点睛】关键点点睛:本题主要考查椭圆的方程与几何性质,解题的关键是利用对称性求出()()4,4,8,2A C ,然后代入椭圆方程确定,a b 的值.18.(2021·上海·高二专题练习)在平面直角坐标系xOy 中,已知点A 在椭圆221259x y +=上,点P 满足AP ⃗⃗⃗⃗⃗ =(λ−1)OA ⃗⃗⃗⃗⃗ (λ∈R ),且OP ⃗⃗⃗⃗⃗ ⋅OA ⃗⃗⃗⃗⃗ =48,则线段OP 在x 轴上的投影长度的最大值为_______ 【答案】10 【解析】由已知可得O ,A ,P 三点共线,先设OP 与x 轴的夹角为θ,B 为(,)A x y 在x 轴上的投影,从而有线段OP 在x 轴上的投影长度为22248||48||||cos ||OB x OP x y OA θ==+,结合椭圆方程及基本不等式可求. 【详解】((1)AP OA OP OA λ=-=-,∴OP OA λ=,则O ,A ,P 三点共线,OA ⃗⃗⃗⃗⃗ ⋅OP ⃗⃗⃗⃗⃗ =48,设OP 与x 轴的夹角为θ,B 为(,)A x y 在x 轴上的投影, 则线段OP 在x 轴上的投影长度为22248||48||11||cos 48481016||924||25||5OB x OP x x y OA x θ===⨯⨯=++, 当且仅当16||925||x x =即15||4x =时取得最大值10.故答案为:10. 【点睛】方法点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.三、解答题19.(2021·上海金山·高二期末)已知双曲线22:13y C x -=,直线l 交双曲线于,A B 两点.(1)求双曲线C 的顶点到其渐近线的距离;(2)若l 过原点,P 为双曲线上异于,A B 的一点,且直线,PA PB 的斜率,PA PB k k 均存在,求证:PA PB k k ⋅为定值;(3)若l 过双曲线的右焦点1F ,是否存在x 轴上的点(),0M m ,使得直线l 绕点1F 无论怎样转动,都有0MA MB ⋅=成立?若存在,求出M 的坐标;若不存在,请说明理由. 【答案】(12)证明见解析;(3)存在点()1,0M -,使得0MA MB ⋅=. 【分析】(1)由双曲线方程可得顶点坐标和渐近线方程,由点到直线距离公式可求得结果; (2)设()00,A x y ,()00,B x y --,(),P x y ,表示出22220PA PB y y k k x x -⋅=-,将,P A 代入双曲线方程,两式作差整理可得定值;(3)当直线l 斜率存在时,设():2l y k x =-,与双曲线方程联立得到韦达定理的形式,利用向量坐标运算可表示出0MA MB ⋅=,由此可构造方程组求得1m =-,得到()1,0M -;当直线l 斜率不存在时,可知()1,0M -满足0MA MB ⋅=;综合两种情况可得结果. 【详解】(1)由双曲线方程可知其顶点坐标为()1,0±,渐近线方程为y =; 由双曲线对称性知:双曲线顶点到任一渐近线的距离相等,取y =,顶点()1,0,∴所求距离d =, 即双曲线C(2)由双曲线对称性知:,A B 关于原点对称, 设()00,A x y ,()00,B x y --,(),P x y ,2200022000PA PBy y y y y y k k x x x x x x -+-∴⋅=⋅=-+-; ,P A 均为双曲线上的点,2222001313y x y x ⎧-=⎪⎪∴⎨⎪-=⎪⎩,两式作差得:2222003y y x x --=,220223y y x x -∴=-,即PA PB k k ⋅为定值3; (3)由双曲线方程知:()12,0F ; 当直线l 斜率存在时,设():2l y k x =-,由()22213y k x y x ⎧=-⎪⎨-=⎪⎩得:()222223034430k k x k x k -≠--++=,,则()23610k ∆=+>; 设()11,A x y ,()22,B x y ,则212243k x x k +=-,2122433k x x k +=-,()11,MA x m y =-,()22,MB x m y =-,()()()()()2212121212121224MA MB x m x m y y x x m x x m k x x x x ∴⋅=--+=-+++-++()()()22221212124k x x k m x x k m =+-++++()()()()()22222222222243142453140333kk k k m m m k m k mk k k +++----=-++==---;2245010m m m ⎧--=∴⎨-=⎩,解得:1m =-,()1,0M ∴-; 当直线l 斜率不存在时,()2,3A ,()2,3B -,此时()1,0M -使得0MA MB ⋅=; 综上所述:存在点()1,0M -,使得0MA MB ⋅=. 【点睛】思路点睛:本题考查直线与双曲线综合应用中的定值问题和存在定点满足某条件的问题的求解,解决此类问题的基本思路如下:①假设直线方程,与双曲线方程联立,整理为关于x 或y 的一元二次方程的形式; ②利用0∆>求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出已知中的等量关系,代入韦达定理可整理得到变量所满足的方程,化简整理所得方程;④根据等量关系恒成立或化简消元的思想确定定点坐标.20.(2021·上海·高二专题练习)已知椭圆221:14x C y +=与双曲线()22222:10,0x y C a b a b-=>>有共同的焦点1F ,2F且双曲线的实轴长为(1)求双曲线2C 的标准方程;(2)若曲线1C 与2C 在第一象限的交点为P ,求证:1290F PF ∠=︒.(3)过右焦点2F 的直线l 与双曲线2C 的右支相交于的A ,B 两点,与椭圆1C 交于C ,D 两点.记AOB ,COD △的面积分别为1S ,2S ,求12S S 的最小值. 【答案】(1)2212x y -=;(2)证明见解析;(3【解析】(1)解方程组2232a b a ⎧+=⎪⎨=⎪⎩求得,a b 的值,即可求双曲线2C 的标准方程;(2)联立曲线1C 与2C 的方程,求得在第一象限的交点为P 的坐标,可得12,F P F P 的坐标,利用120F P F P ⋅=可得结论.(3)斜率不存在时,直接求出面积比,斜率存在时,设出直线方程,分别与椭圆、双曲线方程联立,利用韦达定理、结合弦长公式与三角形面积公式可得)())21222143221421k AB S S CD k k +⎫===+∈+∞⎪--⎭,进而可得答案.【详解】(1)因为椭圆221:14x C y +=与双曲线()22222:10,0x y C a b a b -=>>有共同的焦点1F ,2F ,且双曲线的实轴长为2232a b a ⎧+=⎪⎨=⎪⎩解之得1a b ⎧=⎪⎨=⎪⎩双曲线2C 的标准方程为2212xy -=(2)联立方程组22221412x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩解之得x y ⎧=⎪⎪⎨⎪=⎪⎩所以点P ⎝⎭()1F,)2F12F P ⎛= ⎝⎭,22F P ⎛= ⎝⎭1224271093F P F P -⋅=+=,∴1290F PF ∠=︒(3)当直线l 的斜率不存在时,AB =1CD =,此时12AB S S CD=当直线l的斜率存在时,设方程为(y k x =代入椭圆方程得()2222141240k x x k +---=,21212212414k x x x x k ++=-+ 由弦长公式得()224114k k CD +=+把直线方程(y k x =代入双曲线方程得()222212620k xx k -+--=2121226212k x x x x k ++==--由弦长公式得)22121k k AB +=-因为直线l 与双曲线2C 的右支相交于的A ,B 两点,所以2222120010262012k k k k ⎧-≠⎪∆>>⇒>⎪--⎪>-⎩ 设原点到直线l 的距离为d ,∴)())212221432214212121d AB k AB S S CD k d k CD +⎫===+∈+∞⎪--⎭综上可知,12S S 【点睛】求双曲线标准方程的方法一般为待定系数法,根据条件确定关于,,a b c 的方程组,解出,,a b ,从而写出双曲线的标准方程.解决直线与双曲线的位置关系的相关问题,其常规思路是先把直线方程与双曲线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单21.(2021·上海·高二专题练习)已知椭圆22:142x y C +=,点()4,1P 为椭圆外一点.(1)过原点作直线交椭圆C 于M 、N 两点,求直线PM 与直线PN 的斜率之积的范围; (2)当过点P 的动直线l 与椭圆C 相交于两个不同点A 、B 时,线段AB 上取点Q ,满足AP QB AQ PB ⋅=⋅,证明:点Q 总在某定直线上.【答案】(1)11,1612⎡⎤-⎢⎥⎣⎦;(2)证明见解析.【解析】(1)设点()00,M x y ,可得()00,N x y --,椭圆的有界性可得出[]200,2y ∈,利用斜率公式结合椭圆方程可得出20172212PM PN k k y ⋅=-++,利用不等式的基本性质可求得PM PN k k ⋅的取值范围;(2)设()11,A x y 、()22,B x y 、()33,Q x y ,分析得出直线l 的斜率存在,设直线l 的方程为()14y k x -=-,将直线l 的方程与椭圆C 的方程联立,列出韦达定理,由AP QB AQ PB ⋅=⋅可得出()33214x x k -=-,再由3314y k x -=-可得出33220x y +-=,即可得出结论. 【详解】(1)设()00,M x y ,()00,N x y --, 则()22200000222000001111144162121642PM PNy y y y y k k x x x y y -+---⋅=⋅===-+-+--, 所以()202200121271722122212PMPN y kk y y -++⋅==-+++, 因为[]200,2y ∈,所以[]2021212,16y +∈,所以20777,2121612y ⎡⎤∈⎢⎥+⎣⎦,所以11,1612PM PN k k ⎡⎤⋅∈-⎢⎥⎣⎦;(2)若直线l 的斜率不存在,则直线l 的方程为4x =,此时直线l 与椭圆C 无公共点,不合乎题意.所以,直线l 的斜率存在,设4:1l y k x,即()14y kx k =+-,联立()2214214x y y kx k ⎧+=⎪⎨⎪=+-⎩,得()()()2221241421440k x k k x k ++-+--=,由0∆>得212810k k --<,设()11,A x y 、()22,B x y ,则()12241412k k x x k -+=-+,()2122214412k x x k--=+, 设()33,Q x y ,由AP QB AQ PB ⋅=⋅,得()()()()23121344x x x x x x --=--(考虑线段在x 轴的射影),所以()()121233842x x x x x x =++-,于是()()()2332241421448421212k k k x x k k----=+⨯-⨯++,整理得()33214x x k -=-, 又3314y k x -=-,代入上式,得33220x y +-=,所以点Q 总在定直线220x y +-=上. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.22.(2021·上海·高二专题练习)已知直线1:3l y x t =+与椭圆22:1364x y C +=交于A 、B两点(如图所示),且(P在直线l 的上方.(1)求常数t 的取值范围;(2)若直线PA 、PB 的斜率分别为1k 、2k ,求12k k +的值; (3)若APB △的面积最大,求APB ∠的大小.【答案】(1)0t -<<;(2)120k k +=;(3)12arctan 3APB π∠=-. 【分析】(1)根据点P 与直线l 的位置关系可得出关于t 的不等式,并将直线l 的方程与椭圆方程联立,结合0∆>可解得实数t 的取值范围;(2)列出韦达定理,利用斜率公式结合韦达定理可求得12k k +的值;(3)列出韦达定理,求出AB ,点P 到直线l 的距离d ,利用三角形的面积公式可得出APB △面积关于t 的表达式,利用基本不等式可求得APB △面积的最大值,利用等号成立的条件求出t 的值,进一步可求得APB ∠的大小. 【详解】(1103t t >⨯⇒<.将直线13y x t =+代入221364x y +=,化简整理得22269360x tx t ++-=,由()()222236893636808t t t t ∆=--=->⇒<,故0t -<<; (2)设()11,A x y 、()22,B x y ,则123x x t +=-,2129362t x x -=,又1k =2k =所以,122112y x y xk k-+-+=+=上式分子((12211133x t x x t x⎛⎛=+-++- ⎝⎝(()121223x x t x x t =+-+-(()22936332t t t t -=⋅+--- 223123120t t =--+-+=,从而,120k k +=;(3)因为12AB x -==且点P 到直线AB的距离d =所以,22133862222PABt t SAB d t -+=⋅=⋅=.当且仅当2t =-时等号成立,此时点()0,2A -,所以,1k ==,又120k k +=,所以,APB π∠=-【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.23.(2021·上海市建平中学高二期末)已知椭圆221222:1(0),,x y a b F F a bΓ+=>>分别为其左、右焦点.(1)若T 为椭圆上一点,12TFF △面积最大值为12TF F △为等边三角形,求椭圆的方程;(2倍,点P 的坐标为(2)a b -,Q 为椭圆上一点,当1||PQ QF +最大时,求点Q 的坐标;(3)若A 为椭圆Γ上除顶点外的任意一点,直线AO 交椭圆于B ,直线1AF 交椭圆于C ,直线1BF 交椭圆于D ,若AF 1⃗⃗⃗⃗⃗⃗⃗ =λF 1C ⃗⃗⃗⃗⃗⃗⃗ ,BF 1⃗⃗⃗⃗⃗⃗⃗ =μF 1D ⃗⃗⃗⃗⃗⃗⃗⃗ ,求λμ+.(用a 、b 代数式表示)。
多法破解圆锥曲线中向量数量积的最值问题

由图 2 易 知 当点 P坐标 为 ( O , 4 ) 或( 0 , 一 4 ) 时 使得 [ ( x 一 0 )
即脚 ・ P 取 得最小 值 7 .
解 法三 : 设P ( 5 c o s @ , 4 s i n  ̄ ) ( 0 < < 2 1 r , 且 ≠霄) ,
P 腑・ P Ⅳ=(一 3— 5 c o s q, 一 4 s i n  ̄ )・( 3— 5 C O S  ̄, 一 4 s i n  ̄ o )=
解 法 一 : 由 椭 圆 等+ }= 1 , 易 知 F ( 一 1 , o ) , 设 P ( , , , ) , ( 一 2
≤ ≤2 )
I,
一
O
— .
妞} 5
一
2 \ 。 O
1
一 .
4
。 、
一
\ P
( 2
2 \
乏 .
i O
/ ' 2
,
当 = 号 或 孚 时 , 葡・ 赢 取 得 最 小 值 7
1 I y
4
( 一 2 ≤ ≤2 ) , 易 知, ( ) 在 [一 2 , 2 ]
5
~
一
/一
/鼍
一
为 单调递 增 函数 ,
一
故, ( ) 一= , ( 2 ) = 6 , 即 ・ 的最大 值为 6 。
倍数外学 习
No. 02. 2 O1 3
Y u S h u Wa i X u e X i
2 0 1 3 年第 2期
多 法破 解 圆锥 曲线 中 向量 数 量积 的最 值 问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向量法解圆锥曲线中的最值、定值问题的假设干范例江西省高安市石脑二中 王典辉 (330818)圆锥曲线中的最值、定值问题是高考中的热点题型,而以向量为载体的圆锥曲线中的最值、定值问题又是最近几年来高考中显现的新题型。
由于这种题型在解题之前不明白最值、定值的结果,因此对解题增加了必然难度。
但利用向量集数与形于一身,既有代数的抽象性,又有几何的直观性这一特点,能有效地探讨到结果。
本文通过具体的例子来讲明用向量方式对这种问题的求解。
一、最值问题例1.已知点A (0,1),B (0,-1),P 为一个动点,且直线PA 、PB 的斜率之积为-21。
⑴求动点P 的轨迹C 的方程;(⑵设Q (2,0),过点(-1,0)的直线l 交C 于M 、N 两点,△QMN 的面积记为S ,对知足条件的任意直线l ,不等式S ≤λtan ∠MQN 成立,求λ最小值。
解:⑴如图1,设P (x ,y ),k PA =x y -1,k PB =x y 1+,由k PA ·k PB =-21=>221x y -=-21=>22x +y 2=1。
⑵要由不等式S ≤λtan ∠MQN ,求λ最小值一时难以分析清几个量之间的内在联系,于是先从特殊情形进行分析。
当MN ⊥轴时,由上述椭圆方程知,点(-1,0)即为左核心F 1。
现在|F 1Q |=3,又因为x =-1时,y=±22,因此|NM |=2,S △QMN =223。
又因为tan ∠NQF 1=62,tan ∠NQN =tan2∠NQF 1=121tan 1tan 2NQF NQF ∠-∠=1816212-⨯=1726。
由S≤λtan ∠MQN 得λ≥417。
现在易猜想,当NM 不垂直于x 轴时,该结论或许还成立。
可考虑在一样情形下转化的方式,先对关系式S ≤λtan ∠MQN 利用向量进行分析。
由三角形面积公式,得2|||?|QN OM •sin ∠MQN ≤λMQ N MQ N ∠∠cos sin , λ≥21|QM|·|Q N |cos ∠MQN =21Q M ·Q N 。
设M (x 1,y 1),N (x 2,y 2),那么有λ≥21[( x 1 – 2 ) ( x 2 – 2 ) + y 1 y 2] =21[x 1x 2 – 2 ( x 1 + x 2 ) + 4 + y 1y 2]①因为NM 不垂直于x 轴时,现在MN 的方程可写成y = k ( x + 1 ),别离用两种方式代入x 2 + 2y 2 = 2,别离得(1+2k 2)x 2 + 4k 2x + 2k 2 – 2 = 0和(1 + 2k 2) y 2 - 2ky - k 2 = 0 由韦达定理,代入①得λ≥21(222218822k kk k +-+-+4) =21(2221217k k ++)=21·)(22)(17212217212++-+k k =417-)12(4132+k <417 因此λ>417当MN ⊥x 轴时,λmin =417。
例2.(09。
陕西理)已知双曲线C 的方程为22a y -22b x =1(a >0,b >0),离心率e=25,极点到渐近线的距离为552。
⑴求双曲线C 的方程;⑵如图2,P 是双曲线C 上一点,A 、B 两点在双曲线C 的两条渐近线上,且别离位于第一、二象限。
假设AP =λPB ,λ∈[31,2]。
求△AOB 面积的取值范围。
解:⑴由题意知,双曲线C 的极点(0,a )到渐进线的距离为252,即22b a ab +=c ab =252与a c =25及a 2+b 2=c 2联立解得a = 2,b=1。
因此双曲线的方程为42y - x 2=1。
⑵把△AOB 的面积表示成某个变量的函数,由于C 的两条渐近线方程为y=±2x ,故可设∠AOB=2θ,那么tan(2π-θ)=2,tan θ=21=>sin2θ=54。
设P ( x 0, y 0 ) , A ( m, 2n ), B ( -n, 2n ) , ( m > 0 , n > 0 )由AP=( x 0 - m, y 0 - 2m) =λPB=λ(-n - x 0 , 2n - y 0 )得x 0 - m =λ(-n - x 0) y 0 - 2m=λ(2n - y 0 )有x 0=λ1λn +-m ,y 0=λλ++1)(2n m 。
因此P(λ1λn+-m ,λλ++1)(2n m )。
将P 点坐标代入42y - x 2= 1=>41[λλ++1)(2n m ]2-(λ1λn +-m )2 = 1得mn = λλ4)1(2+又|OA|=5m ,|OB|=5n ,因此S △AOB =21|OA|·|OB|sin2θ=21·5m ·5n ·54=2mn=2212λλ++ =21(λ+λ1)+1≥2因为λ∈[31,2],当且仅当λ=1时,取得最小值,又S (31)=38,S (2)=49,故S △AOB ∈[2,38]。
例3.[2006.北京理三]已知点M (-2,0),N (2,0),动点P 知足条件|PM|·|PN|=22,记动点P 的轨迹为W 。
⑴求W 的方程;⑵假设A 、B 是W 上的不同两点,O 是坐标原点,求OA 、OB 的最小值。
解:⑴设P (x ,y )那么2)2(y x +---2)2(y x +-=22。
化简整理得222y x-=1,x ≥2。
⑵设A 、B 的坐标别离为(x 1, y 1),(x 2, y 2),则222121y x -=1,当AB ⊥x 轴时,x 1 = x 2,y 1 = -y 2,从而OA ·OB=x 1x 2 + y 1y 2 = x 21 - y 21 = 2。
当AB 与x 轴不垂直时,设直线AB 的方程为y=kx+m ,与W 的方程联立,消去y 得(1 - k 2) x 2 - 2kmx - m 2 - 2 = 0当(1 - k 2)≠0,即k ≠±1时,x 1+x 2=212k km -,x 1x 2=1222-+k m ,从而y 1y 2 = (kx 1 + m) (kx 2 + m) = k 2x 1x 2 + km (x 1 + x 2) + m 2因此OA ·OB=(x 1,y 1)(x 2,y 2)=(x 1,kx 1+m)(x 2,kx 2+m)=x 1x 2+k 2x 1x 2+km(x 1+x 2)+m 2 =(1+k 2)x 1x 2+km(x 1+x 2)+m 2=22222212)2)(1(k m k k m k -++++m 2=12222-+k k =2+142-k又因为x 1≥2,x 2≥2,因此x 1·x 2>0,那么k 2-1>0,从而OA ·OB >2。
当1-k 2=0,即k =±1时,直线与双曲线的渐近线平行,与双曲线只有一个交点,这与已知矛盾。
综上,当AB ⊥x 轴时,OA ·OB 取得最小值2。
评注:最值问题常与函数和不等式联系,有时也能够依照圆锥曲线某量的有界性取得相关的不等式。
在这进程中应用向量的相关概念,成立目标函数解析式,从而求出特定问题的最值。
二、定值问题例4.[2020.天津三(20)]已知椭圆2222by a x +=1(a >b >0)的离心率e =23,连结椭圆的四个极点取得的菱形的面积为4。
⑴求椭圆的方程;⑵设直线l 与椭圆相交于不同的两点A 、B ,已知点A 的坐标坐标为(-a,0)点Q(0,y 0)在线段AB 的垂直平分线上,且QA ·QB =4,求y 0的值。
解:⑴由e =a c =23,得3a 2 = 4c 2,再由a 2 - b 2 = c 2,得a = 2b 。
因此椭圆的方程为:42x + y 2 = 1。
⑵由⑴可知A(-2,0),设B(x 1,y 1),直线l 的斜率为k ,那么直线l 的方程为y=k(x+2)。
于是A 、B 两点的坐标知足方程组⎪⎩⎪⎨⎧=++=1)2(242y x k y x ,消去y 并整理得 ( 1 + 4k 2 )x 2 + 16k 2x + (16k 2 – 4 ) = 0由-2x 1=2241416k k +-,得x 1=224182k k +-,从而y 1=2414k k+。
设线段AB 的中点为M ,那么M(-22418k k +,2412k k+)①当k=0时,点B 的坐标为(2,0),线段AB 的垂直平分线为y 轴,于是QA =(-2,-y 0),QB =(2,-y 0)。
由QA ·QB = 4,得y 0=±22。
②当k ≠0时,线段AB 的垂直平分线的方程为y-2412k k+=-k 1(x+22418k k +)。
设x=0,解得y 0=-2416k k+。
由QA=(-2,-y 0),QB=(x 1,y 1-y 0),得QA ·QB = -2x 1 - y 0 ( y 1 — y 0 )=2241416k k +-+2416k k + (2414k k ++2416k k+)=4整理得7k 2 = 2,故k=±714,因此y 0=±5142。
即y 0=±22或y 0=±5142。
例5.(05.全国卷理三)已知椭圆中心为坐标原点,核心在x 轴上,斜率为1的直线过椭圆右核心交椭圆于A 、B 两点,OA +OB 与a =(3,-1)共线。
⑴求离心率;⑵设M 为椭圆上一点,且OM=λOA+μOB(λ,μ∈R)。
求证:λ2+μ2为定值。
解:⑴如图3,设A(x 1,y 1),B(x 2,y 2),椭圆方程为2222b ya x +=1,AB 的方程为y = x - c代入bx 2 + a 2y = a 2b 2,得(a 2 + b 2)x 2 - 2ca 2x + a 2c 2 - a 2b 2 = 0再用x = y + c 代入椭圆方程,可得 (a 2+b 2)y 2+ 2cb 2y + b 2c 2- a 2b 2= 0于是OA + OB = ( x 1+x 2, y 1+y 2 ) = (2222b a c a +,b a +因为OA +OB 与 a =(3,-1)共线,因此,322c a =122--cb =>a 2 = 3b 2,那么 c=322a a -=36a ,因此e =36。
⑵证明:设OM =(x, y),那么(x ,y)= λOA+μOB=λ(x 1, y 1)+ μ(x 2, y 2) = ( λx 1, λy 1)+ μ(x 2, μy 2)=( μx 1+μx 2, μy 1+μy 2)。