向量导数圆锥曲线练习题
圆锥曲线与向量小题

圆锥曲线小题专项训练1.已知抛物线x y 82=的准线与双曲线A,B 两点,双曲线的一条渐近线F 是抛物线的焦点,,且△FAB 是直角三角形,则双曲线的标准方程是( )2所对应的图形变成方程221x y +=所对应的图形,需经过伸缩变换ϕ为( )C.43x x y y '=⎧⎨'=⎩3的左、右焦点,A 是椭圆上位于第一象限内的一点,点B 也在椭圆 上,且满足0=+OB OA (O 为坐标原点),0212=⋅F F AF ,若椭圆的离心率等于则直线AB 的方程是 ( ) .A .4.双曲线具有光学性质:“从双曲线的一个焦点发出的光线经过双曲线反射后,反射光线的反向延长线都汇聚到双曲线的另一个焦点。
”由此可得如下结论:如右图,过双曲线C :右支上的点P 的切线l 平分12F PF ∠。
现过原点作l 的平行线交1PF 于M ,则||MP 等于( )A .aB .b CD .与点P 的位置有关5e右焦点为F (c ,0),方程ax 2+bx -c =0的两个实根分别为x 1和x 2,则点P (x 1,x 2) ( )A .必在圆x 2+y 2=2内B .必在圆x 2+y 2=2上C .必在圆x 2+y 2=2外D .以上三种情形都有可能6.如图,在ΔABCC ,以A 、H 为焦点的双曲线的离心率为( ) A .2 B .3 CD7F 1是左焦点,O 是坐标原点,若双曲线上存在点P ,使1||||PO PF =,则此双曲线的离心率的取值范围是( ) A .(]1,2 B .(1,)+∞ C .(1,3) D .[)2,+∞8.已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为( )A.34 B. 35 C.2 D. 37 9.M ,N ,P 为椭圆上任意一点,且直线PM则直线PN 的斜率的取值范围是( )A .B .C . ]2,8[--D . ]8,2[ 10.设221a b +=,()0b ≠,若直线2ax by +=和椭圆( ) A 、 B 、[]1,1-; C 、(][),11,-∞-+∞ ; D 、[]2,2-. 11.已知实系数方程2(1)10x a x a b +++++=的两根分别为一个椭圆和一个双曲线的离心率,值范围是( )A .(2,1)-- B12.如图,已知点B x 轴下方的端点,过B 作斜率为1的直线交椭圆于点M ,点P 在y 轴上,且PM//x 轴,9=⋅BM BP ,若点P 的坐标为(0,t ),则t 的取值范围是( )A .0<t<3B .0<t ≤3CD .0<t 13. 已知圆O 的半径为1,PA,PB 为该圆的两条切线,A,B 为两切点,则PB PA ⋅的最小值为( )A .24+-B .23+-C .224+-D .223+-14.已知双曲线]2,2[),(12222∈∈=-+e R b a by a x 的离心率,则一条渐近线与实轴所构成的角的取值范围是_________.15.给定椭圆12222=+by a x ,如果存在过左焦点F 的直线交椭圆于P ,Q 两点,且OP ⊥OQ ,则离心率e 的取值范围是_________.向量小题专项训练1.已知向量21e e +=,2122e e -=,则1e 与2e 共线是与共线的( )AC =BA A. B. D.值是( )A.33 B.22 C.32 D.43 4.如图),(y x P 是边长为1的正方形内的一点,若PAB ∆,PBC ∆,PCD ∆,PDA ∆面积均不小于61,则PAC AP ∠cos ||的最大值为( )A .322 B .552 C .32 D .22 5.如图抛物线C 1:y 2=2px 和圆C 2:⎝ ⎛⎭⎪⎫x -p 22+y 2=p 24,其中p >0,直线l 经过抛物线C 1的焦点,依次交抛物线C 1,圆C 2于A ,B ,C ,D 四点,则AB →·CD →的值为( )A.p 24 B. p 23 C.p 22D .p 2 6.若向量a =)(,2x x ,b =)(3,2x -,且a ,b 的夹角为钝角,则x 的取值范围是 . 7已知O 为ABC ∆的外心, 3,2==AC AB ,12=+y x,若y AB x += )0(≠xy ,则=∠BAC cos.8、设O 为△ABC 的内心,当AB=AC=5,BC=6时,n m +=,则n m +的值为________。
(完整版)圆锥曲线大题20道(含标准答案)

1.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.解:(Ⅰ)设双曲线方程为12222=-by a x ).0,0(>>b a由已知得.1,2,2,32222==+==b b ac a 得再由故双曲线C 的方程为.1322=-y x (Ⅱ)将得代入13222=-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得⎪⎩⎪⎨⎧>-=-+=∆≠-.0)1(36)31(36)26(,0312222k k k k即.13122<≠k k 且①设),(),,(B B A A y x B y x A ,则 ,22,319,312622>+>⋅--=-=+B A B A B A B A y y x x OB OA kx x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x.1373231262319)1(22222-+=+-+--+=k k k k k k k于是解此不等式得即,01393,213732222>-+->-+k k k k .3312<<k ② 由①、②得.1312<<k故k 的取值范围为).1,33()33,1(⋃-- 2..已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设=λ.(Ⅰ)证明:λ=1-e 2;(Ⅱ)确定λ的值,使得△PF 1F 2是等腰三角形.(Ⅰ)证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是2222222.,,1,).,0(),0,(b a c c b y c x b y ax a ex y a e a +=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=-这里得由. 所以点M 的坐标是(a b c 2,-). 由).,(),(2a eaa b e a c AB AM λλ=+-=得即221e a ab e ac e a-=⎪⎪⎩⎪⎪⎨⎧==-λλλ解得证法二:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是).,0(),0,(a ea-设M 的坐标是00(,),x y00(,)(,),a aAM AB x y a e eλλ=+=u u u u r u u u r 由得所以⎪⎩⎪⎨⎧=-=.)1(00a y e a x λλ因为点M 在椭圆上,所以,122220=+by a x即.11)1(,1)()]1([22222222=-+-=+-e e b a a e aλλλλ所以 ,0)1()1(2224=-+--λλe e解得.1122e e -=-=λλ即(Ⅱ)解法一:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即.||211c PF = 设点F 1到l 的距离为d ,由,1||1|0)(|||21221c eec a e a c e d PF =+-=+++-==得.1122e ee =+-所以.321,3122=-==e e λ于是即当,32时=λ△PF 1F 2为等腰三角形. 解法二:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|, 设点P 的坐标是),(00y x ,则0000010.22y x ce y x c e a -⎧=-⎪+⎪⎨+-⎪=+⎪⎩,2022023,12(1).1e x c e e a y e ⎧-=⎪⎪+⎨-⎪=⎪+⎩解得由|PF 1|=|F 1F 2|得,4]1)1(2[]1)3([2222222c e a e c e c e =+-+++- 两边同时除以4a 2,化简得.1)1(2222e e e =+- 从而.312=e 于是32112=-=e λ 即当32=λ时,△PF 1F 2为等腰三角形. 3.设R y x ∈,,j i ρρ、为直角坐标平面内x 轴、y 轴正方向上的单位向量,若j y i x b j y i x a ρρρρϖρ)3( ,)3(-+=++=,且4=+b a ϖϖ.(Ⅰ)求点),(y x P 的轨迹C 的方程;(Ⅱ)若A 、B 为轨迹C 上的两点,满足MB AM =,其中M (0,3),求线段AB 的长. [启思]4.已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. (Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R ∈+=μλμλ,证明22μλ+为定值. 解:本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分.(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+ 则直线AB 的方程为c x y -=,代入12222=+b y a x ,化简得02)(22222222=-+-+b a c a cx a x b a .令A (11,y x ),B 22,(y x ),则.,22222222122221b a b a c a x x b a c a x x +-=+=+ 由OB OA a y y x x OB OA +-=++=+),1,3(),,(2121与共线,得,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴ 即232222cba c a =+,所以36.32222a b a c b a =-=∴=, 故离心率.36==a c e (II )证明:(1)知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ),(y x M Θ在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ① 由(1)知.21,23,23222221c b c a c x x ===+ [变式新题型3]抛物线的顶点在原点,焦点在x 轴上,准线l 与x 轴相交于点A(–1,0),过点A 的直线与抛物线相交于P 、Q 两点.(1)求抛物线的方程;(2)若FP •FQ =0,求直线PQ 的方程;(3)设=λAQ (λ>1),点P 关于x 轴的对称点为M ,证明:FM =-λFQ ..6.已知在平面直角坐标系xoy 中,向量32),1,0(的面积为OFP ∆=,且,3OF FP t OM j ⋅==+u u u r u u u r u u u u r u u ur r .(I )设4t OF FP θ<<u u u r u u u r求向量与 的夹角的取值范围;(II )设以原点O 为中心,对称轴在坐标轴上,以F 为右焦点的椭圆经过点M ,且||,)13(,||2c t c 当-==取最小值时,求椭圆的方程.7.已知(0,2)M -,点A 在x 轴上,点B 在y 轴的正半轴,点P 在直线AB 上,且满足,AP PB =-u u u r u u u r ,0MA AP ⋅=u u ur u u u r . (Ⅰ)当点A 在x 轴上移动时,求动点P 的轨迹C 方程;(Ⅱ)过(2,0)-的直线l 与轨迹C 交于E 、F 两点,又过E 、F 作轨迹C 的切线1l 、2l ,当12l l ⊥,求直线l 的方程.8.已知点C 为圆8)1(22=++y x 的圆心,点A (1,0),P 是圆上的动点,点Q 在圆的半径CP 上,且.2,0AM AP AP MQ ==⋅(Ⅰ)当点P 在圆上运动时,求点Q 的轨迹方程; (Ⅱ)若直线12++=k kx y 与(Ⅰ)中所求点Q的轨迹交于不同两点F ,H ,O 是坐标原点,且4332≤⋅≤OH OF ,求△FOH 的面积已知椭圆E 的中心在坐标原点,焦点在坐标轴上,且经过()2,0A -、()2,0B 、31,2C ⎛⎫ ⎪⎝⎭三点.(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l :()1y k x =-(0k ≠)与椭圆E 交于M 、N 两点,证明直线AM 与直线BN 的交点在直线4x =上.10.如图,过抛物线x 2=4y 的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点。
高二数学圆锥曲线与导数单元测试题

高二数学试题(圆锥曲线与导数)一、选择题1.若点12,F F 为椭圆2214x y +=的焦点,P 为椭圆上的点,当12F PF ∆的面积为1时,12PF PF ⋅的值是( ) A .0 B .1 C .3D .6 2.设23)(23++=x ax x f ,若4)1(=-'f ,则a 的值等于()A .319 B.316 C .313 D .310 3.已知直线)2(+=x k y (k >0)与抛物线2:8C y x =相交于A 、B 两点,F 为C 的焦点,若||2||FA FB =,则k 的值为( ) A .13 B .23 4.已知抛物线22y px =(p >0)的准线与圆22450x y y +--=相切,则p 的值为( )A .10B .6C .18 D .124 5.若曲线21:20C y px p =>()的焦点F 恰好是曲线22222:100x y C a b a b-=>>(,)的右焦点,且1C 与2C 交点的连线过点F ,则曲线2C 的离心率为( )A 1B 1CD 6.已知点P 在曲线y =41x e +上,α为曲线在点P 处的切线的倾斜角,则α的取值范围( ) A.[0,4π) B.[,)42ππ C. 3(,]24ππ D. 3[,)4ππ 7.双曲线22221(0,0)xy a b a b -=>>的右支上存在一点,它到右焦点及左准线的距离相等,则双曲线离心率的取值范围是( )A.1] B.)+∞ C. D.1,)+∞8.如果221||21x y k k+=---表示焦点在y 轴上的双曲线,那么它的半焦距C 的取值范围是( )A .(1,+∞) B .(0,2) C .(2,+∞) D .(1,2)9.设斜率为1的直线l 与椭圆124:22=+y x C 相交于不同的两点A 、B ,则使||AB 为整数的直线l 共有( ) A .4条 B .5条 C .6条D .7条 10.已知定义域为R 的奇函数f(x)的导函数为)(x f ',当0≠x 时,0)()(>+'xx f x f ,若)2(ln 21ln ),2(2),21(21f c f b f a =--==,则下列关于a ,b ,c 的大小关系正确的是( ) A. a >b >c B . a >c >b C . c >b >a D . b >a >c二、填空题11.在平面直角坐标系xOy 中,直线y x b =+是曲线ln y a x =的切线,则当a >0时,实数b 的最小值是______ .12.已知双曲线162x -92y =1,椭圆的焦点恰好为双曲线的两个顶点,椭圆与双曲线的离心率互为倒数,则椭圆的方程为_____13.抛物线上的一点到轴的距离为12,则与焦点间的距离 =____ 14.已知函数3221()(21)13f x x x a x a a =++-+-+,若()0f x '=在(1,3]上有解,则实数a 的取值范围为______ .15. 设点P 是双曲线12222=-b y a x 上除顶点外的任意一点,1F ,2F 分别为左、右焦点,c 为半焦距,12PF F 的内切圆与边12F F 切于点M ,求|1F M |·|2F M|=______ 16. 若曲线2ln y ax x =-在点(1,)a 处的切线平行于x 轴,则a =______.17. 已知函数f (x )=1-x ax +lnx ,若函数f (x )在[1,+∞)上为增函数,则正实数a 的取值范围是____三、解答题18.已知椭圆E :)0(12222>>=+b a b y a x 的离心率e =,并且经过定点31()22P ,. (Ⅰ)求曲线E 的方程;(Ⅱ)直线2:+=kx y l 交椭圆E 于不同的B A ,两点,O 是坐标原点,求AOB ∆面积的最大值.19.已知函数52)(23+-=x x x f 的定义域为区间[]2,2-. (1)求函数)(x f 的极大值与极小值;(2)求函数)(x f 的最大值与最小值.20、函数31()443f x x x =-+.(1)求函数()f x 的极值;(2)设函数()g x x m =+,对12,[0,3]x x ∀∈,都有12()()f x g x ≥,求实数m 的取值范围.21.已知中心在原点的椭圆2222:1(0,0)x y C a b a b +=>>的一个焦点为1(3,0),(4,)(0)F M y y >为椭圆上一点,1MOF ∆的面积为32.(1)求椭圆C 的方程;(2)是否存在平行于OM 的直线l ,使得直线l 与椭圆C 相交于A B 、两点,且以线段AB 为直经的圆恰好经过原点?若存在,求出l 的方程,若不存 在,说明理由.22.设函数21()ln ().2a f x x ax x a R -=+-∈(1)当1a =时,求函数()f x 的极值; (2)当1a >时,讨论函数()f x 的单调性.(3)若对任意(3,4)a ∈及任意12,[1,2]x x ∈,恒有212(1)ln 2()()2a m f x f x -+>- 成立,求实数m 的取值范围.。
圆锥曲线基础训练题及答案

圆锥曲线基础训练题姓名____________分数______________一、选择题1 .抛物线y 2=ax 的焦点坐标为(-2,0),则抛物线方程为( )A .y 2=-4x B .y 2=4x C .y 2=-8x D .y 2=8x2 .如果椭圆的两个焦点三等分它所在的准线间的垂线段,那么椭圆的离心率为 ( )A .23 B .33 C .36 D .66 3 .双曲线191622=-y x 的渐近线方程为 ( )A . x y 34±= B .x y 45±= C .x y 35±= D .x y 43±= 4 .抛物线 x y 42= 的焦点坐标是( )A .(-1,0)B .(1,0)C .(0,-1)D .(0,1)5 .双曲线221916y x -=的准线方程是 ( ) A 165x =±B 95x =±C 95y =±D 165y =± 6 .双曲线221169x y -=上的点P 到点(5,0)的距离是15,则P 到点(-5,0)的距离是 ( )A .7B .23C .5或23D .7或237 .双曲线1322=-y x 的两条渐近线方程是 ( )A .03=±y xB .03=±y xC .03=±y xD .03=±y x8 .以椭圆的焦点为圆心,以焦距为半径的圆过椭圆的两个顶点,则椭圆的离心率为 ( )A .43)D (23)C (22)B (219 .抛物线y x 42=上一点A 纵坐标为4,则点A 与抛物线焦点的距离为( )A .2B .3C .4D .510.抛物线()042<=a ax y 的焦点坐标是( )A .⎪⎭⎫⎝⎛041,a B .⎪⎭⎫ ⎝⎛a 1610,C .⎪⎭⎫ ⎝⎛-a 1610,D .⎪⎭⎫⎝⎛0161,a 11.椭圆2x 2=1-3y 2的顶点坐标为( )A .(±3,0),(0,±2)B .(±2,0),(0,±3)C .(±22,0),(0,±33) D .(±12,0),(0,±13) 12.焦距是10,虚轴长是8,经过点(23, 4)的双曲线的标准方程是( )A .116922=-y x B .116922=-x y C .1643622=-y x D .1643622=-x y 13.双曲线22124x y -=-的渐近线方程为( )A .y =B .x =C .12y x =±D .12x y =±14.已知椭圆方程为1322=+y x ,那么左焦点到左准线的距离为 ( )A .22 B .223 C .2D .2315.抛物线的顶点在原点,对称轴为x 轴,焦点在直线3x-4y-12=0上,此抛物线的方程是 ( )A .y 2=16xB .y 2=12xC .y 2= -16xD .y 2= -12x16.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A .13B .3C .12 D .217.下列表示的焦点在y 轴上的双曲线方程是( )A .13422=+y xB .14322=+y xC .13422=-y xD .13422=-x y 18.抛物线y =2px 2(p ≠0)的焦点坐标为( )A .(0,p )B .(10,4p ) C .(10,8p) D .(10,8p±) 19.与椭圆205422=+y x 有相同的焦点,且顶点在原点的抛物线方程是( )A .x y 42=B .x y 42±=C .y x 42=D .y y 42±=20.已知双曲线的渐近线方程为x y43±=,则此双曲线的( )A .焦距为10B .实轴和虚轴长分别是8和6C .离心率是45或35 D .离心率不确定21.双曲线122=-y x 的渐近线方程是( )A .±=x 1B .y =C .x y ±=D .x y 22±= 22.若命题“曲线C 上的点的坐标都是方程f(x ,y)=0的解”是正确的,则以下命题中正确的是( )A .方程(x ,y)=0的曲线是CB .坐标满足方程f(x ,y)=0的点都在曲线C 上 C .曲线C 是方程f(x ,y)=0的轨迹D .方程f(x ,y)=0的曲线不一定是C23.双曲线221916y x -=的准线方程是 ( )A .165x =±B .95x =±C .95y =±D .165y =±24.双曲线191622=-x y 的焦点坐标是 ( )A .()0,5和()0,5-B .()5,0和()5,0-C .()0,7和()0,7- D .()7,0和()7,0-25.已知抛物线的焦点坐标为(-3,0),准线方程为x =3,则抛物线方程是( )A .y 2+6x =0B .y 2+12x =0C .y +6x 2=0D .y +12x 2=0 26.双曲线 191622=-y x 的渐近线的方程是( )A .x y 43±= B .x y 34±= C .x y 169±= D .x y 916±= 27.对抛物线24y x =,下列描述正确的是( )A .开口向上,焦点为(0,1)B .开口向上,焦点为1(0,)16 C .开口向右,焦点为(1,0)D .开口向右,焦点为1(0,)1628.双曲线2y 2-x 2=4的一个焦点坐标是( )A .(0,-)6B .(6,0)C .(0,-2)D .(2,0)29.若抛物线px y 22=的焦点与椭圆12622=+y x 的右焦点重合,则p 的值为 ( )A .-2B .2C .-4D .430.到直线x=-2与定点P (2,0)距离相等的点的轨迹是( )A .抛物线B .双曲线C .椭圆D .直线二、填空题31.(1)短轴长为6,且过点(1,4)的椭圆标准方程是(2)顶点(-6,0),(6,0)过点(3,3)的椭圆方程是 32.与两坐标轴距离相等的点的轨迹方程是________________________33.椭圆4422=+y x 的焦点坐标为___________,__________. 34.抛物线x y 42=的准线方程为______ 35.到x 轴,y 轴距离相等的点的轨迹方程_________.36.已知两个定点1(4,0)F -,2(4,0)F ,动点P 到12,F F 的距离的差的绝对值等于6,则点P 的轨迹方程是 ;37.若双曲线22145x y -=上一点P 到右焦点的距离为8,则P 到左准线的距离为38.若定点(1,2)A 与动点(),Px y 满足,4OP OA ⋅=则点P 的轨迹方程是39.已知双曲线的离心率为2,则它的实轴长和虚轴长的比为 。
高二数学 导数和圆锥曲线训练 试题(共2页)

县凤凰中学(zhōngxué)高二数学导数和圆锥曲线训练
1、曲线在点处的切线方程为 .
2、直线与曲线y=lnx相切,那么的值是 .
3、函数那么= .
4、函数的单调递增区间是〔〕
A. C.(1,4) D.(2,+
5、函数假设且在x=1处获得极
值-2,那么a= ,b= ,c= .
6、上有最大值3,那么此函数在[-2,
2]上的最小值为 .
7、抛物线的顶点在原点,准线方程为x=-2,那么抛物线的方程为〔〕
B. D.
8、假设点〔3,1〕是抛物线的一条弦的中点,且这条弦所在直线的斜率
为2,那么p= .
9、F
1,F
2
为椭圆的两个焦点,过F
1
的直线交椭圆于A,B两点,
假设那么 .
10、椭圆的长轴长是短轴长的3倍且经过点P〔3,0〕,那么椭圆的HY方程为
.
11、椭圆,长轴在y轴上,假设焦距为4,那么m等于〔 )
A.4
B.5
12、双曲线的离心率为2,焦点是(-4,0),(4,0),那么(nà me)双曲线方程为
内容总结。
导数与圆锥曲线

导数与圆锥曲线一.解答题(共16小题)1.设函数f(x)=lnx+,m∈R.(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;(Ⅱ)讨论函数g(x)=f′(x)﹣零点的个数;(Ⅲ)若对任意b>a>0,<1恒成立,求m的取值范围.2.已知函数f(x)=.(Ⅰ)求f(x)的单调区间;(Ⅱ)证明:当f(x1)=f(x2)(x1≠x2)时,x1+x2<0.3.已知函数f(x)=x2+ax+b,g(x)=e x(cx+d)若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.4.已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.5.已知函数f(x)=e x﹣ax,其中a>0.(1)若对一切x∈R,f(x)≥1恒成立,求a的取值集合;(2)在函数f(x)的图象上取定点A(x1,f(x1)),B(x2,f(x2))(x1<x2),记直线AB的斜率为K,证明:存在x0∈(x1,x2),使f′(x0)=K恒成立.6.设函数f(x)=x﹣﹣alnx(a∈R).(Ⅰ)讨论函数f(x)的单调性.(Ⅱ)若f(x)有两个极值点x1,x2,记过点A(x1,f(x1)),B(x2,f(x2))的直线斜率为k.问:是否存在a,使得k=2﹣a?若存在,求出a的值;若不存在,请说明理由.7.已知椭圆C:(a>b>0)的离心率为,短轴一个端点到右焦点的距离为.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值.8.平面直角坐标系xOy中,过椭圆M:(a>b>0)右焦点的直线x+y ﹣=0交M于A,B两点,P为AB的中点,且OP的斜率为.(Ⅰ)求M的方程(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD 面积的最大值.9.设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.10.已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1.(Ⅰ)求动点P的轨迹C的方程;(Ⅱ)过点F作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求的最小值.11.已知抛物线x2=4y的焦点为F,A、B是抛物线上的两动点,且.过A、B两点分别作抛物线的切线,设其交点为M.(Ⅰ)证明为定值;(Ⅱ)设△ABM的面积为S,写出S=f(λ)的表达式,并求S的最小值.12.在直角坐标系xoy中,曲线C1上的点均在C2:(x﹣5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值.(Ⅰ)求曲线C1的方程(Ⅱ)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别于曲线C1相交于点A,B和C,D.证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值.13.在直角坐标系xOy中,已知中心在原点,离心率为的椭圆E的一个焦点为圆C:x2+y2﹣4x+2=0的圆心.(Ⅰ)求椭圆E的方程;(Ⅱ)设P是椭圆E上一点,过P作两条斜率之积为的直线l1,l2.当直线l1,l2都与圆C相切时,求P的坐标.14.已知F1,F2分别是椭圆的左、右焦点F1,F2关于直线x+y﹣2=0的对称点是圆C的一条直径的两个端点.(Ⅰ)求圆C的方程;(Ⅱ)设过点F2的直线l被椭圆E和圆C所截得的弦长分别为a,b.当ab最大时,求直线l的方程.15.如图,椭圆C1:=1(a>b>0)的离心率为,x轴被曲线C2:y=x2﹣b截得的线段长等于C1的长半轴长.(Ⅰ)求C1,C2的方程;(Ⅱ)设C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A、B,直线MA,MB分别与C1相交于D,E.(i)证明:MD⊥ME;(ii)记△MAB,△MDE的面积分别是S1,S2.问:是否存在直线l,使得=?请说明理由.16.如图,过抛物线x2=4y的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A,B两点,点Q是点P关于原点的对称点.(I)设点P分有向线段所成的比为λ,证明:(Ⅱ)设直线AB的方程是x﹣2y+12=0,过A,B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.导数与圆锥曲线一.解答题(共16小题)1.设函数f(x)=lnx+,m∈R.(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;(Ⅱ)讨论函数g(x)=f′(x)﹣零点的个数;(Ⅲ)若对任意b>a>0,<1恒成立,求m的取值范围.【分析】(Ⅰ)m=e时,f(x)=lnx+,利用f′(x)判定f(x)的增减性并求出f(x)的极小值;(Ⅱ)由函数g(x)=f′(x)﹣,令g(x)=0,求出m;设φ(x)=m,求出φ(x)的值域,讨论m的取值,对应g(x)的零点情况;(Ⅲ)由b>a>0,<1恒成立,等价于f(b)﹣b<f(a)﹣a恒成立;即h(x)=f(x)﹣x在(0,+∞)上单调递减;h′(x)≤0,求出m的取值范围.【解答】解:(Ⅰ)当m=e时,f(x)=lnx+,∴f′(x)=;∴当x∈(0,e)时,f′(x)<0,f(x)在(0,e)上是减函数;当x∈(e,+∞)时,f′(x)>0,f(x)在(e,+∞)上是增函数;∴x=e时,f(x)取得极小值为f(e)=lne+=2;(Ⅱ)∵函数g(x)=f′(x)﹣=﹣﹣(x>0),令g(x)=0,得m=﹣x3+x(x>0);设φ(x)=﹣x3+x(x>0),∴φ′(x)=﹣x2+1=﹣(x﹣1)(x+1);当x∈(0,1)时,φ′(x)>0,φ(x)在(0,1)上是增函数,当x∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上是减函数;∴x=1是φ(x)的极值点,且是极大值点,∴x=1是φ(x)的最大值点,∴φ(x)的最大值为φ(1)=;又φ(0)=0,结合y=φ(x)的图象,如图;可知:①当m>时,函数g(x)无零点;②当m=时,函数g(x)有且只有一个零点;③当0<m<时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点;综上,当m>时,函数g(x)无零点;当m=或m≤0时,函数g(x)有且只有一个零点;当0<m<时,函数g(x)有两个零点;(Ⅲ)对任意b>a>0,<1恒成立,等价于f(b)﹣b<f(a)﹣a恒成立;设h(x)=f(x)﹣x=lnx+﹣x(x>0),则h(b)<h(a).∴h(x)在(0,+∞)上单调递减;∵h′(x)=﹣﹣1≤0在(0,+∞)上恒成立,∴m≥﹣x2+x=﹣+(x>0),∴m≥;对于m=,h′(x)=0仅在x=时成立;∴m的取值范围是[,+∞).【点评】本题考查了导数的综合应用问题,解题时应根据函数的导数判定函数的增减性以及求函数的极值和最值,应用分类讨论法,构造函数等方法来解答问题,是难题.2.已知函数f(x)=.(Ⅰ)求f(x)的单调区间;(Ⅱ)证明:当f(x1)=f(x2)(x1≠x2)时,x1+x2<0.【分析】(Ⅰ)利用导数的运算法则求出f′(x),分别解出f′(x)>0与f′(x)<0的x取值范围即可得到单调区间;(Ⅱ)当f(x1)=f(x2)(x1≠x2)时,不妨设x1<x2.由(I)可知:x1∈(﹣∞,0),x2∈(0,1).利用导数先证明:∀x∈(0,1),f(x)<f(﹣x).而x2∈(0,1),可得f(x2)<f(﹣x2).即f(x1)<f(﹣x2).由于x1,﹣x2∈(﹣∞,0),f(x)在(﹣∞,0)上单调递增,因此得证.【解答】解:(Ⅰ)易知函数的定义域为R.==,当x<0时,f′(x)>0;当x>0时,f′(x)<0.∴函数f(x)的单调递增区间为(﹣∞,0),单调递减区间为(0,+∞).(Ⅱ)当x<1时,由于,e x>0,得到f(x)>0;同理,当x>1时,f(x)<0.当f(x1)=f(x2)(x1≠x2)时,不妨设x1<x2.由(Ⅰ)可知:x1∈(﹣∞,0),x2∈(0,1).下面证明:∀x∈(0,1),f(x)<f(﹣x),即证<.此不等式等价于.令g(x)=,则g′(x)=﹣xe﹣x(e2x﹣1).当x∈(0,1)时,g′(x)<0,g(x)单调递减,∴g(x)<g(0)=0.即.∴∀x∈(0,1),f(x)<f(﹣x).而x2∈(0,1),∴f(x2)<f(﹣x2).从而,f(x1)<f(﹣x2).由于x1,﹣x2∈(﹣∞,0),f(x)在(﹣∞,0)上单调递增,∴x1<﹣x2,即x1+x2<0.【点评】本题综合考查了利用导数研究函数的单调性、等价转化问题等基础知识与基本技能,需要较强的推理能力和计算能力.3.已知函数f(x)=x2+ax+b,g(x)=e x(cx+d)若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.【分析】(Ⅰ)对f(x),g(x)进行求导,已知在交点处有相同的切线及曲线y=f (x)和曲线y=g(x)都过点P(0,2),从而解出a,b,c,d的值;(Ⅱ)由(I)得出f(x),g(x)的解析式,再求出F(x)及它的导函数,通过对k的讨论,判断出F(x)的最值,从而判断出f(x)≤kg(x)恒成立,从而求出k的范围.【解答】解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2e x(x+1)设F(x)=kg(x)﹣f(x)=2ke x(x+1)﹣x2﹣4x﹣2,则F′(x)=2ke x(x+2)﹣2x﹣4=2(x+2)(ke x﹣1),由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(﹣2,x1)上减,在(x1,+∞)上是增,故F(x)在[﹣2,+∞)上的最小值为F(x1),而F(x1)=﹣x1(x1+2)≥0,x≥﹣2时F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x﹣e﹣2),从而当x∈(﹣2,+∞)时,F′(x)>0,即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故当x≥﹣2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2时,F′(x)>2e2(x+2)(e x﹣e﹣2),而F(﹣2)=﹣2ke﹣2+2<0,所以当x>﹣2时,f(x)≤kg(x)不恒成立,综上,k的取值范围是[1,e2].【点评】此题主要考查利用导数研究曲线上某点切线方程,函数恒成立问题,考查分类讨论思想,解题的关键是能够利用导数工具研究函数的性质,此题是一道中档题.4.已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.【分析】(1)对函数f(x)求导,再令自变量为1,求出f′(1)得到函数的解析式及导数,再由导数求函数的单调区间;(2)由题意,借助导数求出新函数的最小值,令其大于0即可得到参数a,b 所满足的关系式,再研究(a+1)b的最大值【解答】解:(1)f(x)=f'(1)e x﹣1﹣f(0)x+⇒f'(x)=f'(1)e x﹣1﹣f(0)+x令x=1得:f(0)=1∴f(x)=f'(1)e x﹣1﹣x+令x=0,得f(0)=f'(1)e﹣1=1解得f'(1)=e故函数的解析式为f(x)=e x﹣x+令g(x)=f'(x)=e x﹣1+x∴g'(x)=e x+1>0,由此知y=g(x)在x∈R上单调递增当x>0时,f'(x)>f'(0)=0;当x<0时,有f'(x)<f'(0)=0得:函数f(x)=e x﹣x+的单调递增区间为(0,+∞),单调递减区间为(﹣∞,0)(2)f(x)≥﹣(a+1)x﹣b≥0得h′(x)=e x﹣(a+1)①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增,x→﹣∞时,h(x)→﹣∞与h(x)≥0矛盾②当a+1>0时,h′(x)>0⇔x>ln(a+1),h'(x)<0⇔x<ln(a+1)得:当x=ln(a+1)时,h(x)min=(a+1)﹣(a+1)ln(a+1)﹣b≥0,即(a+1)﹣(a+1)ln(a+1)≥b∴(a+1)b≤(a+1)2﹣(a+1)2ln(a+1),(a+1>0)令F(x)=x2﹣x2lnx(x>0),则F'(x)=x(1﹣2lnx)∴F'(x)>0⇔0<x<当x=时,F(x)max=即当a=时,(a+1)b的最大值为【点评】本题考查导数在最值问题中的应用及利用导数研究函数的单调性,解题的关键是第一题中要赋值求出f′(1),易因为没有将f′(1)看作常数而出错,第二题中将不等式恒成立研究参数关系的问题转化为最小值问题,本题考查了转化的思想,考查判断推理能力,是高考中的热点题型,计算量大,易马虎出错.5.已知函数f(x)=e x﹣ax,其中a>0.(1)若对一切x∈R,f(x)≥1恒成立,求a的取值集合;(2)在函数f(x)的图象上取定点A(x1,f(x1)),B(x2,f(x2))(x1<x2),记直线AB的斜率为K,证明:存在x0∈(x1,x2),使f′(x0)=K恒成立.【分析】(1)根据题意,对f(x)求导可得f′(x)=0,令f′(x)=0,解可得x=lna,分x<lna与x>lna两种情况讨论可得f(x)取最小值为f(lna)=a﹣alna,令g (t)=t﹣tlnt,对其求导可得g′(t)=﹣lnt,分析可得当t=1时,g(t)取得最大值1,因此当且仅当a=1时,a﹣alna≥1成立,即可得答案;(2)根据题意,由直线的斜率公式可得k=﹣a,令φ(x)=f′(x)﹣k=e x ﹣,可以求出φ(x1)与φ(x2)的值,令F(t)=e t﹣t﹣1,求导可得F′(t)=e t﹣1,分t>0与t<0讨论可得F(t)的最小值为F(0)=0,则当t≠0时,F(t)>F (0)=0,即e t﹣t﹣1>0,进而讨论可得φ(x1)<0、φ(x2)>0,结合函数的连续性分析可得答案.【解答】解:(1)f′(x)=e x﹣a,令f′(x)=0,解可得x=lna;当x<lna,f′(x)<0,f(x)单调递减,当x>lna,f′(x)>0,f(x)单调递增,故当x=lna时,f(x)取最小值,f(lna)=a﹣alna,对一切x∈R,f(x)≥1恒成立,当且仅当a﹣alna≥1,①令g(t)=t﹣tlnt,则g′(t)=﹣lnt,当0<t<1时,g′(t)>0,g(t)单调递增,当t>1时,g′(t)<0,g(t)单调递减,故当t=1时,g(t)取得最大值,且g(1)=1,因此当且仅当a=1时,①式成立,综上所述,a的取值的集合为{1}.(2)根据题意,k==﹣a,令φ(x)=f′(x)﹣k=e x﹣,则φ(x1)=﹣[﹣(x2﹣x1)﹣1],φ(x2)=[﹣(x1﹣x2)﹣1],令F(t)=e t﹣t﹣1,则F′(t)=e t﹣1,当t<0时,F′(t)<0,F(t)单调递减;当t>0时,F′(t)>0,F(t)单调递增,则F(t)的最小值为F(0)=0,故当t≠0时,F(t)>F(0)=0,即e t﹣t﹣1>0,从而﹣(x2﹣x1)﹣1>0,且>0,则φ(x1)<0,﹣(x1﹣x2)﹣1>0,>0,则φ(x2)>0,因为函数y=φ(x)在区间[x1,x2]上的图象是连续不断的一条曲线,所以存在x0∈(x1,x2),使φ(x0)=0,即f′(x0)=K成立.【点评】本题考查导数的应用,涉及最大值、最小值的求法以及恒成立问题,是综合题;关键是理解导数的符号与单调性的关系,并能正确求出函数的导数.6.设函数f(x)=x﹣﹣alnx(a∈R).(Ⅰ)讨论函数f(x)的单调性.(Ⅱ)若f(x)有两个极值点x1,x2,记过点A(x1,f(x1)),B(x2,f(x2))的直线斜率为k.问:是否存在a,使得k=2﹣a?若存在,求出a的值;若不存在,请说明理由.【分析】(Ⅰ)求导,令导数等于零,解方程,跟据f′(x)f(x)随x的变化情况即可求出函数的单调区间;(Ⅱ)假设存在a,使得k=2﹣a,根据(I)利用韦达定理求出直线斜率为k,根据(I)函数的单调性,推出矛盾,即可解决问题.【解答】解:(I)f(x)定义域为(0,+∞),f′(x)=1+,令g(x)=x2﹣ax+1,△=a2﹣4,①当﹣2≤a≤2时,△≤0,f′(x)≥0,故f(x)在(0,+∞)上单调递增,②当a<﹣2时,△>0,g(x)=0的两根都小于零,在(0,+∞)上,f′(x)>0,故f(x)在(0,+∞)上单调递增,③当a>2时,△>0,g(x)=0的两根为x1=,x2=,当0<x<x1时,f′(x)>0;当x1<x<x2时,f′(x)<0;当x>x2时,f′(x)>0;故f(x)分别在(0,x1),(x2,+∞)上单调递增,在(x1,x2)上单调递减.(Ⅱ)由(I)知,a>2.因为f(x1)﹣f(x2)=(x1﹣x2)+﹣a(lnx1﹣lnx2),所以k==1+﹣a,又由(I)知,x1x2=1.于是k=2﹣a,若存在a,使得k=2﹣a,则=1,即lnx1﹣lnx2=x1﹣x2,亦即(*)再由(I)知,函数在(0,+∞)上单调递增,而x2>1,所以>1﹣1﹣2ln1=0,这与(*)式矛盾,故不存在a,使得k=2﹣a.【点评】此题是个难题.考查利用导数研究函数的单调性和极值问题,对方程f'(x)=0有无实根,有实根时,根是否在定义域内和根大小进行讨论,体现了分类讨论的思想方法,其中问题(II)是一个开放性问题,考查了同学们观察、推理以及创造性地分析问题、解决问题的能力.7.已知椭圆C:(a>b>0)的离心率为,短轴一个端点到右焦点的距离为.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值.【分析】(Ⅰ)设椭圆的半焦距为c,依题意求出a,b的值,从而得到所求椭圆的方程.(Ⅱ)设A(x1,y1),B(x2,y2).(1)当AB⊥x轴时,.(2)当AB 与x轴不垂直时,设直线AB的方程为y=kx+m.由已知,得.把y=kx+m代入椭圆方程,整理得(3k2+1)x2+6kmx+3m2﹣3=0,然后由根与系数的关系进行求解.【解答】解:(Ⅰ)设椭圆的半焦距为c,依题意∴b=1,∴所求椭圆方程为.(Ⅱ)设A(x1,y1),B(x2,y2).(1)当AB⊥x轴时,.(2)当AB与x轴不垂直时,设直线AB的方程为y=kx+m.由已知,得.把y=kx+m代入椭圆方程,整理得(3k2+1)x2+6kmx+3m2﹣3=0,∴,.∴|AB|2=(1+k2)(x2﹣x1)2=====.当且仅当,即时等号成立.当k=0时,,综上所述|AB|max=2.∴当|AB|最大时,△AOB面积取最大值.【点评】本题考查圆锥曲线的性质和应用,解题时要注意公式的灵活运用,认真审题,仔细解答.8.平面直角坐标系xOy中,过椭圆M:(a>b>0)右焦点的直线x+y ﹣=0交M于A,B两点,P为AB的中点,且OP的斜率为.(Ⅰ)求M的方程(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD 面积的最大值.【分析】(Ⅰ)把右焦点(c,0)代入直线可解得c.设A(x1,y1),B(x2,y2),线段AB的中点P(x0,y0),利用“点差法”即可得到a,b的关系式,再与a2=b2+c2联立即可得到a,b,c.(Ⅱ)由CD⊥AB,可设直线CD的方程为y=x+t,与椭圆的方程联立得到根与系数的关系,即可得到弦长|CD|.把直线x+y﹣=0与椭圆的方程联立得到根与=即可得到关于t 系数的关系,即可得到弦长|AB|,利用S四边形ACBD的表达式,利用二次函数的单调性即可得到其最大值.【解答】解:(Ⅰ)把右焦点(c,0)代入直线x+y﹣=0得c+0﹣=0,解得c=.设A(x1,y1),B(x2,y2),线段AB的中点P(x0,y0),则,,相减得,∴,∴,又=,∴,即a2=2b2.联立得,解得,∴M的方程为.(Ⅱ)∵CD⊥AB,∴可设直线CD的方程为y=x+t,联立,消去y得到3x2+4tx+2t2﹣6=0,∵直线CD与椭圆有两个不同的交点,∴△=16t2﹣12(2t2﹣6)=72﹣8t2>0,解﹣3<t<3(*).设C(x3,y3),D(x4,y4),∴,.∴|CD|===.联立得到3x2﹣4x=0,解得x=0或,∴交点为A(0,),B,∴|AB|==.===,∴S四边形ACBD∴当且仅当t=0时,四边形ACBD面积的最大值为,满足(*).∴四边形ACBD面积的最大值为.【点评】本题综合考查了椭圆的定义、标准方程及其性质、“点差法”、中点坐标公式、直线与椭圆相交问题转化为方程联立得到一元二次方程根与系数的关系、弦长公式、四边形的面积计算、二次函数的单调性等基础知识,考查了推理能力、数形结合的思想方法、计算能力、分析问题和解决问题的能力.9.设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.【分析】(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的=,知距离,由△ABD的面积S△ABD=,由此能求出圆F的方程.(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.【解答】解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,=,∵△ABD的面积S△ABD∴=,解得p=2,所以F坐标为(0,1),∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线,切点直线坐标原点到m,n距离的比值为.【点评】本题考查抛物线与直线的位置关系的综合应用,具体涉及到抛物线的简单性质、圆的性质、导数的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.10.已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1.(Ⅰ)求动点P的轨迹C的方程;(Ⅱ)过点F作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求的最小值.【分析】(Ⅰ)设动点P的坐标为(x,y),根据两点间距离公式和点到直线的距离公式,列方程,并化解即可求得动点P的轨迹C的方程;(Ⅱ)设出直线l1的方程,理想直线和抛物线的方程,消去y,得到关于x的一元二次方程,利用韦达定理,求出两根之和和两根之积,同理可求出直线l2的方程与抛物线的交点坐标,代入利用基本不等式求最值,即可求得其的最小值.【解答】解:(Ⅰ)设动点P的坐标为(x,y),由题意得,化简得y2=2x+2|x|.当x≥0时,y2=4x;当x<0时,y=0,所以动点P的轨迹C的方程为y2=4x(x≥0)和y=0(x<0).(Ⅱ)由题意知,直线l1的斜率存在且不为零,设为k,则l1的方程为y=k(x﹣1).由,得k2x2﹣(2k2+4)x+k2=0.设A,B的坐标分别为(x1,y1),(x2,y2),则x1+x2=2+,x1x2=1.∵l1⊥l2,∴直线l2的斜率为﹣.设D(x3,y3),E(x4,y4),则同理可得x3+x4=2+4k2,x3x4=1.故====(x1+1)(x2+1)+(x3+1)(x4+1)=x1x2+(x1+x2)+1+x3x4+x3+x4+11+2++1+1+2+4k2+1=8+4(k2+)≥8+4×2=16,当且仅当k2=,即k=±1时,的最小值为16.【点评】此题是个难题.考查代入法求抛物线的方程,以及直线与抛物线的位置关系,同时也考查了学生观察、推理以及创造性地分析问题、解决问题的能力.11.已知抛物线x2=4y的焦点为F,A、B是抛物线上的两动点,且.过A、B两点分别作抛物线的切线,设其交点为M.(Ⅰ)证明为定值;(Ⅱ)设△ABM的面积为S,写出S=f(λ)的表达式,并求S的最小值.【分析】(1)设A(x1,y1),B(x2,y2),M(x o,y o),根据抛物线方程可得焦点坐标和准线方程,设直线方程与抛物线方程联立消去y,根据判别式大于0求得x1+x2和x1x2,根据曲线4y=x2上任意一点斜率为y′=,可得切线AM和BM的方程,联立方程求得交点坐标,求得和,进而可求得•的结果为0,进而判断出AB⊥FM.(2)利用(1)的结论,根据x1+x2的关系式求得k和λ的关系式,进而求得弦长AB,可表示出△ABM面积.最后根据均值不等式求得S的范围,得到最小值.【解答】解:(1)设A(x1,y1),B(x2,y2),M(x o,y o),焦点F(0,1),准线方程为y=﹣1,显然AB斜率存在且过F(0,1)设其直线方程为y=kx+1,联立4y=x2消去y得:x2﹣4kx﹣4=0,判别式△=16(k2+1)>0.x1+x2=4k,x1x2=﹣4于是曲线4y=x2上任意一点斜率为y′=,则易得切线AM,BM方程分别为y=()x1(x﹣x1)+y1,y=()x2(x﹣x2)+y2,其中4y1=x12,4y2=x22,联立方程易解得交点M坐标,x o==2k,y o==﹣1,即M(,﹣1)从而,=(,﹣2),(x2﹣x1,y2﹣y1)•=(x1+x2)(x2﹣x1)﹣2(y2﹣y1)=(x22﹣x12)﹣2[(x22﹣x12)]=0,(定值)命题得证.这就说明AB⊥FM.(Ⅱ)由(Ⅰ)知在△ABM中,FM⊥AB,因而S=|AB||FM|.∵,∴(﹣x1,1﹣y1)=λ(x2,y2﹣1),即,而4y1=x12,4y2=x22,则x22=,x12=4λ,|FM|====.因为|AF|、|BF|分别等于A、B到抛物线准线y=﹣1的距离,所以|AB|=|AF|+|BF|=y1+y2+2=+2=λ++2=()2.于是S=|AB||FM|=()3,由≥2知S≥4,且当λ=1时,S取得最小值4.【点评】本题主要考查了抛物线的应用.抛物线与直线的关系和抛物线的性质等都是近几年高考的热点,故应重点掌握.12.在直角坐标系xoy中,曲线C1上的点均在C2:(x﹣5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值.(Ⅰ)求曲线C1的方程(Ⅱ)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别于曲线C1相交于点A,B和C,D.证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值.【分析】(Ⅰ)设M的坐标为(x,y),根据对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值,可得|x+2|=且圆C2上的点位于直线x=﹣2的右侧,从而可得曲线C1的方程;(Ⅱ)当点P在直线x=﹣4上运动时,P的坐标为(﹣4,y0),设切线方程为kx ﹣y+y0+4k=0,利用直线与圆相切可得,从而可得过P所作的两条切线PA,PC的斜率k1,k2是方程的两个实根,设四点A,B,C,D的纵坐标分别为y1,y2,y3,y4,从而可得;同理可得,由此可得当P在直线x=﹣4上运动时,四点A,B,C,D 的纵坐标之积为定值为6400.【解答】(Ⅰ)解:设M的坐标为(x,y),由已知得|x+2|=且圆C2上的点位于直线x=﹣2的右侧∴=x+5化简得曲线C1的方程为y2=20x(Ⅱ)证明:当点P在直线x=﹣4上运动时,P的坐标为(﹣4,y0),∵y0≠±3,∴过P且与圆C2相切的直线的斜率k存在且不为0,每条切线都与抛物线有两个交点,切线方程为y﹣y0=k(x+4),即kx﹣y+y0+4k=0,∴,整理得①设过P所作的两条切线PA,PC的斜率分别为k1,k2,则k1,k2是方程①的两个实根∴②由,消元可得③设四点A,B,C,D的纵坐标分别为y1,y2,y3,y4,∴y1,y2是方程③的两个实根∴④同理可得⑤由①②④⑤可得==6400∴当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值为6400.【点评】本题考查轨迹方程,考查直线与圆相切,考查韦达定理的运用,解题的关键是切线与抛物线联立,属于中档题.13.在直角坐标系xOy中,已知中心在原点,离心率为的椭圆E的一个焦点为圆C:x2+y2﹣4x+2=0的圆心.(Ⅰ)求椭圆E的方程;(Ⅱ)设P是椭圆E上一点,过P作两条斜率之积为的直线l1,l2.当直线l1,l2都与圆C相切时,求P的坐标.【分析】(Ⅰ)确定x2+y2﹣4x+2=0的圆心C(2,0),设椭圆E的方程为:,其焦距为2c,则c=2,利用离心率为,即可求得椭圆E 的方程;(Ⅱ)设P(x0,y0),l1,l2的斜率分别为k1,k2,则k1k2=,由l1与圆C:x2+y2﹣4x+2=0相切,可得,同理可得,从而k1,k2是方程的两个实根,进而,利用,即可求得点P的坐标.【解答】解:(Ⅰ)由x2+y2﹣4x+2=0得(x﹣2)2+y2=2,∴圆心C(2,0)设椭圆E的方程为:,其焦距为2c,则c=2,∵,∴a=4,∴b2=a2﹣c2=12∴椭圆E的方程为:(Ⅱ)设P(x0,y0),l1,l2的斜率分别为k1,k2,则l1:y﹣y0=k1(x﹣x0)l2:y﹣y0=k2(x﹣x0),且k1k2=由l1与圆C:x2+y2﹣4x+2=0相切得∴同理可得从而k1,k2是方程的两个实根所以①,且∵,∴,∴x0=﹣2或由x0=﹣2得y0=±3;由得满足①故点P的坐标为(﹣2,3)或(﹣2,﹣3),或()或()【点评】本题考查椭圆的标准方程,考查直线与圆相切,解题的关键是确定k1,k2是方程的两个实根,属于中档题.14.已知F1,F2分别是椭圆的左、右焦点F1,F2关于直线x+y﹣2=0的对称点是圆C的一条直径的两个端点.(Ⅰ)求圆C的方程;(Ⅱ)设过点F2的直线l被椭圆E和圆C所截得的弦长分别为a,b.当ab最大时,求直线l的方程.【分析】(I)由题意可知:F1(﹣2,0),F2(2,0),可得⊙C的半径为2,圆心为原点O关于直线x+y﹣2=0的对称点.设圆心的坐标为(m,n).利用线段的垂直平行的性质可得,解出即可得到圆的方程;(II))由题意,可设直线l的方程为x=my+2,利用点到直线的距离公式可得圆心到直线l的距离d=,再利用弦长公式即可得到b=.把直线l的方程为x=my+2与椭圆的方程联立得到根与系数的关系,利用弦长公式即可得到a,进而得到ab,利用基本不等式的性质即可得出结论.【解答】解:(I)由题意可知:F1(﹣2,0),F2(2,0).故⊙C的半径为2,圆心为原点O关于直线x+y﹣2=0的对称点.设圆心的坐标为(m,n).则,解得.∴圆C的方程为(x﹣2)2+(y﹣2)2=4;(II)由题意,可设直线l的方程为x=my+2,则圆心到直线l的距离d=,∴b=.由得(5+m2)y2+4my﹣1=0.设l与E的两个交点分别为(x1,y1),(x2,y2).则,.∴a===,∴ab===.当且仅当,即时等号成立.故当时,ab最大,此时,直线l的方程为,即.【点评】本题综合考查了圆与椭圆的标准方程及其性质、轴对称的性质、圆的弦长公式b=、直线与椭圆相交的弦长公式a=、基本不等式的性质等基础知识与方法,需要较强的推理能力、计算能力、分析问题和解决问题的能力..15.如图,椭圆C1:=1(a>b>0)的离心率为,x轴被曲线C2:y=x2﹣b截得的线段长等于C1的长半轴长.(Ⅰ)求C1,C2的方程;(Ⅱ)设C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A、B,直线MA,MB分别与C1相交于D,E.(i)证明:MD⊥ME;(ii)记△MAB,△MDE的面积分别是S1,S2.问:是否存在直线l,使得=?请说明理由.【分析】(Ⅰ)先利用离心率得到一个关于参数的方程,再利用x轴被曲线C2:y=x2﹣b截得的线段长等于C1的长半轴长得另一个方程,两个方程联立即可求出参数进而求出C1,C2的方程;(Ⅱ)(i)把直线l的方程与抛物线方程联立可得关于点A、B坐标的等量关系,再代入求出k MA•k MB=﹣1,即可证明:MD⊥ME;(ii)先把直线MA的方程与抛物线方程联立可得点A的坐标,再利用弦长公式求出|MA|,同样的方法求出|MB|进而求出S1,同理可求S2.再代入已知就可知道是否存在直线l满足题中条件了.【解答】解:(Ⅰ)由题得e=,从而a=2b,又2=a,解得a=2,b=1,故C1,C2的方程分别为,y=x2﹣1.(Ⅱ)(i)由题得,直线l的斜率存在,设为k,则直线l的方程为y=kx,由得x2﹣kx﹣1=0.设A(x1,y1),B(x2,y2),则x1,x2是上述方程的两个实根,于是x1+x2=k,x1x2=﹣1,又点M的坐标为(0,﹣1),所以k MA•k MB=====﹣1.故MA⊥MB,即MD⊥ME.(ii)设直线MA的斜率为k1,则直线MA的方程为y=k1x﹣1.由,解得或.则点A的坐标为(k1,k12﹣1).又直线MB的斜率为﹣,同理可得点B的坐标为(﹣,﹣1).于是s1=|MA|•|MB|=•|k1|••|﹣|=.由得(1+4k12)x2﹣8k1x=0.解得或,,则点D的坐标为(,).又直线ME的斜率为﹣.同理可得点E的坐标为(,).于是s2=|MD|•|ME|=.故=,解得k12=4或k12=.又由点A,B的坐标得,k==k1﹣.所以k=±.故满足条件的直线存在,且有两条,其方程为y=x和y=﹣x.【点评】本题是对椭圆与抛物线以及直线与抛物线和直线与椭圆的综合问题的考查.是一道整理过程很麻烦的题,需要要认真,细致的态度才能把题目作好.16.如图,过抛物线x2=4y的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A,B两点,点Q是点P关于原点的对称点.(I)设点P分有向线段所成的比为λ,证明:(Ⅱ)设直线AB的方程是x﹣2y+12=0,过A,B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.【分析】(Ⅰ)依题意,可设直线AB的方程为y=kx+m,代入抛物线方程x2=4y 得x2﹣4kx﹣4m=0.设A、B两点的坐标分别是(x1,y1)、(x2,y2),x1x2=﹣4m.由点P(0,m)分有向线段所成的比为λ,得.由此可以推出.(Ⅱ)由得点A、B的坐标分别是(6,9)、(﹣4,4).设圆C的方程是(x﹣a)2+(y﹣b)2=r2,则解得.所以圆C的方程是x2+y2+3x﹣23y+72=0.【解答】解:(Ⅰ)依题意,可设直线AB的方程为y=kx+m,代入抛物线方程x2=4y 得x2﹣4kx﹣4m=0.①设A、B两点的坐标分别是(x1,y1)、(x2,y2),则x1、x2是方程①的两根.所以x1x2=﹣4m.由点P(0,m)分有向线段所成的比为λ,得.又点Q是点P关于原点的对称点,故点Q的坐标是(0,﹣m),从而..==.所以.(Ⅱ)由得点A、B的坐标分别是(6,9)、(﹣4,4).由x2=y得,所以抛物线x2=4y在点A处切线的斜率为y'|x=6=3设圆C的方程是(x﹣a)2+(y﹣b)2=r2,则解之得.所以圆C的方程是,即x2+y2+3x﹣23y+72=0.【点评】本题考查直线和圆锥曲线的位置关系,解题时要认真审题,仔细求解.。
圆锥曲线综合训练题(分专题-含答案)

圆锥曲线综合训练题一、求轨迹方程:1、(1)已知双曲线1C 与椭圆2C :2213649x y +=有公共的焦点,并且双曲线的离心率1e 与椭圆的离心率2e 之比为73,求双曲线1C 的方程.(2)以抛物线28y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程.(1)解:1C 的焦点坐标为(0,13).±213e =由1273e e =得113e =设双曲线的方程为22221(,0)y x a b a b -=>则2222213139a b a b a ⎧+=⎪⎨+=⎪⎩ 解得229,4a b == 双曲线的方程为22194y x -=(2)解:设点00(,),(,)M x y P x y ,则00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩,∴00262x x y y =-⎧⎨=⎩.代入2008y x =得:2412y x =-.此即为点P 的轨迹方程. 2、(1)ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,建立适当的坐标系求此三角形重心G 的轨迹和顶点A 的轨迹.(2)△ABC 中,B(-5,0),C(5,0),且sinC-sinB=53sinA,求点A 的轨迹方程.解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022≠=+y y x .设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ①由题意有⎪⎪⎩⎪⎪⎨⎧='='33y y x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点). (2)分析:由于sinA 、sinB 、sinC 的关系为一次齐次式,两边乘以2R (R 为外接圆半径),可转化为边长的关系. 】解:sinC-sinB=53sinA 2RsinC-2RsinB=53·2RsinA∴BC AC AB 53=- 即6=-AC AB (*)∴点A 的轨迹为双曲线的右支(去掉顶点) ∵2a=6,2c=10 ∴a=3, c=5, b=4所求轨迹方程为116922=-y x (x>3) 点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支)3、如图,两束光线从点M (-4,1)分别射向直线y = -2上两点P (x 1,y 1)和Q (x 2,y 2)后,反射光线恰好通过椭圆C :12222=+b y a x (a >b >0)的两焦点,已知椭圆的离心率为21,且x 2-x 1=56,求椭圆C 的方程.解:设a =2k ,c =k ,k ≠0,则b =3k ,其椭圆的方程为1342222=-k y k x . ,由题设条件得:114)2(120x x k ----=--+, ①224)2(120x x k ----=--+, ②x 2-x 1=56, ③由①、②、③解得:k =1,x 1=511-,x 2=-1,所求椭圆C 的方程为13422=+y x . 4、在面积为1的PMN ∆中,21tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为∴所求椭圆方程为1315422=+yx 解:以MN 的中点为原点,MN 所在直线为x 轴建立直角坐标系,设),(y x P .则⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-=-.1,21,2cy c x yc x y∴⎪⎪⎩⎪⎪⎨⎧===233435c c y c x 且即(1)求线段PQ 的中点的轨迹方程;(2)设∠POQ 的平分线交PQ 于点R (O 为原点),求点R 的轨迹方程. — 解:(1)设线段PQ 的中点坐标为M (x ,y ),由Q (4,0)可得点P (2x -4,2y ),代入圆的方程x 2+y 2=4可得(2x -4)2+(2y )2=4,整理可得所求轨迹为(x -2)2+y 2=1. (2)设点R (x ,y ),P (m ,n ),由已知|OP |=2,|OQ |=4,∴21||||=OQ OP ,由角平分线性质可得||||||||RQ PR OQ OP ==21,又∵点R 在线段PQ 上,∴|PR |=21|RQ |,∴点R 分有向线段PQ 的比为21,由定比分点坐标公式可得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=32211021342211421n n y m m x ,即⎪⎪⎩⎪⎪⎨⎧=-=23243y n x m ,∴点P 的坐标为⎪⎭⎫ ⎝⎛-23 ,243y x ,代入圆的方程x 2+y 2=4可得42324322=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-y x , 即234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0). ∴点R 的轨迹方程为234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0).6、已知动圆过定点()1,0,且与直线1x =-相切.(1) 求动圆的圆心轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设M 为动圆圆心, F ()1,0,过点M 作直线1x =-的垂线,垂足为N ,由题意知:MF MN =, 即动点M 到定点F 与定直线1x =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中()1,0F 为焦点,1x =-为准线, ∴ 动点R 的轨迹方程为x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠, 由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+=△216160k =->,11k k <->或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=,即 ()11,OP x y =,()22,OQ x y =,于是12120x x y y +=,<即()()21212110k y y y y --+=,2221212(1)()0k y y k y y k +-++=, 2224(1)40k k k k k +-+=,解得4k =-或0k =(舍去), 又41k =-<-, ∴ 直线l 存在,其方程为440x y +-=7、设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2.(I )求此双曲线的渐近线l l 12、的方程;(II )若A 、B 分别为l l 12、上的点,且2512||||AB F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线;(III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP OQ →→=·0.若存在,求出直线l 的方程;若不存在,说明理由.解:(I ) e c a =∴=2422,c a a c 22312=+∴==,,∴-=双曲线方程为y x 2231,渐近线方程为y x =±33 4分(II )设A x y B x y ()()1122,,,,AB 的中点()M x y ,[]2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y ,即;则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分)(III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[] OP OQ x x y y x x k x x x x k x x x x i →→=∴+=∴+--=∴+-++=·00110101212122121221212()()()()由得则,y k x y x k x k x k x x k k x x k k ii =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222由(i )(ii )得k 230+= ∴k 不存在,即不存在满足条件的直线l .8、设M 是椭圆22:1124x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN ⊥MQ ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ≠则111111(,),(,),(,),P x y Q x y T x y ----……1分221122221,(1)124 1.(2)124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩………3分 由(1)-(2)可得1.3MN QN k k •=-…6分又MN ⊥MQ ,111,,MN MQ MN x k k k y ⋅=-=-所以11.3QN y k x =直线QN 的方程为1111()3yy x x y x =+-,又直线PT 的方程为11.x y x y =-从而得1111,.22x x y y ==-所以112,2.x x y y ==-代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程. ,9、已知:直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。
圆锥曲线与导数练习题

圆锥曲线与导数测试卷(二)一、选择题1.曲线y =x 3在点P 处的切线斜率为3,则P 点的坐标为A .(-2,-8)B .(-1,-1)C .(-2,-8)或(2,8)D .(-1,-1)或(1,1)2.若函数f(x)的导数为f ′(x)=-sinx ,则函数图像在点(4,f (4))处的切线的倾斜角为A .90°B .0°C .锐角D .钝角 3.函数y =3x -x 3的单调增区间是A .(0,+∞)B .(-∞,-1)C .(-1,1)D .(1,+∞)4.设椭圆1C 的焦点在x 轴上且长轴长为26,且离心率为513;曲线2C 上的点到椭圆1C 的两个焦点的距离的差的绝对值等于8,则曲线2C 的标准方程为( )A .2222143x y -=B .22221135x y -=C .2222134x y -= D .222211312x y -=5.若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为 A .2- B .2 C .4- D .46.若点P 在抛物线24y x =上,则该点到点(21)Q -,的距离与到抛物线焦点距离之和取得最小值时的坐标为( )A.114⎛⎫- ⎪⎝⎭, B.114⎛⎫⎪⎝⎭, C.(12), D.(12)-,7.双曲线22221x y a b-=的右焦点为F ,右准线与一条渐近线交于点A ,AOF ∆的面积为22a ,则两条渐近线的夹角为A .ο90B .ο60C .ο45D .ο308.已知椭圆221102x y m m +=--,长轴在y 轴上. 若焦距为4,则m 等于 ( ) A.4. B.5. C.7. D.8.9.F 是抛物线y 2=2x 的焦点,P 是抛物线上任一点,A(3,1)是定点,则|PF |+|PA |的最小值是 ( )A.2B.27C.3D.2110.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )(A 2(B 12- (C )2- (D 111. 已知双曲线22163x y -=的焦点为1F 、2F ,点M 在双曲线上且1MF x ⊥轴,则1F 到直线2F M 的距离为( )(A)(B)(C)65(D)5612.过双曲线191622=-y x 左焦点F 1的弦AB 长为6,则2ABF ∆(F 2为右焦点)的周长是( )A .28B .22C .14D .12二、填空题13.曲线y =x 3在点P (2,8)处的切线方程是___________. 14.若y =(2x 2-3)(x 2-4),则y ’= . 15.与直线2x -6y +1=0垂直,且与曲线y =x 3+3x 2-1相切的直线方程是______. 16.以下四个关于圆锥曲线的命题中:①设A 、B 为两个定点,k 为非零常数,||||PA PB k -=u u u r u u u r,则动点P 的轨迹为双曲线;②过定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若1(),2OP OA OB =+u u u r u u u r u u u r则动点P 的轨迹为椭圆;③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;④双曲线13519252222=+=-y x y x 与椭圆有相同的焦点.其中真命题的序号为 (写出所有真命题的序号)三、解答题17.已知函数f (x )=x 3+ax 2+bx +c ,当x =-1时,取得极大值7;当x =3时,取得极小值.求这个极小值及a 、b 、c 的值.18.抛物线顶点在原点,它的准线过双曲线22221(0,0)x y a b a b-=>> 的一个焦点,且抛物线与双曲线的一支交于P (3219.已知点()A 和)B,动点C 到A 、B 两点的距离之差的绝对值为2,点C 的轨迹与直线2y x =-交于D 、E 两点,求线段DE 的长.20、已知椭圆C 的焦点F 1(-22,0)和F 2(22,0),长轴长6,设直线2+=x y 交椭圆C 于A 、B 两点,求线段AB 的中点坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向量、导数、圆锥曲线练习题
一、填空题
1、在空间四边形OABC 中,=a ,=b ,=c ,点M 在OA 上,且OM =2MA ,N 为BC 中点,则用a ,b ,c 表示= .
2、下列命题中正确的是 .
(1)若p =x a +y b (x ,y ∈R ),则向量p 与向量a ,b 共面;
(2)若向量p 与向量a ,b 共面,则p =xa +yb (x ,y ∈R );
(3)若MP = x MA +y MB (x ,y ∈R ),则P ,M ,A ,B 共面;
(4)若P ,M ,A ,B 共面,则= x +y (x ,y ∈R ).
3、已知向量p 在基底{a ,b ,c }下的坐标是(2,3,1),则向量p 在基底{a ,a +b ,a +b +c }下的坐标为 .
4、若椭圆一个顶点是(-4,0),短轴长为6,其焦点在x 轴上,则该椭圆的标准方程为 .
5、已知椭圆的短轴长为6,焦点到长轴的一个端点的距离等于9,则椭圆的离心率等于 .
6、若椭圆x 2a +y 29=1的离心率为12
,则a 的值是____________. 7、设椭圆x 212+y 23
=1的左焦点为F 1,点P 在椭圆上,如果线段PF 1的中点M 在y 轴上,那么点M 的纵坐标是________________.
8、曲线y =sinx 在点A (6π,2
1)处的切线方程为 . 9、已知函数f (x )=cosx +x ,则适合f ′(x )≤0的x 的取值集合为 .
10、函数f (x )=2
1x x +的单调减区间为 . 11、函数f (x )=x 3+3ax 2+3(a +2)x +3既有极大值也有极小值,则实数a 的取值范围为 .
12、若函数f (x )=ax 3-x 2+x -5在(-∞,+∞)上单调递增,则实数a 的取值范围为 .
13、函数f (x )=x +2cosx 在区间0,2π
上的最大值是 .
14、已知函数f (x )= 2x 3-6x 2+a (a ∈R )在-2,2
上有最大值3,那么函数在-2,2
上的最小值为 .
二、解答题
15、(1)已知椭圆的中心在原点,长轴长与短轴长的比为2,且过点(-2,3),求该椭圆的方程.
(2)如果双曲线经过点P(6,3),渐近线方程为y=±x
3,求该双曲线的方程.
(3)求经过点P(-2,-4)的抛物线的标准方程.
16、已知函数f(x)= x3+ax2+bx+c,过曲线y= f(x)上的点P(1,f(1))的切线方程为y=3x+1,且函数f(x)在x=-2处有极值.
(1)求函数f(x)的极值;(2)求函数f(x)在-3,1上的最值.。