数字信号处理期末复习题
数字信号处理复习题及参考答案

数字信号处理期末复习题一、单项选择题(在每个小题的四个备选答案中选出一个正确答案,并将正确答案的号码写在题干后面的括号内,每小题1分,共20分)1.要从抽样信号不失真恢复原连续信号,应满足下列条件的哪几条( ① )。
(Ⅰ)原信号为带限(Ⅱ)抽样频率大于两倍信号谱的最高频率(Ⅲ)抽样信号通过理想低通滤波器①.Ⅰ、Ⅱ②.Ⅱ、Ⅲ③.Ⅰ、Ⅲ④.Ⅰ、Ⅱ、Ⅲ2.在对连续信号均匀采样时,若采样角频率为Ωs,信号最高截止频率为Ωc,则折叠频率为( ④ )。
①Ωs②.Ωc③.Ωc/2④.Ωs/23.若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)=R3(n),则当输入为u(n)-u(n-2)时输出为( ② )。
①.R3(n) ②.R2(n)③.R3(n)+R3(n-1) ④.R2(n)-R2(n-1)4.已知序列Z变换的收敛域为|z|>1,则该序列为( ② )。
①.有限长序列②.右边序列③.左边序列④.双边序列5.离散系统的差分方程为y(n)=x(n)+ay(n-1),则系统的频率响应( ③ )。
①当|a|<1时,系统呈低通特性②.当|a|>1时,系统呈低通特性③.当0<a<1时,系统呈低通特性④.当-1<a<0时,系统呈低通特性6.序列x(n)=R5(n),其8点DFT记为X(k),k=0,1,…,7,则X(0)为( ④ )。
①.2 ②.3③.4 ④.57.下列关于FFT的说法中错误的是( ① )。
①.FFT是一种新的变换②.FFT是DFT的快速算法③.FFT基本上可以分成时间抽取法和频率抽取法两类④.基2 FFT要求序列的点数为2L(其中L为整数)8.下列结构中不属于FIR滤波器基本结构的是( ③ )。
①.横截型②.级联型③.并联型④.频率抽样型9.已知某FIR滤波器单位抽样响应h(n)的长度为(M+1),则在下列不同特性的单位抽样响应中可以用来设计线性相位滤波器的是( ① )。
数字信号处理期末试卷及答案

A一、选择题(每题3分,共5题)1、 )63()(π-=n j e n x ,该序列是 。
A.非周期序列B.周期6π=N C.周期π6=N D 。
周期π2=N 2、 序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。
A.a Z <B.a Z ≤C.a Z >D.a Z ≥ 3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y ,19,1,0),()()( =⋅=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f ,n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。
A.70≤≤nB.197≤≤nC.1912≤≤n D 。
190≤≤n4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N满足 。
A.16>N B 。
16=N C.16<N D.16≠N5。
已知序列Z 变换的收敛域为|z |<1,则该序列为 .A 。
有限长序列B 。
右边序列 C.左边序列 D 。
双边序列二、填空题(每题3分,共5题)1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号.2、要想抽样后能够不失真的还原出原信号,则抽样频率必须 ,这就是奈奎斯特抽样定理.3、对两序列x(n)和y(n ),其线性相关定义为 。
4、快速傅里叶变换(FFT)算法基本可分为两大类,分别是: ; 。
5、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型, ,______ 和______ 四种。
三、10)(-≤≥⎩⎨⎧-=n n ba n x n n求该序列的Z 变换、收敛域、零点和极点.(10分)四、求()()112111)(----=z z Z X ,21<<z 的反变换。
数字信号处理期末试题及答案

一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 10 。
2.线性时不变系统的性质有 交换 律、 结合 律、 分配 律。
3.对4()()x n R n =的Z 变换为 ,其收敛域为 |Z |>0 。
4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 k N j e Z π2= 。
5.序列x (n )=(1,—2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为{0,3,1,-2; n=0,1,2,3} .6.设LTI 系统输入为x(n) ,系统单位序列响应为h (n ),则系统零状态输出()()()y n x n h n =* 。
7.因果序列x (n),在Z →∞时,X (Z)= x (0) .二、单项选择题(每题2分, 共20分)1.δ(n )的Z 变换是 ( A )A 。
1 B.δ(ω) C 。
2πδ(ω) D 。
2π2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( C )A. 3 B 。
4 C 。
6 D. 73.LTI 系统,输入x(n)时,输出y (n );输入为3x(n —2),输出为 ( B ) A 。
y (n —2) B.3y (n —2) C.3y (n ) D.y (n)4.下面描述中最适合离散傅立叶变换DFT 的是 ( D )A 。
时域为离散序列,频域为连续信号B 。
时域为离散周期序列,频域也为离散周期序列C 。
时域为离散无限长序列,频域为连续周期信号D 。
时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 ( A )A 。
理想低通滤波器 B.理想高通滤波器 C 。
理想带通滤波器 D 。
理想带阻滤波器6.下列哪一个系统是因果系统 ( B )A 。
y(n)=x (n+2) B 。
y (n)= cos (n+1)x (n ) C 。
数字信号处理期末试卷及答案

A一、选择题(每题3分,共5题)1、 )63()(π-=n j e n x ,该序列是 。
A.非周期序列B.周期6π=N C.周期π6=N D. 周期π2=N 2、 序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。
A.a Z <B.a Z ≤C.a Z >D.a Z ≥ 3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y ,19,1,0),()()( =⋅=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f ,n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。
A.70≤≤nB.197≤≤nC.1912≤≤nD.190≤≤n4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N满足 。
A.16>NB.16=NC.16<ND.16≠N5.已知序列Z 变换的收敛域为|z |<1,则该序列为 。
A.有限长序列B.右边序列C.左边序列D.双边序列二、填空题(每题3分,共5题)1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号。
2、要想抽样后能够不失真的还原出原信号,则抽样频率必须 ,这就是奈奎斯特抽样定理。
3、对两序列x(n)和y(n),其线性相关定义为 。
4、快速傅里叶变换(FFT )算法基本可分为两大类,分别是: ; 。
5、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型, ,______ 和______ 四种。
三、10)(-≤≥⎩⎨⎧-=n n ba n x n n求该序列的Z 变换、收敛域、零点和极点。
(10分)四、求()()112111)(----=z z Z X ,21<<z 的反变换。
数字信号处理期末复习

一、选择题1.序列x 1(n)的长度为4,序列x 2(n)的长度为3,则它们线性卷积的长度是7, 5点圆周卷积的长度是5。
DA. 5,5B. 6,5C. 6,6D. 7,52.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域 混叠现象,则频域抽样点数N 需满足的条件是( A ) A. B.C. D.3.关于窗函数设计法中错误的是: D A. 窗函数的截取长度增加,则主瓣宽度减小;B. 窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关;C. 为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加;D.窗函数法不能用于设计高通滤波器;4.若一模拟信号为带限,且对其抽样满足奈奎斯特采样定理,则只要将抽样信号通过( A )即可完全不失真恢复原信号。
A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器D.理想带阻滤波器5. 一个序列)(n x 的离散傅里叶变换的变换定义为A 。
A.∑∞-∞=-=njn j e n x e X ωω)()( B.∑-=-=10/2)()(N nNnk j e n x k X πC.∑∞-∞=-=nnz n x z X )()( D.∑-=-=10)()(N nknnk W A n x z X 。
6.离散序列x(n)为实、偶序列,则其频域序列X(k)为:( A )A .实、偶序列 B. 虚、偶序列C .实、奇序列 D. 虚、奇序列7. 在基2 DIT-FFT 运算时,需要对输入序列进行倒序,若进行计算的序列点数N=16,倒序前信号点序号为8,则倒序后该信号点的序号为( C )A. 8B. 16C. 1D. 48. 如题图所示的滤波器幅频特性曲线,可以确定该滤波器类型为(C)A.低通滤波器B.高通滤波器C.带通滤波器D.带阻滤波器9.在IIR数字滤波器结构中,能通过单独调整系数来调整一对零点或极点的结构是(C)A.直接I型B.直接II型C.级联型D.并联型10.δ(n)的z变换是AA. 1B.δ(w)C. 2πδ(w)D. 2π11.从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率f s与信号最高频率f max关系为:AA. f s≥2f maxB. f s≤2 f maxC. f s≥f maxD. f s≤f max12.无限长单位冲激响应(IIR)滤波器的结构是C型的。
数字信号处理复习题及参考答案

数字信号处理期末复习题一、单项选择题(在每个小题的四个备选答案中选出一个正确答案,并将正确答案的号码写在题干后面的括号内,每小题1分,共20分)1.要从抽样信号不失真恢复原连续信号,应满足下列条件的哪几条( ① )。
(Ⅰ)原信号为带限(Ⅱ)抽样频率大于两倍信号谱的最高频率(Ⅲ)抽样信号通过理想低通滤波器①.Ⅰ、Ⅱ②.Ⅱ、Ⅲ③.Ⅰ、Ⅲ④.Ⅰ、Ⅱ、Ⅲ2.在对连续信号均匀采样时,若采样角频率为Ωs,信号最高截止频率为Ωc,则折叠频率为( ④ )。
①Ωs ②.Ωc③.Ωc/2 ④.Ωs/23.若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)=R3(n),则当输入为u(n)-u(n-2)时输出为( ② )。
①.R3(n) ②.R2(n)③.R3(n)+R3(n-1) ④.R2(n)-R2(n-1)4.已知序列Z变换的收敛域为|z|>1,则该序列为( ② )。
①.有限长序列②.右边序列③.左边序列④.双边序列5.离散系统的差分方程为y(n)=x(n)+ay(n-1),则系统的频率响应( ③ )。
①当|a|<1时,系统呈低通特性②.当|a|>1时,系统呈低通特性③.当0<a<1时,系统呈低通特性④.当-1<a<0时,系统呈低通特性6.序列x(n)=R5(n),其8点DFT记为X(k),k=0,1,…,7,则X(0)为( ④ )。
①.2 ②.3③.4 ④.57.下列关于FFT的说法中错误的是( ① )。
①.FFT是一种新的变换②.FFT是DFT的快速算法③.FFT基本上可以分成时间抽取法和频率抽取法两类④.基2 FFT要求序列的点数为2L(其中L为整数)8.下列结构中不属于FIR滤波器基本结构的是( ③ )。
①.横截型②.级联型③.并联型④.频率抽样型9.已知某FIR滤波器单位抽样响应h(n)的长度为(M+1),则在下列不同特性的单位抽样响应中可以用来设计线性相位滤波器的是( ① )。
数字信号处理复习题

数字信号处理期末考试复习题简答题1.抽样定理:若xa(t)频带宽度有限,要想抽样后能不失真的还原出原信号,则抽样频率必须大于等于两倍信号谱的最高频率即fs≥2fn否则抽样后会发生频谱混叠。
2.无限长单位冲激响应滤波器IIR的特点:系统的单位冲击响应h(n)是无限长的;系统函数H(z)在有限z平面(0<|z|<∝)上有极点存在;结构上存在着输出到输入的反馈,也就是结构上是递归的。
3.圆周卷积和线性卷积之间的关系:设x1(n)、x2(n)分别为N1、N2点有限长序列,周期卷积是线性卷积以L为周期的周期延拓序列,圆周序列、圆周卷积是周期卷积的主值区间,当L≥N1+N2-1时,圆周卷积能代表线性卷积。
4.全通系统零极点分布特点:关于单位圆呈镜像共轭对称分布,其中极点在单位圆内,零点在单位圆外。
5.窗函数选择条件,设计步骤:条件:窗谱主瓣尽可能地窄,以获得较陡的过渡带;尽可能的减小窗谱最大旁瓣的相对幅度,也就是能量尽量集中于主瓣,这样使肩峰和波纹减小,就可增大阻带的衰减。
步骤:给定所要求的理想的频率响应函数Hd(e jω);利用Hd(e jω)的傅里叶反变换导出hd(n),hd(n)=1/2∏∫-ππHd(e jω) e jωn dw;有过渡带宽及阻带最小衰减的要求来选择窗函数w(n)的形状及N的大小;求所设计的FIR滤波器的单位抽样响应h(n)=hd(n).w(n) n=0,1,…N-1;求H(ejw)=∑n=0,N-1h(n) e-jωn检验是否满足设计要求。
6.线性相位滤波器的特点:h(n)是实函数h(n)=±h(N-n-1);h(n)关于对称中心N-1/2奇偶对称。
7.因果系统零极点的分布特点:极点在单位圆内。
最小相位延时系统,零点在圆内;最大相位超前系统,零点在圆外。
非因果系统:极点在单位圆外。
最小相位超前系统,零点在圆外;最大相位超前系统,零点在圆内。
8.冲击响应不变法的优点:使得数字滤波器的冲击响应完全模仿模拟滤波器的冲激响应,也就是时域逼近良好,而且模拟频率Ω和数字频率w之间呈线性关系w=ΩT;缺点:有频率响应混叠效应,冲击响应不变法只适用于限带的模拟滤波器,高通和带阻滤波器不宜采用9.阶跃响应不变法优点:频率响应的混叠现象随着Ω的增加比冲击响应不变法的小;缺点:仍存在混叠失真10.双线性变换法优点:避免了频率响应混叠现象;缺点:Ω增加时变换关系是非线性的,频率Ω和w之间存在严重非线性关系11.冲击响应不变法和阶跃响应不变法适合低通,带通滤波器;双线性变换适合低通、高通、带通、带阻。
数字信号处理期末试卷含答案

数字信号处理期末试卷(含答案) 数字信号处理期末试卷(含答案)一、选择题1.下列哪一项不是数字信号处理的应用领域? A. 图像处理 B. 语音识别 C.控制系统 D. 电路设计答案:D2.数字信号处理系统的输入信号一般是: A. 模拟信号 B. 数字信号 C. 混合信号 D. 无线信号答案:A3.下列哪一项可以实现信号的离散化? A. 采样 B. 傅里叶变换 C. 滤波 D.量化答案:A4.数字信号处理中的“频域”是指信号的: A. 幅度 B. 相位 C. 频率 D. 时间答案:C5.下列哪一项是数字信号处理的基本操作? A. 加法 B. 减法 C. 乘法 D. 除法答案:A二、填空题1.数字信号处理的基本步骤包括信号的采样、________、滤波和解调等。
答案:量化2.采样定理规定了采样频率应该是信号最高频率的________。
答案:两倍3.傅里叶变换可以将信号从时域变换到________。
答案:频域4.信号的频率和________有关。
答案:周期5.数字信号处理系统的输出信号一般是________信号。
答案:数字三、计算题1.对于一个模拟信号,采样频率为8 kHz,信号的最高频率为3 kHz,求采样定理是否满足?答案:采样定理要求采样频率大于信号最高频率的两倍,即8 kHz > 3 kHz * 2 = 6 kHz,因此采样定理满足。
2.对于一个信号的傅里叶变换结果为X(f) = 2δ(f - 5) + 3δ(f + 2),求该信号的时域表示。
答案:根据傅里叶变换的逆变换公式,可以得到时域表示为x(t) = 2e^(j2π5t) + 3e^(j2π(-2)t)。
3.对于一个数字信号,采样频率为10 kHz,信号的频率为2 kHz,求该信号的周期。
答案:数字信号的周期可以用采样频率除以信号频率来计算,即10 kHz / 2 kHz = 5。
四、简答题1.请简要介绍数字信号处理的基本原理。
答案:数字信号处理是将模拟信号转换为数字信号,并在数字域中对信号进行处理和分析的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一. 填空题1)一线性时不变系统,输入为x(n)时,输出为y(n);则输入为2x(n)时,输出为2y(n);输入为x(n-3)时,输出为y(n-3)。
2)从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率f与信号最高频率f s关系为:f大于等于2f s。
3)若正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N=8 。
4)序列x(n-2)可以通过x(n)__右____移两位得到5)根据采样定理,若采样频率小于信号的2倍最高频率,则采样后信号的频率会产生______混叠________。
6)若已知x(n)的z变换为X(Z),x(n-m)的z变换为_ Z-m X(Z)______。
二.选择填空题1 从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率f与信号最高频率f s关系为: A 。
A. f≥2f sB. f≤2f sC. f≥f sD. f≤f s2 序列x1(n)的长度为4,序列x2(n)的长度为3,则它们线性卷积的长度是,5点圆周卷积的长度是 B 。
A. 5, 5B. 6, 5C. 6, 6D. 7, 53 无限长单位冲激响应(IIR)滤波器的结构是__B____型的A. 非反馈B. 反馈C. 不确定4 若正弦序列x(n)=sin(60nπ/120)是周期的,则周期是N= C 。
A. 2πB. 4πC. 4D. 85 一线性时不变系统,输入为x(n)时,输出为y(n);则输入为2x(n)时,输出为A ;输入为x(n-3)时,输出为。
A. 2y(n),y(n-3)B. 2y(n),y(n+3)C. y(n),y(n-3)D. y(n),y(n+3)6 在N=32的时间抽取法FFT运算流图中,从x(n)到X(k)需 B 级蝶形运算过程。
A. 4B. 5C. 6D. 37 设系统的单位抽样响应为h(n),则系统因果的充要条件为( C )A.当n>0时,h(n)=0 B.当n>0时,h(n)≠0C.当n<0时,h(n)=0 D.当n<0时,h(n)≠08 若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)=R3(n),则当输入为u(n)-u(n-2)时输出为( C )。
A.R3(n)B.R2(n)C.R3(n)+R3(n-1)D.R2(n)+R2(n-1)9 .下列哪一个单位抽样响应所表示的系统不是因果系统?( D )A.h(n)=δ(n)B.h(n)=u(n)C.h(n)=u(n)-u(n-1)D.h(n)=u(n)-u(n+1)10.一个线性移不变系统稳定的充分必要条件是其系统函数的收敛域包括( A )。
A.单位圆B.原点C.实轴D.虚轴11.已知序列Z变换的收敛域为|z|<1,则该序列为( C )。
A.有限长序列B.右边序列C.左边序列D.双边序列三,判断题1.在时域对连续信号进行抽样,在频域中,所得频谱是原信号频谱的周期延拓。
(对)2、x(n)=cos(w0n)所代表的序列一定是周期的。
(错)3、y(n)=x2(n)+3所代表的系统是线性系统。
(错)4、一个线性时不变离散系统是因果系统的充分必要条件是:系统函数H(Z)的极点在圆内。
(错)5、y(n)=cos[x(n)]所代表的系统是线性系统。
(错)6、x(n) ,y(n)的线性卷积的长度与x(n) ,y(n)的长度无关。
(错)7、在N=8的时间抽取法FFT 运算流图中,从x(n)到x(k)需3级蝶形运算过程。
( 对 ) 8、一个线性时不变的离散系统,它是因果系统的充分必要条件是:系统函数H(Z)的极点在单位圆内。
( 错 )9、一个线性时不变的离散系统,它是稳定系统的充分必要条件是:系统函数H(Z)的极点在单位圆内。
( 对 )10.因果稳定系统的系统函数的极点可能在单位圆外。
( 错 )1, 给定信号:25,41()6,040,n n x n n +-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n 序列的波形,标上各序列的值; (2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。
解:(1)x(n)的波形如题2解图(一)所示。
(2)()3(4)(3)(2)3(1)6()6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2。
(4)2()x n 的波形是x(n)的波形左移2位,在乘以2。
(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,在乘以2。
2 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。
(1)()()2(1)3(2)y n x n x n x n =+-+-; (2)0()()y n x n n =-,0n 为整常数; (3)2()()y n x n =;(4)0()()nm y n x m ==∑。
解:(1)令:输入为0()x n n -,输出为'000'0000()()2(1)3(2)()()2(1)3(2)()y n x n n x n n x n n y n n x n n x n n x n n y n =-+--+---=-+--+--=故该系统是时不变系统。
12121212()[()()]()()2((1)(1))3((2)(2))y n T ax n bx n ax n bx n ax n bx n ax n bx n =+=++-+-+-+-1111[()]()2(1)3(2)T ax n ax n ax n ax n =+-+- 2222[()]()2(1)3(2)T bx n bx n bx n bx n =+-+- 1212[()()][()][()]T ax n bx n aT x n bT x n +=+故该系统是线性系统。
(2)这是一个延时器,延时器是一个线性时不变系统,下面予以证明。
令输入为1()x n n -,输出为'10()()y n x n n n =--,因为'110()()()y n n x n n n y n -=--=故延时器是一个时不变系统。
又因为12102012[()()]()()[()][()]T ax n bx n ax n n bx n n aT x n bT x n +=-+-=+故延时器是线性系统。
(3) 2()()y n x n =令:输入为0()x n n -,输出为'20()()y n x n n =-,因为2'00()()()y n n x n n y n -=-=故系统是时不变系统。
又因为21212122212[()()](()()) [()][()] ()()T ax n bx n ax n bx n aT x n bT x n ax n bx n +=+≠+=+因此系统是非线性系统。
(4) 0()()nm y n x m ==∑令:输入为0()x n n -,输出为'()()nm y n x m n ==-∑,因为0'00()()()n n m y n n x m y n -=-=≠∑故该系统是时变系统。
又因为1212120[()()](()())[()][()]nm T ax n bx n ax m bx m aT x n bT x n =+=+=+∑故系统是线性系统。
3. 给定下述系统的差分方程,试判断系统是否是因果稳定系统,并说明理由。
(1)11()()N k y n x n k N-==-∑;(2)00()()n n k n n y n x k +=-=∑;(3)()()x n y n e=。
解:(1)只要1N ≥,该系统就是因果系统,因为输出只与n 时刻的和n 时刻以前的输入有关。
如果()x n M ≤,则()y n M ≤,因此系统是稳定系统。
(2)如果()x n M ≤,00()()21n n k n n y n x k n M +=-≤≤+∑,因此系统是稳定的。
系统是非因果的,因为输出还和x(n)的将来值有关.(3)系统是因果系统,因为系统的输出不取决于x(n)的未来值。
如果()x n M ≤,则()()()x n x n M y n e ee =≤≤,因此系统是稳定的。
4. 设系统由下面差分方程描述:11()(1)()(1)22y n y n x n x n =-++-; 设系统是因果的,利用递推法求系统的单位取样响应。
解:令:()()x n n δ=11()(1)()(1)22h n h n n n δδ=-++-2110,(0)(1)(0)(1)122111,(1)(0)(1)(0)122112,(2)(1)22113,(3)(2)()22n h h n h h n h h n h h δδδδ==-++-===++=======归纳起来,结果为11()()(1)()2n h n u n n δ-=-+5设()jwX e 和()jwY e 分别是()x n 和()y n 的傅里叶变换,试求下面序列的傅里叶变换:(1)0()x n n -; (2)()x n -; (3)()()x n y n ; (4)(2)x n 。
解:(1)00[()]()jwnn FT x n n x n n e∞-=-∞-=-∑令''00,n n n n n n =-=+,则'00()'0[()]()()jw n n jwn jw n FT x n n x n e e X e ∞-+-=-∞-==∑(2)****[()]()[()]()jwnjwn jw n n FT x n x n ex n e X e -∞∞-=-∞=-∞===∑∑(3)[()]()jwnn FT x n x n e∞-=-∞-=-∑令'n n =-,则'''[()]()()jwn jw n FT x n x n eX e ∞-=-∞-==∑(4) [()*()]()()jwjwFT x n y n X e Y e =证明: ()*()()()m x n y n x m y n m ∞=-∞=-∑[()*()][()()]jwnn m FT x n y n x m y n m e∞∞-=-∞=-∞=-∑∑令k=n-m ,则[()*()][()()] ()() ()()jwk jwnk m jwkjwnk m jw jw FT x n y n x m y k eey k e x m eX e Y e ∞∞--=-∞=-∞∞∞--=-∞=-∞===∑∑∑∑6. 试求如下序列的傅里叶变换: (2)211()(1)()(1)22x n n n n δδδ=+++-; (3)3()(),01nx n a u n a =<<解: (2)2211()()12211()1cos 2jwjwn jw jw n jw jw X e x n e e e e e w∞--=-∞-==++=++=+∑(3) 301()()1jwn jwnn jwn jwn n X e a u n ea e ae ∞∞---=-∞====-∑∑7. 设系统的单位取样响应()(),01nh n a u n a =<<,输入序列为()()2(2)x n n n δδ=+-,完成下面各题:(1)求出系统输出序列()y n ;(2)分别求出()x n 、()h n 和()y n 的傅里叶变换。