2008-2010三年中考数学经典真题题库--1、实数
2008-2010三年中考数学经典真题试题库3答案

整式的乘除与因式分解要点一:幂的运算性质一、选择题1、(2010·义乌中考)28 cm 接近于( C )A .珠穆朗玛峰的高度B .三层楼的高度C .姚明的身高D .一张纸的厚度2、(2009 ·新疆中考)下列运算正确的是( A ).A .2a a a =4a ∙46a a a =B .257()x x =C .23y y y ÷=D .22330ab a b -=3、 (2009·东营中考)计算()4323b a --的结果是( D ).(A)12881b a (B )7612b a (C )7612b a - (D )12881b a -4、(2010·杭州中考)1. 计算 (– 1)2 + (– 1)3 = (C ).A.– 2B. – 1C. 0D. 25、(2009·南充中考)化简123()x x -⨯的结果是( C )A .5xB .4xC .xD .1x6、(2009·哈尔滨中考)下列运算正确的是( C ).A .3a 2-a 2=3B .(a 2)3=a 5C .a 3.a 6=a 9D .(2a )2=2a 27、(2009·崇左中考)下列运算正确的是( A )A .224236x x x =·B .22231x x -=-C .2222233x x x ÷= D .224235x x x += 8、(2009·包头中考)下列运算中,正确的是( C )A .2a a a +=B .22a a a ⨯=C .22(2)4a a =D .325()a a =9、(2009·太原中考)下列计算中,结果正确的是(C )A .236a a a =·B .()()26a a a =·3 C .()326a a = D .623a a a ÷= 10. (2009·襄樊中考)下列计算正确的是( D )A .236a a a =·B .842a a a ÷=C .325a a a +=D .()32628aa =11、 (2009·泰安中考)若的值为则2y -x 2,54,32==y x ( A ).A.53B.-2C. 553 D.56 二、填空题12、(2009·威海中考)计算10(23)1)---的结果是___0______.13、(2009·齐齐哈尔中考)已知102103m n ==,,则3210m n +=_____72_______. 14、(2008·恩施中考)计算32()a -= a 6 .15、(2008·荆门中考)()322x -= _________8x 6__.16、(2007·泉州中考)计算:(103)2= 10 6 。
中考数学专题复习《实数的运算》测试卷-附带答案

中考数学专题复习《实数的运算》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列说法中正确的是()A.√25的值是±5B.两个无理数的和仍是无理数C.-3没有立方根.D.√a2−b2是最简二次根式.2.实数m,n在数轴上的对应点的位置如图所示,下列结论中正确的是()A.|m|<|n|B.m+n>0C.m−n<0D.mn>0 3.计算:|−2|+3sin30°−2−1−(2022−π)0等于()A.-2B.−12C.2D.04.观察下列各式:√1+112+122=1+11×2√1+122+132=1+12×3√1+132+142=1+13×4…请利用你所发现的规律计算√1+112+122+√1+122+132+√1+132+142+⋯⋯+√1+192+1102其结果为()A.8910B.9910C.989D.8895.估计√2(√23−√2)的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间.6.秦兵马俑的发现被誉为“世界第八大奇迹” 兵马俑的眼睛到下巴的距离与头顶到下巴的距离之比为√5−12下列各数中最接近于√5−12的是()A.25B.12C.35D.347.若x为实数在“(√3+1)◯ x”的“◯”中添上一种运算符号(在“+-× ÷”中选择)后其运算的结果为有理数则不可能是()A.√3−1B.1−√3C.3√3D.1+√38.计算sin60°⋅tan30°−sin45°⋅cos30°的结果是()A.−12+√62B.√32+12C.−√32+12D.12−√649.下列运算正确的是()A .√3+√2=√5B .|3.14−π|=π−3.14C .a 2⋅a 3=a 6D .(a −1)2=a 2−2a −110.今年“十一”期间 广州部分公园举行游园活动 据统计 天河公园早晨6时30分有2人进入公园 接下来的第一个30分钟内有4人进去1人出来 第二个30分钟内有8人进去2人出来 第三个30分钟内有16人进去3人出来 第四个30分钟内有32人进去4人出来.按照这种规律进行下去 到上午11时30分公园内的人数是( )A .211−47B .212−57C .213−68D .214−80二 填空题11.(√3−1.732)0+(−14)−2= .12.【中考变形】已知a =(12)−1+(−√3)0,b =(√3+√2)(√3−√2) 则√a +b = .13.计算:|−5|+(3−π)0−6×3−1+√3−1−2sin60°= 。
中考数学考点《实数》专项练习题-附答案

中考数学考点《实数》专项练习题-附答案学校: 班级: 姓名: 考号:一、单选题1.对 √2 描述不正确的一项是( )A .面积为2的正方形的边长B .它是一个无限不循环小数C .它是2的一个平方根D .它的小数部分大于2- √2 2.下列各式比较大小正确的是( )A .-√2<-√3B .-√55>-√66C .-π<-3.14D .-√10>-3 3.在实数−23,0,√43,π,√9中,无理数有 ( )A .1个B .2个C .3个D .4个4.估算√5+√15的运算结果应在( )A .3到4之间B .4到5之间C .5到6之间D .6到7之间5.满足 −√2<x <√5 的整数x 是( )A .-1,0,1,2B .-2,-1,0,1C .-1,1,2,3D .0,1,2,36.若某自然数的立方根为a ,则它前面与其相邻的自然数的立方根是( )A .a −1B .√a −13C .√a 3−13D .a 3−17.如图,已知数轴上的点A ,B ,C ,D 分别表示数﹣2、1、2、3,则表示数的点P 应落在线段( )A .AO 上B .OB 上C .BC 上D .CD 上8.如图,将五个边长为1的小正方形组成的十字形纸板沿虚线剪开,把剪下的①放在②的位置,③放在④的位置,⑤放在⑥的位置,⑦放在⑧的位置,这样重新拼成一个大正方形,则大正方形的边长为( )A .2B .4C .5D .√5二、填空题9.一个正数x 的平方根分别是2a ﹣3与5﹣a ,则x 等于 .10.若n 为整数,且n<√93<n+1,则n 的值是 .11.-64的立方根是 , √16 的平方根是 .12.已知:x-2的平方根是±2, 2x +y +7 的立方根为3,则 x 2+y 2 的算术平方根为 .13.如图,正方形 OABC 的边 OC 落在数轴上,点 C 表示的数为 1 ,点 P 表示的数为 −1 ,以 P 点为圆心, PB 长为半径作圆弧与数轴交于点 D ,则点 D 表示的数为 .三、解答题14.在数轴上表示下列各数,并用“<”连接起来.-(-2),-|-3.5|,0, √14 和(-2)215. 计算:(1)√16−√−83+√−1273; (2)√9+√−1253+|√3−2|.16.已知实数a ,b ,满足 √3a−b+|a 2√a+7 =0,c 是 √35 的整数部分,求a+2b+3c 的平方根.17.将一个体积为 125cm 3 的立方体体积增加V ,而保持立方体的形状不变,则棱长应该增加多少?(用含有V 的代数式表示);若 V =875cm 3 ,则棱长应增加多少厘米?18.阅读下面的文字,解答问题:大家知道 √2 是无理数,而无理是无限不循环小数,因此 √2 的小数部分我们不可能全部写出来,于是小明用 √2 ﹣1来表示 √2 的小数部分,事实上,小明的表示方法是有道理的,因为 √2 的整数部分是1,将这个数减去其整数部分,差就是 √2 的小数部分,又例如:∵23<( √7 )2<32,即2< √7 <3,∴√7 的整数部分为2,小数部分为( √7 ﹣2). 请解答(1)√11 的整数部分是 ,小数部分是 .(2)如果 √5 的小数部分为a , √41 的整数部分为b ,求a+b ﹣ √5 的值.(3)已知x 是3+ √5 的整数部分,y 是其小数部分,直接写出x ﹣y 的值.参考答案1.【答案】D2.【答案】C3.【答案】B4.【答案】D5.【答案】A6.【答案】C7.【答案】B8.【答案】D9.【答案】4910.【答案】211.【答案】-4;±212.【答案】1013.【答案】D14.【答案】解:描点如图所示:所以-|-3.5|< 3√−27 <0< √14<-(-2)><(-2)2.15.【答案】(1)解:原式=4−(−2)+(−13)=4+2−1 3=523;(2)解:原式=3−5+2−√3=−√3.16.【答案】解:∵实数a,b,满足√3a−b+|a2√a+7=0 ∴a2﹣49=0∴a=±7∵a+7>0∴a=7∵3a ﹣b=0∴b=21∵c 是 √35 的整数部分∴c=5∴a+2b+3c=7+2×21+3×5=64∴a+2b+3c 的平方根为±817.【答案】解:依题意得:棱长应该增加: √125+V 3−√1253=√125+V 3−5 (厘米) 当 V =875 时√125+V 3−5=√125+8753−5=10−5=5 (厘米). 18.【答案】(1)3;√11−3(2)解:∵√4<√5<√9∴2<√5<3∵√5 的小数部分为a∴a=√5−2;∵√36<√41<√49∴6<√41<7∵√41 的整数部分为b∴b=6;∴ a+b ﹣ √5 =√5−2+6−√5=4.(3)解: 7−√5。
有理数与实数中考专题复习-含答案

有理数与实数专题复习专题一 有理数与无理数的意义知识回顾1. 实数的分类2.在实际生活中正负数表示_____的量.典例分析例1:(2010四川巴中)下列各数:2π,错误!未找到引用源。
0.23·,cos60°,227,0.30003……,1 )A .2 个B .3 个C .4 个D .5 个解析:无理数是无限不循环的小数,其中的无理数有2π,0.30003……,1故选C. 评注:解决此类问题的关键是准确把握有理数,无理数及实数的概念,不能片面的从形式上判断属于哪一类数,另外对有关实数进行归类时,必须对已给出的某些数进行化简,以最简的结果进行归类.专题训练一1.(2010年南宁)下列所给的数中,是无理数的是( )A .2B . 2C .12D .0.1 2.(2010年湖北襄樊)下列说法错误的是( )A 2± 是无理数 C D .2是分数3.(2010年上海)下列实数中,是无理数的为( )A . 3.14B . 13C . 3D . 9 4.(2010安徽)在-1,0,1,2这四个数中,既不是正数也不是负数的是( )A .1-B .0C .1D .2专题二 实数的有关概念知识回顾1. 数轴:规定了___、____、___的直线叫数轴.数轴上的点与___是一一对应.2.相反数:到原点的距离相等且符号不同的两个数称为相反数,实数a 的相反数是__,零的相反数是__,a 与b 互为相反数,则_____;3.绝对值:在数轴上,表示一个数的点到原点的距离叫这个数的绝对值.⎪⎩⎪⎨⎧<=>=)0___()0(___)0(___||a a a a典例分析例1:(2010.湘潭)下列判断中,你认为正确的是( )A .0的绝对值是0B .31是无理数 C .|—2|的相反数是2 D .1的倒数是1-解析:A评注:解决本题的关键是弄清实数中的有关的概念,关于绝对值除了了解几何意义是表示点到原点的距离,还应理解“正数的绝对值是它本身,零的绝对值是零,负数的绝对值是它的相反数”的内涵;关于无理数应从概念上突破:表示无限不循环小数;|—2|=2,2的相反数为-2;对于倒数,掌握它们的乘积为1.专题训练1.(2009年滨州)对于式子(8)--,下列理解:(1)可表示8-的相反数;(2)可表示1- 与8-的乘积;(3)可表示8-的绝对值;(4)运算结果等于8.其中理解错误的个数是( )A .0B .1C .2D .3 2.(2010年内蒙古鄂尔多斯)如果a 与1互为相反数,则a 等于( ).A .2B .2-C .1D .1-3.(2010年山东菏泽)负实数a 的倒数是( ).A .a -B .1aC .1a- D .a 4.(2010年绵阳)-2是2的( ).A .相反数B .倒数C .绝对值D .算术平方根5.(2010年镇江)31的倒数是 ;21-的相反数是 . 6.(2010年四川成都)若,x y 为实数,且20x ++=,则2010()x y +的值为________. 7.(2010吉林)如图,数轴上点A 所表示的数是_________.8(2010河南)若将三个数是 .专题三 实数的大小比较知识回顾比较实数大小的一般方法:① 性质比较法:正数大于___,负数____0,正数_____任何负数;② 数轴比较法:在数轴上的实数,右边的数总是比左边的数___;差值法:③ 设a ,b 是任意实数,如a -b .>0,则a ___b ,如a -b .<0,则a b ,如a -b =0,则a ___b ;④ 商值法:如a ÷b .>1,则a ___b ,如a ÷b .<1,则a ___b ,如a ÷b .=1,则a ___b ,⑤扩大法;⑥倒数比较法,当然还有分子、分母有理化和换元法等。
2008-2010三年中考数学经典真题题库3、整式的乘除与因式分解_(含答案)

17、(2007?梅州中考)计算 .
答案:
三、解答题
18、(2010?珠海中考)计算:
【解析】原式=
19、(2009?漳州中考)计算:
【解析】原式
20、(2009?莆田中考)计算:
【解析】原式
21、(2010?常德中考)计算:
【解析】选C.原式=1-1=0
5、(2009?南充中考)化简 的结果是( )
A. B. C. D.
答案:选C
6、(2009?哈尔滨中考)下列运算正确的是( ).
A.3a2-a2=3 B.(a2)3=a5 C.a3.a6=a9 D.(2a)2=2a2
3、整式的乘除与因式分解
要点一:幂的运算性质
一、选择题
1、(2010?义乌中考)28 cm接近于( )
A.珠穆朗玛峰的高度 B.三层楼的高度 C.姚明的身高 D.一张纸的厚度
【解析】选C.28 cm=256 cm和姚明的身高接近
2、(2009 的运算、因式分解
【解析】
或
或
或
17、(2009?漳州中考)给出三个多项式: , , .请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.
【解析】情况一: = = .
情况二: = = .
情况三: = = .
18、(2008?南通中考)分解因式
答案:
三、解答题
14、(2009?长沙中考)先化简,再求值:
,其中 .
【解析】
当 , 时,
15、(2009?定西中考)若 , ,试不用将分数化小数的方法比较a、b的大小.
【解析】∵ a= ,
2023中考数学----实数的运算知识回顾及专项练习题(含答案解析)

知识回顾2023中考数学----实数的运算知识回顾及专项练习题(含答案解析)1. 实数的运算法则:先乘方,再乘除,最后加减。
有括号的先算括号,先算小括号,再算中括号,最后算大括号。
2. 绝对值的运算:()()⎩⎨⎧≤−≥=00a a a a a ,常考形式:()小大−=−b a 。
3. 根式的化简运算:①利用二次根式的乘除法逆运算化简。
乘除法:ab b a =⋅;b aba =; ②a a =2;③a a =33。
③分母有理化。
即()()b a ba ba b a b a ba −=±=± 1。
④二次根式的加减法:()m b a m b m ±=±。
4. 0次幂、负整数指数幂以及﹣1的奇偶次幂的运算:①()010≠=a a ;②n n a a 1=−;③11−=−n ;④()()()⎩⎨⎧−=−是奇数是偶数n n n111。
5. 特殊角的锐角三角函数值计算:专题练习1.(2022•内蒙古)计算:(﹣21)﹣1+2cos30°+(3﹣π)0﹣38−. 【分析】直接利用负整数指数幂的性质、特殊角的三角函数值、零指数幂的性质、立方根的性质分别化简,再计算得出答案. 【解答】解:原式=﹣2+2×+1+2=﹣2++1+2=+1.2.(2022•菏泽)计算:(21)﹣1+4cos45°﹣8+(2022﹣π)0. 【分析】直接利用负整数指数幂的性质以及特殊角的三角函数值、零指数幂的性质、二次根式的性质分特殊角30°45°60°a sin2122 23 a cos23 22 21a tan33 13别化简,进而合并得出答案. 【解答】解:原式=2+4×﹣2+1=2+2﹣2+1=3.3.(2022•郴州)计算:(﹣1)2022﹣2cos30°+|1﹣3|+(31)﹣1. 【分析】先化简各式,然后再进行计算即可解答. 【解答】解:(﹣1)2022﹣2cos30°+|1﹣|+()﹣1=1﹣2×+﹣1+3=1﹣+﹣1+3=3.4.(2022•深圳)(π﹣1)0﹣9+2cos45°+(51)﹣1. 【分析】利用零指数幂,特殊三角函数及负整数指数幂计算即可. 【解答】解:原式=1﹣3+×+5=3+1=4.5.(2022•沈阳)计算:12﹣3tan30°+(21)﹣2+|3﹣2|. 【分析】先计算开方运算、特殊三角函数值、负整数指数幂的运算及绝对值的运算,再合并即可. 【解答】解:原式=2﹣3×+4+2﹣=2﹣+4+2﹣=6.6.(2022•广安)计算:(36﹣1)0+|3﹣2|+2cos30°﹣(31)﹣1. 【分析】先计算零指数幂和负整数指数幂、去绝对值符号、代入三角函数值,再计算乘法,继而计算加减即可.【解答】解:原式=1+2﹣+2×﹣3=1+2﹣+﹣3=0.7.(2022•贺州)计算:()23−+|﹣2|+(5﹣1)0﹣tan45°.【分析】利用零指数幂和特殊角的三角函数值进行化简,可求解. 【解答】解:+|﹣2|+(﹣1)0﹣tan45°=3+2+1﹣1 =5.8.(2022•广元)计算:2sin60°﹣|3﹣2|+(π﹣10)0﹣12+(﹣21)﹣2. 【分析】根据特殊角的三角函数值,绝对值,零指数幂,二次根式的化简,负整数指数幂计算即可. 【解答】解:原式=2×+﹣2+1﹣2+=+﹣2+1﹣2+4=3.9.(2022•娄底)计算:(2022﹣π)0+(21)﹣1+|1﹣3|﹣2sin60°. 【分析】先计算零次幂、负整数指数幂,再化简绝对值、代入特殊角的三角函数值算乘法,最后算加减. 【解答】解:原式=1+2+﹣1﹣2×=1+2+﹣1﹣=2.10.(2022•新疆)计算:(﹣2)2+|﹣3|﹣25+(3﹣3)0.【分析】直接利用零指数幂的性质以及绝对值的性质、二次根式的性质分别化简,进而得出答案. 【解答】解:原式=4+﹣5+1=.11.(2022•怀化)计算:(3.14﹣π)0+|2﹣1|+(21)﹣1﹣8. 【分析】根据零指数幂,绝对值,负整数指数幂,二次根式的化简计算即可. 【解答】解:原式=1+﹣1+2﹣2=2﹣.12.(2022•北京)计算:(π﹣1)0+4sin45°﹣8+|﹣3|.【分析】直接利用零指数幂的性质以及特殊角的三角函数值、二次根式的性质、绝对值的性质分别化简,进而合并得出答案. 【解答】解:原式=1+4×﹣2+3=1+2﹣2+3=4.13.(2022•泸州)计算:(3)0+2﹣1+2cos45°﹣|﹣21|. 【分析】根据实数的运算法则,绝对值,零指数幂,负整数指数幂,特殊角的三角函数值直接计算即可. 【解答】解:原式=1++×﹣=1++1﹣ =1+1 =2.14.(2022•德阳)计算:12+(3.14﹣π)0﹣3tan60°+|1﹣3|+(﹣2)﹣2. 【分析】利用零指数幂,负整数指数幂,特殊角的三角函数值,即可解决问题. 【解答】解:原式=2+1﹣3×+﹣1+=2+1﹣3+﹣1+=.15.(2022•遂宁)计算:tan30°+|1﹣33|+(π﹣33)0﹣(31)﹣1+16.【分析】根据特殊角的三角函数值、去绝对值的方法、零指数幂、负整数指数幂和算术平方根可以解答本题.【解答】解:tan30°+|1﹣|+(π﹣)0﹣()﹣1+=+1﹣+1﹣3+47。
2010年中考数学真题分类汇编(150套)专题一 实数的有关概念

一、选择题 1.(2010某某某某)32的倒数是 A .32 B .23C .32- D .23-【答案】B2.(2010某某某某)据报道,2010年某某市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1 300 000)这个数用科学记数法可表示为 A .1.3×104 B .1.3×105 C .1.3×106 D .1.3×107 【答案】C3.(2010某某某某二中)记n S =n a a a +++ 21,令12nnS S S T n+++=,称n T 为1a ,2a ,……,n a 这列数的“理想数”。
已知1a ,2a ,……,500a 的“理想数”为2004,那么8,1a ,2a ,……,500a 的“理想数”为A .2004B .2006C .2008D .2010 【答案】C4.(2010某某某某二中)某汽车维修公司的维修点环形分布如图。
公司在年初分配给A 、B 、C 、D 四个维修点某种配件各50件。
在使用前发现需将A 、B 、C 、D 四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进行。
那么要完成上述调整,最少的调动件次(n 件配件从一个维修点调整到相邻维修点的调动件次为n )为 A .15B .16C .17D .18【答案】B5.(2010某某省中中考)在2,1,0,1-这四个数中,既不是正数也不是负数的是…………………………( ) A )1- B )0 C )1 D )2 【答案】B6.(2010某某省中中考) 2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是 …………………………( )×107×106 ×105×104. 【答案】B7.(2010某某省中中考)下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。
[历年各地中考数学真题全析]2008-2010年江西省中考数学试题及答案[1]
![[历年各地中考数学真题全析]2008-2010年江西省中考数学试题及答案[1]](https://img.taocdn.com/s3/m/6ce85d2983c4bb4cf7ecd164.png)
江西省南昌市2008年初中毕业暨中等学校招生考试 数学试题卷说明:1.本卷共有五个大题, 25个小题;全卷满分120分;考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分. 一、选择题(本大题共8小题,每小题3分,共24分);每小题只有一个正确的选项,请把正确选项的代号填涂在答题卡的相应位置上. 1.15-的相反数是( ) A .5B .5-C .15-D .152.不等式组2131x x -<⎧⎨-⎩≥,的解集是( )A .2x <B .1x -≥C .12x -<≤D .无解 3.下列四个点,在反比例函数6y x=图象上的是( ) A .(1,6-) B .(2,4) C .(3,2-) D .(6-,1-) 4.下列四张扑克牌的牌面,不是..中心对称图形的是( )A .B .C .D .5.如图,在□ABCD 中,E 是BC 的中点,且∠AEC =∠DCE , 则下列结论不正确...的是( ) A .2AFD EFB S S =△△ B .12BF DF =C .四边形AECD 是等腰梯形 D .AEB ADC ∠=∠6.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( ) A .与x 轴相离、与y 轴相切 B .与x 轴、y 轴都相离 C .与x 轴相切、与y 轴相离 D .与x 轴、y 轴都相切 7.下列四个三角形,与右图中的三角形相似的是( )(第5题)E8.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多..有( ) A .4个 B .5个 C .6个 D .7个二、填空题(本大题共8小题,每小题3分,共24分)9.“5²12汶川大地震”发生后,中央电视台于5月18日承办了《爱的奉献》晚会,共募集善款约1 514 000 000元,这个数用科学记数法表示是 . 10.分解因式:34x x - = .11.将抛物线23y x =-向上平移一个单位后,得到的抛物线解析式是 .12.计算:1sin 60cos302-=. 13.如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是 .14.方程(1)x x-=15.某次射击训练中,一小组的成绩如下表所示:若该小组的平均成绩为7.7环,则成绩为8环的人数是 . 16.如图,已知点F 的坐标为(3,0),点A B ,分别是某函数图象与x 轴、y 轴的交点,点P 是此图象上的一动点...设点P 的横坐标为x ,PF 的长为d ,且d 与x 之间满足关系:355d x =-(05x ≤≤),给出以下四个结论:①2AF =;②5BF =;③5OA =;④3OB =.其中正确结论的序号是_ .三、(本大题共4小题,每小题4分,共24分) 17,先化简,再求值:(第7题) A . B . C . D .俯视图 主视图 (第8题)(第16题)(2)(1)(1)x x x x+-+-,其中12x=-.18.如图:在平面直角坐标系中,有A(0,1),B(1-,0),C(1,0)三点坐标.(1)若点D与A B C,,三点构成平行四边形,请写出所有符合条件的点D的坐标;(2)选择(1)中符合条件的一点D,求直线BD19.有两个不同形状的计算器(分别记为A,B图所示)散乱地放在桌子上.(1)若从计算器中随机取一个,再从保护盖中随机取一个,求恰好匹配的概率.(2)若从计算器和保护盖中随机取两个,用树形图法或列表法,求恰好匹配的概率.A B a b20.如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B'处,点A落在点A'处;(1)求证:B E BF'=;(2)设AE a AB b BF c===,,,试猜想a b c,,之间的一种关系,并给予证明.四、(本大题共3小题,每小题8分,共24分)21.如图,AB为O的直径,CD AB⊥于点E,交O于点D,OF AC⊥于点F.xABCDFA'B' E(1)请写出三条与BC 有关的正确结论;(2)当30D ∠=,1BC =时,求圆中阴影部分的面积.22P点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?23方法是:拿出一张报纸,随意用笔画一个圈,让他们看了一眼后迅速说出圈内有多少个汉字,但不同的是:甲同学每次估计完字数后不告诉他圈内的实际字数,乙同学每次估计完字数后告诉他圈内的实际字数.根据甲、乙两同学5次估计情况可绘制统计图如下: (1)结合上图提供的信息,就甲、乙两同学分别写出两条不同类型......的正确结论; (2)若对甲、乙两同学进行第6次测试,当所圈出的实际字数为100个时,请你用统计知识分别预测他们估计字数的偏差率,并根据预测的偏差率,推算出他们估计的字数所在的范围.BA(1)求a 值;(2)设211y ax ax =--+与x 轴分别交于M N ,两点(点M 在点N 的左边),221y ax ax =--与x 轴分别交于E F ,两点(点E 在点F 的左边),观察M N E F ,,,四点的坐标,写出一条正确的结论,并通过计算说明;(3)设A B ,两点的横坐标分别记为A B x x ,,若在x 轴上有一动点(0)Q x ,,且A B x x x ≤≤,过Q 作一条垂直于x 轴的直线,与两条抛物线分别交于C ,D 两点,试问当x为何值时,线段CD 有最大值?其最大值为多少?25.如图1,正方形ABCD 和正三角形EFG 的边长都为1,点上滑动,设点G 到CD 的距离为x ,到BC 的距离为y ,记∠B A ,重合时,记0α= ).(1)当0α=时(如图2所示),求x y ,的值(结果保留根号);(2)当α为何值时,点G 落在对角形AC 上?请说出你的理由,并求出此时x y ,的值(结果保留根号);(3)请你补充完成下表(精确到0.01):(4)E F ,分别在正方形ABCD 边上滑动”.当滑动一周时,请使用(3)的结果,在图4中描出部分点后,勾画出点G 运动所形成的大致图形.1.732sin150.259sin 750.966==,,.)图1图2B (E A (F D图3H DACB图4江西省南昌市2008年初中毕业暨中等学校招生考试数学试题参考答案及评分意见说明:1.如果考生的解答与本答案不同,可根据试题的主要考查内容参考评分标准制定相应的评分细则后评卷.2.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后续部分时,如果该步以后的解答未改变这一题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半,如果这一步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.一、选择题(本大题共8小题,每小题3分,共24分) 1.D 2.C 3.D 4.D 5.A 6.A 7.B 8.C 二、填空题(本大题共8小题,每小题3分,共24分) 9.91.51410⨯10.(2)(2)x x x +- 11.231y x =-+12.1413.12514.10x =,22x =15.416.①②③说明:第16题,填了④的,不得分;未填④的,①,②,③中每填一个得1分. 三、(本大题共4小题,每小题6分,共24分)17.解:原式222(1)x x x =+-- ······································································ 2分2221x x x =+-+··························································································· 3分 21x =+. ···································································································· 4分当12x =-时,原式12102⎛⎫=⨯-+= ⎪⎝⎭. ···························································· 6分18.解:(1)符合条件的点D 的坐标分别是1(21)D ,,2(21)D -,,3(01)D -,. ···································································· 3分 (2)①选择点1(21)D ,时,设直线1BD 的解析式为y kx b =+,由题意得021k b k b -+=⎧⎨+=⎩, 解得1313k b ⎧=⎪⎪⎨⎪=⎪⎩, ······························································· 5分∴直线1BD 的解析式为1133y x =+. ································································· 6分 ②选择点2(21)D -,时,类似①的求法,可得 直线2BD 的解析式为1y x =--. ······································································ 6分③选择点3(01)D -,时,类似①的求法,可得直线3BD 的解析式为1y x =--. ·········· 6分 说明:第(1)问中,每写对一个得1分. 19.解:(1)从计算器中随机抽取一个,再从保护盖中随机取一个,有Aa ,Ab ,Ba ,Bb 四种情况.恰好匹配的有Aa ,Bb 两种情况,21()42P ∴==恰好匹配. ················································································ 2分(2)用树形图法表示:所有可能的结果AB Aa Ab BA Ba Bb aA aB ab bA bB ba ·················· 4分 可见,从计算器和保护盖中随机取两个,共有12种不同的情况. 其中恰好匹配的有4种,分别是Aa ,Bb ,aA ,bB ,41()123P ∴==恰好匹配. ··············································································· 6分 或用列表法表示:A B a b A AB Aa Ab B BA Ba Bb aaAaBabb bA bB ba······························································· 6分 可见,从计算器和保护盖中随机取两个,共有12种不同的情况. 其中恰好匹配的有4种,分别是Aa ,Bb ,aA ,bB ,41()123P ∴==恰好匹配. ··············································································· 6分 20.(1)证:由题意得B F BF '=,B FE BFE '∠=∠, ········································ 1分 在矩形ABCD 中,AD BC ∥,B EF BFE '∴∠=∠,B FE B EF ''∴∠=∠. ················································· 2分 B F B E ''∴=. B E BF '∴=. ·························································· 3分(2)答:a b c ,,三者关系不唯一,有两种可能情况: (ⅰ)a b c ,,三者存在的关系是222a b c +=. ················································· 4分 证:连结BE ,则BE B E '=.由(1)知B E BF c '==,BE c ∴=. ······························································ 5分在ABE △中,90A ∠=,222AE AB BE ∴+=. AE a = ,AB b =,222a b c ∴+=. ······························································ 6分 (ⅱ)a b c ,,三者存在的关系是a b c +>. ················· 4分证:连结BE ,则BE B E '=.由(1)知B E BF c '==,BE c ∴=. ·························· 5分 在ABE △中,AE AB BE +>, a b c ∴+>. ···························································· 6分 说明:1.第(1)问选用其它证法参照给分;2.第(2)问222a b c +=与a b c +>只证1种情况均得满分; 3.a b c ,,三者关系写成a c b +>或b c a +>参照给分. 四、(本大题共3小题,每小题8分,共24分) 21.解:(1)答案不唯一,只要合理均可.例如:①BC BD =;②OF BC ∥;③BCD A ∠=∠;④BCE OAF △∽△;⑤2BC BE AB = ;ABabB Aaba ABbb ABaAB C D FA 'B ' E A BCDFA 'B ' E⑥222BC CE BE =+;⑦ABC △是直角三角形;⑧BCD △是等腰三角形. ············ 3分 (2)连结OC ,则OC OA OB ==.30D ∠= ,30A D ∴∠=∠= ,120AOC ∴∠= . ······ 4分AB 为O 的直径,90ACB ∴∠= .在Rt ABC △中,1BC =,2AB ∴=,AC =. ········ 5分OF AC ⊥ ,AF CF ∴=. OA OB = ,OF ∴是ABC △的中位线.1122OF BC ∴==.111222AOC S AC OF ∴===△. ························································· 6分 2133AOC S OA π=π⨯=扇形. ·············································································· 7分3AOC AOC S S S π∴=-=-△阴影扇形 ······························································· 8分 说明:第(1)问每写对一条得1分,共3分.22.解一:设乙同学的速度为x 米/秒,则甲同学的速度为1.2x 米/秒, ······················ 1分 根据题意,得60606501.2x x⎛⎫++=⎪⎝⎭, ································································ 3分 解得 2.5x =. ······························································································· 4分经检验, 2.5x =是方程的解,且符合题意. ························································ 5分∴甲同学所用的时间为:606261.2x +=(秒), ···················································· 6分 乙同学所用的时间为:6024x=(秒). ······························································ 7分 2624> ,∴乙同学获胜. ············································································ 8分 解二:设甲同学所用的时间为x 秒,乙同学所用的时间为y 秒, ······························ 1分根据题意,得5060601.26x y x y +=⎧⎪⎨=⨯⎪-⎩,········································································· 3分 解得2624.x y =⎧⎨=⎩, ································································································ 6分经检验,26x =,24y =是方程组的解,且符合题意. x y > ,∴乙同学获胜. ··············································································· 8分23.(1)可从不同角度分析.例如:①甲同学的平均偏差率是16%,乙同学的平均偏差率是11%; ②甲同学的偏差率的极差是7%,乙同学的偏差率的极差是16%; ③甲同学的偏差率最小值是13%,乙同学的偏差率最小值是4%; ④甲、乙两同学的偏差率最大值都是20%;⑤甲同学对字数的估计能力没有明显的提高,乙同学对字数的估计能力有明显提高. ························································· 4分 (2)可从不同角度分析.例如: ①从平均偏差率预测:BA甲同学的平均偏差率是16%,估计的字数所在范围是84~116; ································ 6分乙同学的平均偏差率是11%,估计的字数所在范围是89~111; ································ 8分②从偏差率的中位数预测:甲同学偏差率的中位数是15%,估计的字数所在范围是85~115; ····························· 6分 乙同学偏差率的中位数是10%,估计的字数所在范围是90~110; ····························· 8分 ③从偏差率的变化情况预测:甲同学的偏差率没有明显的趋势特征,可有多种预测方法,如偏差率的最大值与最小值的平均值是16.5%,估计的字数所在范围是84~116或83~117. ···································· 6分 乙同学的偏差率是0%~4%,估计的字数所在的范围是96~104或其它. ··················· 8分 说明:1.第(1)问每写对一条结论得1分;2.每写对一条偏差率及估计字数范围的各得1分; 3.答案不唯一,只要合理均参照给分. 五、(本大题共2小题,每小题12分,共24分) 24.解:(1) 点1928P ⎛⎫- ⎪⎝⎭,在抛物线211y ax ax =--+上,1191428a a ∴-++=, ··················································································· 2分解得12a =. ································································································· 3分(2)由(1)知12a =,∴抛物线2111122y x x =--+,2211122y x x =--. ··········· 5分当2111022x x --+=时,解得12x =-,21x =.点M 在点N 的左边,2M x ∴=-,1N x =. ················ 6分当2111022x x --=时,解得31x =-,42x =. 点E 在点F 的左边,1E x ∴=-,2F x =. ····················· 0M F x x += ,0N E x x +=,∴点M 与点F 对称,点N 与点E 对称. ··························································· 8分 (3)102a => . ∴抛物线1y 开口向下,抛物线2y 开口向上. ··················· 9分 根据题意,得12CD y y =- 22211111122222x x x x x ⎛⎫⎛⎫=--+---=-+ ⎪ ⎪⎝⎭⎝⎭. ··················A B x x x ≤≤,∴当0x =时,CD 有最大值2. ············································· 12分 说明:第(2)问中,结论写成“M N ,,E F ,四点横坐标的代数和为0”或“M N E F =”均得1分. 25.解:(1)过G 作MN AB ⊥于M 交CD 于N ,GK BC ⊥于K .60ABG ∠= ,1BG =,MG ∴=,12BM =. ··············································································· 2分1x ∴=,12y =. ·················································································· 3分(2)当45α=时,点G 在对角线AC 上,其理由是: ········································· 4分 过G 作IQ BC ∥交AB CD ,于I Q ,,过G 作JP AB ∥交AD BC ,于J P ,.AC 平分BCD ∠,GP GQ ∴=,GI GJ ∴=.GE GF = ,Rt Rt GEI GFJ ∴△≌△,GEI GFJ ∴∠=∠.60GEF GFE ∠=∠=,AEF AFE ∴∠=∠.90EAF ∠= ,45AEF AFE ∴∠=∠= . 即45α=时,点G 落在对角线AC 上. ···························································· 6分 (以下给出两种求x y ,的解法)方法一:4560105AEG ∠=+= ,75GEI ∴∠=. 在Rt GEI △中,sin 754GI GE ==,1GQ IQ GI ∴=-=. ················································· 7分 14x y ∴==-. ················································································· 8分 方法二:当点G 在对角线AC 上时,有 12+= ···················································································· 7分 解得1x =1x y ∴==. ················································································· 8分 (3)α0 15 30 45 60 75 90x0.13 0.03 0 0.03 0.13 0.29 0.50y 0.50 0.29 0.13 0.03 0 0.03 0.13···························································· 10分 (4)由点G 所得到的大致图形如图所示:········································································ 12分说明:1.第(2)问回答正确的得1分,证明正确的得2分,求出x y ,的值各得1分; 2.第(3)问表格数据,每填对其中4空得1分;3.第(4)问图形画得大致正确的得2分,只画出图形一部分的得1分.H AC DBB (E A (F K DQ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温馨提示:此题库为word 版,请按住ctrl,滑动鼠标滚轴,调节合的观看比例,点击右上角的关闭按钮可返回目录。
1、实数要点一:有理数的相关概念一、选择题1.(2010·宁波中考)-3的相反数是( ) ( A )3 (B )31 (C )-3 ( D )31- 【解析】选A 。
-3的相反数是-(-3)=3。
2.(2010·青岛中考)下列各数中,相反数等于5的数是( ) A .-5 B .5C .-15D .15【解析】选A 。
据相反数的定义易得-5的相反数是5,故选A 。
3.(2010·广州中考)如果+10%表示“增加10%”,那么“减少8%”可以记作( )A .-18%B .-8%C .+2%D .+8%【解析】选B 。
正数和负数可以表示一对相反意义的量,在本题中“增加”和“减小”就是一对相反意义的量,既然增加用正数表示,那么减少就用负数来表示,后面的百分比的值不变,即-8%。
4.(2009·眉山中考)2009的相反数是( ) A .2009 B .-2009 C .12009D .12009-【解析】选B.5. (2009·内江中考)汽车向东行驶5千米记作5千米,那么汽车向西行驶5千米记作( ) A .5千米B .5-千米 D .10千米 D .0千米答案:选B 。
6.(2010·安徽中考)在2,1,0,1-这四个数中,既不是正数也不是负数的是( ) A.1- B.0 C.1 D.2【解析】选B.根据数的分类,既不是正数也不是负数的数是0.7.(2009·陕西中考)12-的倒数是( ) A.2 B .2- C .12 D .12-【解析】选B. 12-的倒数是2)21(1-=-÷. 8.(2009·太原中考)在数轴上表示2-的点离开原点的距离等于( ) A .2 B .2- C .2±D .4答案:选A 。
9.(2009·朝阳中考)2的倒数的相反数是( )A .12 B .12- C .2 D .2- 【解析】选A .2的倒数是21,其相反数是12-10.(2009·温州中考)在0,l ,2-,5.3-这四个数中,是负整数的是( ) A .0 B .1 C .2- D. 5.3-【解析】选C 。
0既不是正数,也不是负数;1为正整数;-2为负整数;-3.5不是整数。
11.(2009·恩施中考)若∣a ∣=3,则a 的值是( ) A.-3 B. 3 C.31D.3± 答案:选D.12.(2009·襄樊中考)A 为数轴上表示1-的点,将A 点沿数轴向左移动2个单位长度到B 点,则B 点 所表示的数为( ) A .3- B .3 C .1D .1或3-【解析】选A.本题考查数轴的有关知识,将表示1-的点沿数轴向左移动2个单位长度到表示3-的点,所以B 点所表示的数为3-,故选A 。
13.(2009·烟台中考)|-3|的相反数是 ( ) A .3 B .-3 C .13 D .13- 答案:选B.14.(2009·青岛中考)下列四个数中,其相反数是正整数的是( ) A .3 B .13C .2-D .12-答案:选C.15.(2009·深圳中考)如果a 的倒数是-1,那么a 2009等于( ) A .1B .-1C .2009D .-2009【解析】选B.由a 的倒数是-1得a=-1.所以a 2009=-1.16. (2008·滨州中考)31-的相反数是( ) A 、-3 B 、3 C 、31 D 、-31 【解析】选D.,3131=-31的相反数是-31.17.(2009·本溪中考)如果a 与1互为相反数,则|2|a +等于( ) A .2B .2-C .1D .1-【解析】选C.由a 与1互为相反数得a =-1,所以|2|a +=.121=+- 18.(2010·凉山中考)4-的倒数是( )A .4B .4-C .14 D .14- 【解析】选D ,根据互为倒数的两个数的乘积为1进行判断。
19.(2008·荆门中考)下列各式中,不成立的是( )A . 3-=3.B . -3=-3.C .3-=3.D . -3-=3 【解析】选D. -3-=-320.(2008·赤峰中考)如果a a -=-,下列成立的是( ) A .0a <B .0a ≤C .0a >D .0a ≥【解析】选B .21.(2007·大连中考)在一条东西向的跑道上,小亮先向东走了8米,记作“8+米”,又向西走了10米, 此时他的位置可记作( )(A )2+米 (B )2-米(C )18+米(D )18-米【解析】选B.小亮先向东走了8米,又向西走了10米,此时他位于原位置西边2米处,相当于从原位置向西走了2米,故记作-2米.22.(2007·孝感中考)35-的倒数的绝对值是( )A .53-B .53C .35D .35-【解析】选B. 35-的倒数是53-,53-的绝对值是53。
23.(2007·怀化中考)2008年8月第29届奥运会将在北京开幕,5个城市的国标标准时间(单位:时) 在数轴上表示如图所示,那么北京时间2008年8月8日20时应是( )A .伦敦时间2008年8月8日11时B .巴黎时间2008年8月8日13时C .纽约时间2008年8月8日5时D .汉城时间2008年8月8日19时【解析】选B.由数轴知,汉城时间比北京快1小时,巴黎比北京慢7小时,伦敦比北京慢8小时,纽约比北京慢13小时,当北京时间为2008年8月8日20时时,汉城为当日21时,巴黎为当日13时,伦敦为当日12时,纽约为当日7时. 二、填空题24.(2010·巴中中考)23-的倒数的绝对值是 . 【解析】由倒数及绝对值的意义可得:23-的倒数是32-,|32-|=32。
答案:3225.(2010·常德中考)2的倒数为________ 【解析】由倒数的定义易得出2的倒数是12。
答案:1226. (2009·贺州中考)计算:=-2009 . 答案:200927.(2009·滨州中考)大家知道|5||50|=-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离.又如式子|63|-,它在数轴上的意义是表示6的点与表示3的点之间的距离.类似地,式子|5|a +在数轴上的意义是 .【解析】本题考查绝对值的意义. 式子|5|a +在数轴上的意义是表示a 的点与表示-5的点之间的距离. 答案:表示a 的点与表示-5的点之间的距离.要点二:有理数的混合运算一、选择题1. (2010·杭州中考)计算 (– 1)2+ (– 1)3= ( )A.– 2B. – 1C. 0D. 2 【解析】选C.原式=1-1=0北京 汉城巴黎 伦敦 纽约 5-01892.(2009·成都中考)计算2×(12-)的结果是( ) A .-1 B .l C .-2 D .2 答案:选A.3.(2009·南充中考)计算2009(1)-的结果是( ) A .1- B .1 C .2009- D .2009答案:选A.4.(2009·安徽中考)2(3)-的值是 ( ) A .9 B.-9 C .6 D .-6 答案:选A.5.(2009·东营中考)某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低 气温高 ( ) A .-10℃ B .-6℃C .6℃D .10℃【解析】选D. 10)8(2=--℃.6.(2008·南充中考)计算2(2)2--的结果是( ) A .6-B .2C .2-D .6【解析】选B .2(2)2--=4-2=2.7.(2008·大连中考)如图,两温度计读数分别为我国某地今年2月份某天的最低气温与最高气温,那么这天的最高气温比最低气温高( )A .5℃B .7℃ C.12℃ D .-12℃ 【解析】选C.7-(-5)=7+5=12(℃).8(2008·武汉中考)小怡家的冰箱冷藏室温度是5℃,冷冻室的温度是-2℃,则她家冰箱冷藏室温度比冷 冻室温度高( ).A.3℃ B.-3℃ C.7℃ D.-7℃. 【解析】选C. 5-(-2)=5+2=7℃9.(2008·孝感中考)在算式435--□中的□所在位置,填入下列哪种运算符号,计算出来的值最小( ) A .+B .-C .⨯D .÷【解析】选C . 435422435484--+=-=---=-=-;;31743541511435455--⨯=-=---÷=-=;,其中-11最小. 10.(2008·绍兴中考)下列计算结果等于1的是( ) A .(2)(2)-+- B .(2)(2)---C .2(2)-⨯-D .(2)(2)-÷-【解析】选D. (-2) +(-2)= -4; (-2) - (-2) = (-2)+ 2=0;-2× (-2)=2×2=4。
11.(2008·湘潭中考)如图,数轴上A 、B 两点所表示的两数的( )A. 和为正数B. 和为负数C. 积为正数D. 积为负数【解析】选D.由数轴知A点表示的数为-3,B点表示的数为3,-3+3=0,-3×3=-9。
12.(2007·淄博中考)下列计算结果为1的是( ) A. (+1)+(-2) B. (-1)-(-2) C. (+1)×(-1) D. (-2)÷(+2) 答案:选B.13.(2007·荆门中考)下列计算:①0(5)5--=-;②(3)(9)12-+-=-;③293342⎛⎫⨯-=- ⎪⎝⎭;④(36)(9)4-÷-=-.其中正确的个数是( ) A.1个B.2个C.3个D.4个【解析】选B. ①项0-(-5)=0+5=5;②项(-3)+(-9)=-(3+9)=-12 ③项29293()()34342⨯-=-⨯=-;④项(-36)÷(-9)=36÷9=4。
二、填空题14.(2009·荆门中考)定义2*a b a b =-,则(12)3**=______. 【解析】本题是一种新定义运算题,定义2*a b a b =-,所以(12)3**=()()2212*31*3132-=-=--=-. 答案:-215.(2010·江西中考)按照下面所示的操作步骤,若输入x 的值为-2,则输出的值为___________【解析】输出的值=.753)2(2=-⨯- 答案:716.(2009·吉林中考)数轴上A 、B 两点所表示的有理数的和是 .答案:-117.(2009·吉林中考)若a 5,2,0,b ab a b ==->+=且则 . 答案:7-.18. (2009·深圳中考)已知123112113114,,,...,1232323438345415a a a =+==+==+=⨯⨯⨯⨯⨯⨯依据上述规律,则99a = . 【解析】99a =.99991001001101100991=+⨯⨯答案:100999919.(2009·枣庄中考)a 是不为1的有理数,我们把11a-称为a 的差倒数....如:2的差倒数是1112=--, 1-的差倒数是111(1)2=--.已知113a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则2009a = . 【解析】因为113a =-,,43.)31(112=--=a ,4.43113=-=a ,31.4114-=-=a ,43.)31(115=--=a ,4.43116=-=a ……..三123AB个一循环,因此2009a =.43)31(112=--=a 答案:34三、解答题20.(2009·福州中考)计算:22-5×51+2- 【解析】原式=4-1+2=3+2=5. 21.(2007·株州中考)计算:121()(24)234-+-⨯- 【解析】121()(24)234121()(24)(24)()(24)23412(16)618162-+-⨯-=-⨯-+⨯-+-⨯-=+-+=-= 要点三:有理数的大小比较一、选择题1.(2010·成都中考)下列各数中,最大的数是( ) A. ﹣2 B. 0 C.21D. 3 【解析】选D 。