多边形的内角和计算公式探索习题

合集下载

多边形的内角和与外角和练习题

多边形的内角和与外角和练习题


设一个外角为x°,则内角为(x+36)° 因为多边形的内角与相邻的外角互补;
所以 x+x+36=180
解得
x=72
360÷72=5
答 这个多边形的五边形.
10.∠A+∠B+∠C+∠D+∠E+∠F+∠G=540°.
A
G
B
E
D
O
F C
11. 如图在 ABC中,D是ACB 与 ABC的角平分 线的交点,BD的延长线交AC于E,且 EDC 50, 则 A的度数为多少?
12.如图,在六边形ABCDEF中,AF // CD, AB// DE, 且 A 120,∠B 80 ,则 ∠C 的度数是多少,D 的度 数是多少?
13.如图,在ABC中,BD是ABC的角平分线,DE//BC, 交AB于E,∠A= 45 , ∠BDC= 60 ,求ΔBDE各内
角的度数.
A
E
DBCຫໍສະໝຸດ 14.如图,已知DC是△ABC中∠ACB的外角平分线, 说明为什么∠BAC>∠B.
(第 13 题)
360°
C
7.当一个多边形的边数增加时,其外角和 ( )
A 8.某.增学加生在计算B四.减个少多边形C的.内不角变和时,得D到.不下能列确四定
个答案,其中错误的是( C )
A.180° D.1080°
B.540°
C.1900°
9. 一个正多边形的一个内角比相邻外角大36°,求这 个正多边形的边数.
多边形内角和与外 角和的练习题
复习
n边形内角和公式、外角和公式?
1. n边形的内角和等于(n-2)·180. 2. n边形的外角和都等于360°.
1、一个多边形的每个外角都是 30,这个多边形 2、的正边十数二是边_形__的1_2。每个内角的度数是_1_5_.0

多边形内角和典型习题

多边形内角和典型习题

若一个正多边形的每个内角为150°,则这个正多边形的边数是( )A .12B .11C .10D .9考点:多边形内角与外角。

专题:计算题。

分析:根据正多边形的外角与它对应的内角互补,得到这个正多边形的每个外角=180°﹣150°=30°,再根据多边形外角和为360度即可求出边数. 解答:解:∵一个正多边形的每个内角为150°, ∴这个正多边形的每个外角=180°﹣150°=30°, ∴这个正多边形的边数=︒︒30360=12. 故选A .点评:本题考查了正多边形的外角与它对应的内角互补的性质;也考查了多边形外角和为360度以及正多边形的性质.(2011江苏南京,8,2分)如图,过正五边形ABCDE 的顶点A 作直线L ∥CD ,则∠1= 36° .考点:平行线的性质;多边形内角与外角。

专题:推理填空题。

分析:由已知L ∥CD ,所以∠1=∠2,又由正五边形ABCDE 得∠BAE =540°÷5=108°,从而求出∠1的度数.解答:解:∵L ∥CD ,正五边形ABCDE , ∴∠1=∠2,∠BAE =540°÷5=108°, ∴∠1=∠2=180°﹣∠BAE , 即2∠1=180°﹣108°, ∴∠1=36°. 故答案为:36°.点评:此题考查的知识点是平行线的性质及正多边形的性质,解题的关键是由正多边形的性质和已知得出答案.2011福建龙岩,17,3分)如图,依次以三角形、四边形、…、n边形的各顶点为圆心画半径为l的圆,且圆与圆之间两两不相交.把三角形与各圆重叠部分面积之和记为S3,四边形与各圆重叠部分面积之和记为S4,….n边形与各圆重叠部分面积之和记为S n.则S90的值为.(结果保留π)考点:扇形面积的计算;多边形内角与外角.分析:根据题意可得出,重叠的每一部分是半径为1的扇形,圆心角是多边形的内角和,根据扇形的面积公式:S=2360n rπ进行计算即可.解答:解:S3=2360n rπ=1801360π⨯=12π;S4=2360n rπ=360360π=π;…S90=2360n rπ=(902)180360π-⨯=44π.故答案为44π.点评:本题考查了扇形面积的计算,以及多边形的内角和定理,是基础知识要熟练掌握.12.(2011福建厦门,12,4分)若一个n边形的内角和为720°,则边数n=.考点:多边形内角与外角。

八年级数学多边形及其内角和(含解析答案)

八年级数学多边形及其内角和(含解析答案)

多边形和内角和练习题温故而知新:1.多边形多边形的内角和:n边形内角和等于_(n-2)·180°__多边形的外角和:任意多边形外角和等于__360°_多边形的对角线:凸n边形共有_1(3)2n n-_条对角线。

2.平面镶嵌定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌)问题.说明:正三角形、正方形和正六边形可以镶嵌平面图案,正五边形不能镶嵌平面图案.多边形的对角线例 1 今年暑假,佳一学校安排全校师生的假期社会实践活动,将每班分成三个组,每组派1名教师作为指导教师,为了加强同学间的联系,学校要求该班每两人之间(包括指导教师)每周至少通一次电话,现知该校七(1)班共有50名学生,那么该班师生之间每周至少要通几次电话?为了解决这一问题,小明把该班师生人数n与每周至少通话次数s之间的关系用下列模型表示,如图。

解析:师生53人看作是53边形的53个顶点,n边形的对角线条数公式为:1(3)2n n-。

答案:解:将七(1)班师生53人看作是53边形的53个顶点,由多边形对角线条数公式1(3)2n n-得1⨯⨯-=53(533)13252所以1325+53=1378次。

答:该班每周师生之间至少要通1378次电话小结:(1)建立数学模型是解决实际问题的基本方法;(2)n边形的对角线的条数公式是1(3)n n-2多边形的内角和与外角和例2 已知一个多边形的外角和等于内角和的1/3,求这个多边形的边数。

解析:多边形的外角和为360°,根据多边形的内角和及外角和列方程.答案:解:设这个多边形的边数为n,根据题意,得1n-⨯=(2)1803603解得 n=8答:这个多边形的边数是8.小结:利用方程求解是解决此类问题的一般方法。

例3 如图,小陈从O点出发,前进5米后向右转20°,再前进5米后又向右转20°,……这样一直走下去,他第一次回到出发点O时一共走了()A.60米B.100米C.90米D.120米解析:根据多边形的外角和求出这个多边形的边数。

多边形的内角和与外角和知识点-例题-习题

多边形的内角和与外角和知识点-例题-习题

第二十四讲 多边形的内角和与外角和【要点梳理】知识点一、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形. 2.相关概念:边:组成多边形的各条线段叫做多边形的边. 顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n 边形有n 个内角. 外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角. 对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3. 多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形.如图:要点诠释:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可; (2)过n 边形的一个顶点可以引(n-3)条对角线,n 边形对角线的条数为(3)2n n -;(3)过n 边形的一个顶点的对角线可以把n 边形分成(n-2)个三角形. 知识点二、多边形内角和n 边形的内角和为(n-2)·180°(n≥3). 要点诠释:(1)内角和公式的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于(2)180n n-°;知识点三、多边形的外角和 多边形的外角和为360°. 要点诠释:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n 边形的外角和恒等于360°,它与边数的多少无关;(2)正n 边形的每个内角都相等,所以它的每个外角都相等,都等于360n°;(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.凸多边形 凹多边形【典型例题】类型一、多边形的概念例1.如图,在六边形ABCDEF中,从顶点A出发,可以画几条对角线?它们将六边形ABCDEF分成哪几个三角形?【答案与解析】解:如图,P从顶点A出发,可以画三条对角线,它们将六边形ABCDEF分成的三角形分别是:△ABC、△ACD、△ADE、△AEF.【总结升华】从一个多边形一个顶点出发,可以连的对角线的条数(n-3)条,分成的三角形数是个数(n-2)个.举一反三:【变式】过正十二边形的一个顶点有条对角线,一个正十二边形共有条对角线【答案】9,54。

初二数学多边形内角和试题

初二数学多边形内角和试题

初二数学多边形内角和试题1.内角和与外角和相等的多边形是_____________边形。

【答案】四【解析】设这个多边形是n边形,根据多边形的内角和公式与外角和定理列式进行计算即可求解.设这个多边形是n边形,则(n-2)•180°=360°,解得n=4.则内角和与外角和相等的多边形是四边形.【考点】本题主要考查了多边形的内角和和外角和点评:解答本题的关键是记住多边形内角和公式为(n-2)×180°,任何多边形的外角和是360度.外角和与多边形的边数无关.2.若一个四边形的四个内角度数之比为1:3:4:2,则这四个内角的度数分别是______。

【答案】36°,108°,144°,72°【解析】设四边形4个内角的度数分别是x,3x,4x,2x,根据四边形的内角和定理列方程求解.设四边形4个内角的度数分别是x,3x,4x,2x.∴x+3x+4x+2x=360°,解得x=36°.所以这个四边形四个内角的度数分别为36°,108°,144°,72°.【考点】本题主要考查了多边形的内角和点评:解答本题的关键是记住多边形内角和公式为(n-2)×180°.3.若一个多边形有14条对角线,则这个多边形的边数是A.10B.7C.14D.6【答案】B【解析】根据多边形的对角线与边的关系,n边形的对角线条数为:(n≥3,且n为整数).多边形有n条边,根据题意有,解得n=-4(不合题意舍去)或n=7,所以此图形为7边形.【考点】本题考查的是一元二次方程的应用,多边形的对角线与边的关系点评:解答本题的关键是熟记n边形的对角线条数为:(n≥3,且n为整数),根据条件列方程求解,熟练运用因式分解法解方程.4.下列哪一个度数可以作为某一个多边形的内角和A.240°B.600°C.540°D.2180°【答案】C【解析】利用多边形的内角和公式逐个选项进行分析即可作出判断.∵多边形内角和公式为(n-2)×180°,∴多边形内角和一定是180的倍数.∵540°=3×180°,故选C.【考点】本题主要考查了多边形内角和公式点评:在解题时要记住多边形内角和公式为(n-2)×180°,并加以应用即可解决问题,难度适中.5.一个多边形的每一个外角都是45°,则这个多边形的内角和为A.360°B.1440°C.1080°D.720°【答案】C【解析】先利用360°÷45°求出多边形的边数,再根据多边形的内角和公式(n-2)•180°计算即可求解.多边形的边数为:360°÷45°=8,多边形的内角和是:(8-2)•180°=1080°,故选C.【考点】本题主要考查了多边形的内角与外角点评:解答本题的关键是记住多边形内角和公式为(n-2)×180°,任何多边形的外角和是360度.外角和与多边形的边数无关.6.过一个多边形的一个顶点可以引9条对角线,那么这个多边形的内角和是A.1620°B.1800°C.1980°D.2160°【答案】B【解析】从多边形一个顶点可作9条对角线,则这个多边形的边数是12,n边形的内角和可以表示成(n-2)•180°,代入公式就可以求出内角和.∵过多边形的一个顶点共有9条对角线,故该多边形边数为12,∴(12-2)•180°=1800°,∴这个多边形的内角和为1800°.故选B.【考点】本题主要考查了多边形的内角和点评:解答本题的关键是记住多边形内角和公式为(n-2)×180°。

第9章《多边形》常考题集(12):9.2-多边形的内角和与外角和

第9章《多边形》常考题集(12):9.2-多边形的内角和与外角和

第9章《多边形》常考题集〔12〕:9.2多边形的内角和与外角和第9章《多边形》常考题集〔12〕:9.2 多边形的内角和与外角和选择题31.若一个多边形的边数增加2倍,它的外角和〔〕A.扩大2倍B.缩小2倍C.保持不变D.无法确定32.〔2001•##〕如果正多边形的一个内角是144°,则这个多边形是〔〕A.正十边形B.正九边形C.正八边形D.正七边形33.下面说法正确的是〔〕A.一个三角形中,至多只能有一个锐角B.一个四边形中,至少有一个锐角C.一个四边形中,四个内角可能全是锐角D.一个四边形中,不能全是钝角34.一个多边形的每一个内角都是135°,则这个多边形是〔〕A.七边形B.八边形C.九边形D.十边形35.多边形的每一个内角都等于150°,则此多边形从一个顶点出发的对角线共有〔〕条.A.7B.8C.9D.1036.一个多边形除了一个内角外,其余内角之和为257°,则这一内角等于〔〕A.90°B.105°C.103°D.120°37.若一个n边形n个内角与某一个外角的总和为1350°,则n等于〔〕A.6B.7C.8D.938.一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是〔〕A.17 B.16 C.15 D.16或15或17填空题39.〔2003•##〕如图,∠1+∠2+∠3+∠4=_________度.40.〔2008•##〕如图所示,①中多边形〔边数为12〕是由正三角形"扩展〞而来的,②中多边形是由正方形"扩展〞而来的,…,依此类推,则由正n边形"扩展〞而来的多边形的边数为_________.41.从七边形的某个顶点出发,分别连接这个顶点与其余各顶点,可以把七边形分成_________个三角形.43.〔2010•##〕如果一个多边形的内角和等于外角和的2倍,那么这个多边形的边数n=_________.44.〔2009•##〕一个n边形的内角和等于720°,那么这个多边形的边数n=_________.45.〔2009•##〕八边形的内角和等于_________度.46.〔2008•永春县〕四边形的内角和等于_________度.47.〔2008•宿迁〕若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是_________.48.〔2008•##〕一个凸多边形的内角和与外角和相等,它是_________边形.49.〔2008•##〕六边形的内角和等于_________度.50.〔2007•##〕若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于_________度.51.〔2007•##〕如图,小亮从A点出发前10m,向右转15°,再前进10m,又向右转15°,…,这样一直走下去,他第一次回到出发点A时,一共走了_________m.52.〔2006•##〕若一个多边形的每一个外角都等于40°,则这个多边形的边数是_________.53.〔2006•临安市〕用一条宽相等的足够长的纸条,打一个结,如图〔1〕所示,然后轻轻拉紧、压平就可以得到如图〔2〕所示的正五边形ABCDE,其中∠BAC= _________ 度. 54.〔2006•##〕把一副三角板按如图方式放置,则两条斜边所形成的钝角α= _________ 度. 55.〔2006•##〕如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A 点时,一共走了 _________ 米. 56.〔2006•##〕正五边形的一个内角的度数是 _________ 度. 57.〔2005•##〕有一个多边形的内角和是它外角和的5倍,则这个多边形是 _________ 边形. 58.〔2005•##〕一个多边形的内角和为1080°,则这个多边形的边数是 _________ . 59.〔2004•##〕正n 边形的内角和等于1080°,那么这个正n 边形的边数n= _________ . 60.一个多边形的每个内角都等于150°,则这个多边形是 _________ 边形.第9章《多边形》常考题集〔12〕:9.2 多边形的内角和与外角和参考答案与试题解析选择题31.若一个多边形的边数增加2倍,它的外角和〔 〕 A . 扩大2倍 B .缩小2倍 C . 保持不变 D .无法确定考点:多边形内角与外角. 分析:所有凸多边形的外角和是360度,这个数值与边数的大小无关. 解答: 解:若一个多边形的边数增加2倍,它的外角和是360°,保持不变. 故选C .点评: 本题主要考查了多边形的外角和定理,对这个定理的正确理解是关键. 32.〔2001•##〕如果正多边形的一个内角是144°,则这个多边形是〔 〕 A . 正十边形 B .正九边形 C . 正八边形 D .正七边形考点:多边形内角与外角. 分析: 正多边形的每个角都相等,同样每个外角也相等,一个内角是144°,则外角是180﹣144=36°.又已知多边形的外角和是360度,由此即可求出答案.解答: 解:360÷〔180﹣144〕=10,则这个多边形是正十边形. 故选A .点评:本题主要利用了多边形的外角和是360°这一定理. 33.下面说法正确的是〔 〕A . 一个三角形中,至多只能有一个锐角B . 一个四边形中,至少有一个锐角C . 一个四边形中,四个内角可能全是锐角D . 一个四边形中,不能全是钝角考点: 多边形内角与外角;三角形内角和定理.专题: 计算题.分析: 根据多边形的内角和定理分别可以判定那个正确. 解答: 解:A 、不对,例如:90,45,45;B 、不对,例如:90,90,90,90;C 、不对,四个角都是锐角那么不能满足内角和360°;D 、正确. 故本题选D .点评: 此题考查了三角形,四边形内角与外角的性质.34.一个多边形的每一个内角都是135°,则这个多边形是〔 〕 A . 七边形 B .八边形 C . 九边形 D .十边形考点:多边形内角与外角. 分析: 已知每一个内角都等于135°,就可以知道每个外角是45度,根据多边形的外角和是360度就可以求出多边形的边数.解答: 解:多边形的边数是:n=360°÷〔180°﹣135°〕=8. 故选B .点评:通过本题要理解已知内角或外角求边数的方法. 35.多边形的每一个内角都等于150°,则此多边形从一个顶点出发的对角线共有〔 〕条. A . 7 B . 8 C . 9 D . 10 考点:多边形内角与外角;多边形的对角线. 专题:计算题. 分析: 多边形的每一个内角都等于150°,多边形的内角与外角互为邻补角,则每个外角是30度,而任何多边形的外角是360°,则求得多边形的边数;再根据不相邻的两个顶点之间的连线就是对角线,则此多边形从一个顶点出发的对角线共有n ﹣3条,即可求得对角线的条数. 解答: 解:∵多边形的每一个内角都等于150°, ∴每个外角是30°,∴多边形边数是360°÷30°=12,则此多边形从一个顶点出发的对角线共有12﹣3=9条. 故选C .点评: 本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.多边形从一个顶点出发的对角线共有n ﹣3条.36.一个多边形除了一个内角外,其余内角之和为257°,则这一内角等于〔 〕A . 90°B . 105°C . 103°D .120° 考点:多边形内角与外角. 分析: 设这个多边形是n 边形,则内角和是〔n ﹣2〕•180°,这个度数与257°的差一定小于180°并且大于0,则可以解方程:〔n ﹣2〕•180°=257°,多边形的边数n 一定是大于x 的最小的整数,这样就可以求出多边形的边数,从而求出内角和,得到这一内角的度数. 解答: 解:根据题意,得 〔n ﹣2〕•180°=257,得n=,则多边形的边数是4,因为四边形的内角和是360度,所以这一内角等于360°﹣257°=103°.故选C .点评:本题解决的关键是正确求出多边形的边数. 37.若一个n 边形n 个内角与某一个外角的总和为1350°,则n 等于〔 〕 A . 6 B . 7 C . 8 D . 9 考点: 多边形内角与外角. 分析:根据n 边形的内角和定理可知:n 边形内角和为〔n ﹣2〕×180.设这个外角度数为x 度,利用方程即可求出答案. 解答:解:设这个外角度数为x °,根据题意,得 〔n ﹣2〕×180+x=1350, 180n ﹣360+x=1350,x=1350+360﹣180n,即x=1710﹣180n, 由于0<x <180,即0<1710﹣180n <180,可变为:解得8.5<n <9.5, 所以n=9. 故选D . 点评:主要考查了多边形的内角和定理. n 边形的内角和为:180°•〔n ﹣2〕.38.一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是〔 〕 A . 17 B . 16 C . 15 D . 16或15或17考点:多边形内角与外角. 分析: 因为一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,根据多边形的内角和即可解决问题.解答: 解:多边形的内角和可以表示成〔n ﹣2〕•180°〔n ≥3且n 是整数〕,一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,根据〔n ﹣2〕•180°=2520°解得:n=16, 则多边形的边数是15,16,17. 故选D .点评: 本题主要考查多边形的内角和定理的计算方法. 填空题 39.〔2003•##〕如图,∠1+∠2+∠3+∠4= 280 度. 考点: 三角形内角和定理;多边形内角与外角. 分析: 运用了三角形的内角和定理计算.解答: 解:∵∠1+∠2=180°﹣40°=140°,∠3+∠4=180°﹣40°=140°,∴∠1+∠2+∠3+∠4=280°. 故答案为:280°.点评: 此题主要是运用了三角形的内角和定理. 40.〔2008•##〕如图所示,①中多边形〔边数为12〕是由正三角形"扩展〞而来的,②中多边形是由正方形"扩展〞而来的,…,依此类推,则由正n 边形"扩展〞而来的多边形的边数为 n 〔n+1〕 . 考点: 多边形.专题:规律型.分析:①边数是12=3×4,②边数是20=4×5,依此类推,则由正n边形"扩展〞而来的多边形的边数为n〔n+1〕.解答:解:∵①正三边形"扩展〞而来的多边形的边数是12=3×4,②正四边形"扩展〞而来的多边形的边数是20=4×5,③正五边形"扩展〞而来的多边形的边数为30=5×6,④正六边形"扩展〞而来的多边形的边数为42=6×7,∴正n边形"扩展〞而来的多边形的边数为n〔n+1〕.点评:首先要正确数出这几个图形的边数,从中找到规律,进一步推广.正n边形"扩展〞而来的多边形的边数为n 〔n+1〕.41.从七边形的某个顶点出发,分别连接这个顶点与其余各顶点,可以把七边形分成5个三角形.考点:多边形的对角线.分析:根据七边形的概念和特性即可解.从简单图形说起:从四边形的一个顶点出发,连接这个点与其余各顶点,可以把一个四边形分割成〔4﹣2〕=2个三角形.解答:解:根据以上规律,从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成〔7﹣2〕=5个三角形.故答案为5.点评:本题考查的知识点为:过n边形一个顶点作对角线,最多可把n边形分成〔n﹣2〕个三角形.43.〔2010•##〕如果一个多边形的内角和等于外角和的2倍,那么这个多边形的边数n=6.考点:多边形内角与外角.分析:任何多边形的外角和是360度,内角和等于外角和的2倍则内角和是720度.n边形的内角和是〔n﹣2〕•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解答:解:根据题意,得〔n﹣2〕•180=720,解得:n=6.点评:已知多边形的内角和求边数,可以转化为方程的问题来解决.44.〔2009•##〕一个n边形的内角和等于720°,那么这个多边形的边数n=6.考点:多边形内角与外角.专题:计算题.分析:n边形的内角和可以表示成〔n﹣2〕•180°,设这个多边形的边数是n,就得到方程,从而求出边数.解答:解:由题意可得:〔n﹣2〕•180°=720°,解得:n=6.所以,多边形的边数为6.点评:此题比较简单,只要结合多边形的内角和公式寻求等量关系,构建方程求解.45.〔2009•##〕八边形的内角和等于1080度.考点:多边形内角与外角.分析:n边形的内角和可以表示成〔n﹣2〕•180°,代入公式就可以求出内角和.解答:解:〔8﹣2〕•180°=1080°.点评:本题主要考查了多边形的内角和公式,是需要熟记的内容.46.〔2008•永春县〕四边形的内角和等于360度.考点:多边形内角与外角.分析:n边形的内角和是〔n﹣2〕•180°,代入公式就可以求出内角和.解答:解:〔4﹣2〕•180°=360°.点评:本题主要考查了多边形的内角和公式,是需要识记的内容.47.〔2008•宿迁〕若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是8.考点:多边形内角与外角.分析:任何多边形的外角和是360°,即这个多边形的内角和是3×360°.n边形的内角和是〔n﹣2〕•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解答:解:设多边形的边数为n,根据题意,得〔n﹣2〕•180=3×360,解得n=8.则这个多边形的边数是8.点评:已知多边形的内角和求边数,可以转化为方程的问题来解决.48.〔2008•##〕一个凸多边形的内角和与外角和相等,它是四边形.考点:多边形内角与外角.分析:任何多边形的外角和是360度,因而这个多边形的内角和是360度.n边形的内角和是〔n﹣2〕•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解答:解:根据题意,得〔n﹣2〕•180=360,解得n=4,则它是四边形.点评:已知多边形的内角和求边数,可以转化为方程的问题来解决.49.〔2008•##〕六边形的内角和等于720度.考点:多边形内角与外角.分析:n边形的内角和是〔n﹣2〕•180°,把多边形的边数代入公式,就得到多边形的内角和.解答:解:〔6﹣2〕•180=720度,则六边形的内角和等于720度.点评:解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容.50.〔2007•##〕若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于1800度.考点:多边形内角与外角.专题:计算题.分析:根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.n边形的内角和是〔n﹣2〕•180°,把多边形的边数代入公式,就得到多边形的内角和.解答:解:多边形的边数:360°÷30°=12,正多边形的内角和:〔12﹣2〕•180°=1800°.点评:根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.51.〔2007•##〕如图,小亮从A点出发前10m,向右转15°,再前进10m,又向右转15°,…,这样一直走下去,他第一次回到出发点A时,一共走了240m.考点:多边形内角与外角.专题:应用题.分析:根据多边形的外角和定理即可求出答案.解答:解:∵小亮从A点出发最后回到出发点A时正好走了一个正多边形,∴根据外角和定理可知正多边形的边数为360÷15=24,则一共走了24×10=240米.故答案为:240.点评:本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°,用外角和求正多边形的边数可直接让360度除以一个外角度数即可.52.〔2006•##〕若一个多边形的每一个外角都等于40°,则这个多边形的边数是9.考点:多边形内角与外角.分析:根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.解答:解:360÷40=9,即这个多边形的边数是9.点评:根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.53.〔2006•临安市〕用一条宽相等的足够长的纸条,打一个结,如图〔1〕所示,然后轻轻拉紧、压平就可以得到如图〔2〕所示的正五边形ABCDE,其中∠BAC=36度.考点:多边形内角与外角.分析:利用多边形的内角和定理和等腰三角形的性质即可解决问题.解答:解:∵∠ABC==108°,△ABC是等腰三角形,∴∠BAC=∠BCA=36度.点评:本题主要考查了多边形的内角和定理和等腰三角形的性质.n边形的内角和为:180°〔n﹣2〕.54.〔2006•##〕把一副三角板按如图方式放置,则两条斜边所形成的钝角α=165度.考点:多边形内角与外角;三角形内角和定理;三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和或者根据四边形的内角和等于360°得出.解答:解:本题有多种解法.解法一:∠α为下边小三角形外角,∠α=30°+135°=165°;解法二:利用四边形内角和,∠α等于它的对顶角,故∠α=360°﹣90°﹣60°﹣45°=165°.点评:本题通过三角板拼装来求角的度数,考查学生灵活运用知识能力.55.〔2006•##〕如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了120米.考点:多边形内角与外角.专题:应用题.分析:根据多边形的外角和即可求出答案.解答:解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了12×10=120米.点评:本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°.56.〔2006•##〕正五边形的一个内角的度数是108度.考点:多边形内角与外角.分析:因为n边形的内角和是〔n﹣2〕•180°,因而代入公式就可以求出内角和,再用内角和除以内角的个数就是一个内角的度数.解答:解:〔5﹣2〕•180=540°,540÷5=108°,所以正五边形的一个内角的度数是108度.点评:本题考查正多边形的基本性质,解题时应先算出正n边形的内角和再除以n即可得到答案.57.〔2005•##〕有一个多边形的内角和是它外角和的5倍,则这个多边形是12边形.考点:多边形内角与外角.分析:一个多边形的内角和等于它的外角和的5倍,任何多边形的外角和是360度,因而这个正多边形的内角和为5×360度.n边形的内角和是〔n﹣2〕•180°,代入就得到一个关于n的方程,就可以解得边数n.解答:解:根据题意,得〔n﹣2〕•180=5×360,解得:n=12.所以此多边形的边数为12.点评:已知多边形的内角和求边数,可以转化为解方程的问题解决.58.〔2005•##〕一个多边形的内角和为1080°,则这个多边形的边数是8.考点:多边形内角与外角.分析:n边形的内角和是〔n﹣2〕•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解答:解:根据题意,得〔n﹣2〕•180=1080,解得n=8.所以这个多边形的边数是8.点评:已知多边形的内角和求边数,可以转化为方程的问题来解决.59.〔2004•##〕正n边形的内角和等于1080°,那么这个正n边形的边数n=8.考点:多边形内角与外角.分析:n边形的内角和是〔n﹣2〕•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解答:解:设这个多边形是n边形,由题意知,〔n﹣2〕×180°=1080°,∴n=8.故该多边形的边数为8.点评:已知多边形的内角和求边数,可以转化为方程的问题来解决.60.一个多边形的每个内角都等于150°,则这个多边形是12边形.考点:多边形内角与外角.专题:计算题.分析:根据多边形的内角和定理:180°•〔n﹣2〕求解即可.解答:解:由题意可得:180°•〔n﹣2〕=150°•n,解得n=12.故多边形是12边形.点评:主要考查了多边形的内角和定理.n边形的内角和为:180°•〔n﹣2〕.此类题型直接根据内角和公式计算可得.参与本试卷答题和审题的老师有:hnaylzhyk;zhjh;feng;lanchong;开心;心若在;zzz;蓝月梦;HJJ;kuaile;HLing;CJX〔排名不分先后〕菁优网20##6月1日。

多边形的内角和计算练习题

多边形的内角和计算练习题

多边形的内角和计算练习题一、选择题1、一个多边形的内角和是 720°,则这个多边形是()A 四边形B 五边形C 六边形D 七边形2、如果一个多边形的内角和是外角和的 3 倍,那么这个多边形的边数是()A 8B 9C 10D 113、下列角度中,不能成为多边形内角和的是()A 600°B 720°C 900°D 1080°4、一个多边形的内角和比它的外角和的 2 倍还大 180°,这个多边形的边数为()A 7B 8C 9D 105、若一个多边形的每一个外角都等于 40°,则这个多边形的边数是()A 7B 8C 9D 10二、填空题1、一个多边形的内角和是 1800°,则它是_____边形。

2、若一个多边形的每一个内角都等于 150°,则这个多边形是_____边形。

3、一个多边形的每一个外角都是36°,则这个多边形是_____边形。

4、若一个多边形的内角和与外角和的总和为 1800°,则这个多边形是_____边形。

5、一个多边形的边数增加 1,则内角和增加_____度。

三、解答题1、已知一个多边形的内角和与外角和的差为 1080°,求这个多边形的边数。

2、若一个多边形的内角和是外角和的5 倍,求这个多边形的边数。

3、一个多边形的每一个内角都比相邻的外角大 36°,求这个多边形的边数。

4、一个多边形除一个内角外,其余内角之和是 2570°,求这个内角的度数以及多边形的边数。

5、小明在计算一个多边形的内角和时,少算了一个内角的度数,结果得出内角和为 600°,你能帮他算出这个多边形的内角和以及少算的那个内角的度数吗?6、如图,在四边形 ABCD 中,∠A = 140°,∠D = 80°。

(1)∠B +∠C =?(2)若四边形 ABCD 的内角和为 360°,求∠B 和∠C 的度数分别是多少?7、一个多边形截去一个角后,形成的新多边形的内角和为2520°,求原多边形的边数。

多边形的内角和与外角和练习题及解析

多边形的内角和与外角和练习题及解析

一、选择题1. 从六边形的一个顶点,可以引()条对角线.A.3B.4C.5D.62. 一个凸多边形的每一个内角都等于150∘,则这个多边形所有对角线的条数共有()A.42条B.54条C.66条D.78条3. 一个多边形的内角和是1800∘,则这个多边形是()边形.A.9B.10C.11D.124. 十二边形的外角和是()A.180∘B.360∘C.1800∘D.2160∘5. 从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是()A.6B.7C.8D.96. 一个多边形的每个外角都等于30∘,则这个多边形的边数是()A.10B.11C.12D.137. 能够铺满地面的正多边形组合是()A.正六边形和正方形B.正五边形和正八边形C.正方形和正八边形D.正三角形和正十边形8. 用同样大小的多边形地砖不能镶嵌成一个平面的是()A.正方形B.正六边形C.正五边形D.正三角形9. 将一长方形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是()A.360∘B.540∘C.720∘D.900∘10. 若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是()A.2:1B.1:1C.5:2D.5:411. 一个多边形的内角和是720∘,这个多边形是()A.五边形B.六边形C.七边形D.六边形12. 如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340∘的新多边形,则原多边形的对角线条数为()A.77B.90C.65D.10413. 小明在加一多边形的角的和时,不小心把一个角多加了一次,结果为1500∘,则小明多加的那个角的大小为()A.60∘B.80∘C.100∘D.120∘二、填空题14. 与正三角形组合在一起能铺满地面的另一种正多边形是________.(只要求写出一种即可)15. 从一个多边形的某个顶点出发,分别连接这个点和其余各顶点,可以把这个多边形分割成15个三角形,则这个多边形的边数为________.16. 当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个________时,就拼成一个平面图形.17. 用边长相等的正三角形与正方形能够密铺,设在一个顶点周围有x个正三角形的角,有y个正方形的角,则x=________,y=________.18. 一个正________边形的每个内角都是108∘,则________=________.19. 过m边形的顶点能作7条对角线,n边形没有对角线,k边形有k条对角线,则(m−k)n=________.20. 用两个边长为1的正六边形拼接成如图(a)的图形,其周长为10;用三个边长为1的正六边形可以拼接成如图(b)或(c)的图形,其周长分别为12和14.若要拼接成周长为18的图形,所需这样的正六边形至少为x个,至多为y个,则x+y=________.21. 现有四种地面砖,它们的形状分别是:正三角形.正方形.正六边形.正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有________种.三、解答题22. 小明在计算一个多边形的内角和,求得的内角和为2220∘,经过检查发现少加了一个内角,请问这个内角为多少度?这个多边形是几边形?23. 已知一个正多边形相邻的内角比外角大140∘.(1)求这个正多边形的内角与外角的度数;(2)直接写出这个正多边形的边数;(3)只用这个正多边形若干个,能否镶嵌?并说明理由.24. 一个凸多边形共有20条对角线,它是几边形?是否存在有18条对角线的多边形?如果存在,它是几边形?如果不存在,说明得出结论的道理.25. 凸六边形纸片剪去一个角后,得到的多边形的边数可能是多少?画出图形说明.26. 某单位的地板有三种边长相等的正多边形铺设,一个顶点处每种多边形只用一个,设这三种正多边形的边数分别是x ,y ,z .求1x +1y +1z 的值. 补充练习1.若一个多边形的边数增加1,则它的内角和 ( ) A.不变 B.增加1 C.增加180° D.增加360°2.当一个多边形的边数增加时,其外角和 ( ) A.增加 B.减少 C.不变 D.不能确定3.某学生在计算四个多边形的内角和时,得到下列四个答案,其中错误的是( ) A.180° B.540° C.1900° D.1080°4.已知:如图,五边形ABCDE 中,AE ∥CD,∠A=107°,∠B=121°,求∠C 的度数..EDBCA5. 如图,一个六边形的六个内角都是120°,AB=1,BC=CD=3,DE=2,求该六边形的周长.6. 一个多边形中,每个内角都相等,并且每个外角等于它的相邻内角的23, 求这个多边形的边数及内角和.7.若两个多边形的边数之比是1:2,内角和度数之比为1:3, 求这两个多边形的边数.8.已知四边形ABCD中,∠A:∠B=7:5,∠A-∠C=∠B,∠C=∠D-40°, 求各内角的度数.9.一个多边形除了一个内角等于α,其余角的和等于2750°,求这个多边形的边数及α.E FDBCAAB10、在ΔABC 中,AB =AC ,中线BD 把ΔABC 的周长分为12和9两部分,求ΔABC 各边的长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档