第十章,调查数据的整理
第十章 数据的收集、整理与描述巩固基础

学生姓名性别年级学科授课教师上课时间年月日第()次课课时:课时教学课题第十章数据的收集、整理与描述教学目标1.了解总体、样本、个体等基本概念,;2.知道调查的几种方式及其特点;3.理解频数、频率以及扇形统计图的特点;4.理解数据收集的一般步骤;5.会画频数分布表和频数分布直方图,理解其意义和作用.教学重点与难点重点:1.了解几种统计图侧重表达的信息,学会选择合适的统计图表并会绘制统计图表,能准确而迅速地反映出要表达的信息;2.了解频数分布的意义和作用,会列频数分布表、会画频数分布直方图和频数折线图,并能解决简单的实际问题.难点:根据统计的结果做出合理的判断和预测,体会统计对决策的作用,能清晰地表达自己的观点,并进行交流.教学过程第十章数据的收集、整理与描述一、知识网络二、知识要点梳理知识点一总体、样本的概念1总体要考察的全体对象称为总体.2个体组成总体的每一个考察对象称为个体.3样本被抽取的那些个体组成一个样本.4样本容量样本中个体的数目叫样本容量不带单位.注意为了使样本能较好地反映总体的情况除了要有合适的样本容量外抽取时还要尽量使每一个个体都有同等的机会被抽到.知识点二全面调查与抽样调查调查的方式有两种全面调查和抽样调查1全面调查考察全面对象的调查叫全面调查. 全面调查也称作普查调查的方法有问卷调查、访问调查、电话调查等.全面调查的步骤1收集数据2整理数据划记法3描述数据条形图或扇形图等.2抽样调查若调查时因考察对象牵扯面较广调查范围大不宜采用全面调查因此采用抽样调查. 抽样调查只抽取一部分对象进行调查然后根据调查数据推断全体对象的情况.抽样调查的意义1减少统计的工作量2抽样调查是实际工作中应用非常广泛的一种调查方式它是总体中抽取样本进行调查根据样本来估计总体的一种调查.3判断全面调查和抽样调查的方法在于①全面调查是对考察对象的全面调查它要求对考察范围内所有个体进行一个不漏的逐个准确统计而抽样调查则是对总体中的部分个体进行调查以样本来估计总体的情况. ②注意区分“总体”和“部分”在表述上的差异. 在调查实际生活中的相关问题时要灵活处理既要考虑问题本身的需要又要考虑实现的可能性和所付出代价的大小. 知识点三扇形统计图和条形统计图及其特点1生活中我们会遇到许多关于数据的统计的表示方法它们多是利用圆和扇形来表示整体和部分的关系即用圆代表总体圆中的各个扇形分别代表总体中的不同部分扇形的大小反映部分占总体的百分比的大小这样的统计图叫做扇形统计图.1扇形统计图的特点①用扇形面积表示部分占总体的百分比②易于显示每组数据相对于总体的百分比③扇形统计图的各部分占总体的百分比之和为100或1. 在检查一张扇形统计图是否合格时只要用各部分分量占总量的百分比之和是否为100进行检查即可.2扇形统计图的画法把一个圆的面积看成是1以圆心为顶点的周角是360°则圆心角是36°的扇形占整个面积的即10. 同理圆心角是72°的扇形占整个圆面积的即20. 因此画扇形统计图的关键是算出圆心角的大小.扇形的面积与圆心角的关系扇形的面积越大圆心角的度数越大扇形的面积越小圆心角的度数越小. 扇形所对圆心角的度数与百分比的关系是圆心角的度数百分比×360°.3扇形统计图的优缺点扇形统计图的优点是易于显示每组数据相对于总数的大小缺点是在不知道总体数量的条件下无法知道每组数据的具体数量.2用一个单位长度表示一定的数量关系根据数量的多少画成长短不同的条形条形的宽度必须保持一致然后把这些条形排列起来这样的统计图叫做条形统计图.1条形统计图的特点①能够显示每组中的具体数据②易于比较数据之间的差别.2条形统计图的优缺点条形统计图的优点是能够显示每组中的具体数据易于比较数据之间的差别缺点是无法显示每组数据占总体的百分比.注意1条形统计图的纵轴一般从0开始但为了突出数据之间的差别也可以不从0开始这样既节省篇幅又能形成鲜明对比2条形图分纵置个横置两种. 知识点四频数、频率和频数分布表1一般我们称落在不同小组中的数据个数为该组的频数频数与数据总数的比为频率. 频率反映了各组频数的大小在总数中所占的分量.公式 .由以上公式还可得出两个变形公式1频数频率×数据总数.2 .注意1所有频数之和一定等于总数2所有频率之和一定等于1.2数据的频数分布表反映了一组数据中的每个数据出现的频数从而反映了在一组数据中各数据的分布情况.要全面地掌握一组数据必须分析这组数据中各个数据的分布情况.知识点五频数分布直方图与频数折线图1在描述和整理数据时往往可以把数据按照数据的范围进行分组整理数据后可以得到频数分布表在平面直角坐标系中用横轴表示数据范围纵轴表示各小组的频数以各组的频数为高画出与这一组对应的矩形得到频数分布直方图.2条形图和直方图的异同直方图是特殊的条形图条形图和直方图都易于比较各数据之间的差别能够显示每组中的具体数据和频率分布情况.直方图与条形图不同条形图是用长方形的高纵置时表示各类别或组别频数的多少其宽度是固定的直方图是用面积表示各组频数的多少等距分组时可以用长方形的高表示频数长方形的宽表示各组的组距各长方形的高和宽都有意义. 此外由于分组数据都有连续性直方图的各长方形通常是连续排列中间没有空隙而条形图是分开排列长方形之间有空隙.3频数折线图的制作一般都是在频数分布直方图的基础上得到的具体步骤是首先取直方图中每一个长方形上边的中点然后再在横轴上取两个频数为0的点直方图最左及最右两边各取一个它们分别与直方图左右相距半个组距最后再将这些点用线段依次连接起来就得到了频数折线图.4频数分布直方图的画法1找到这一组数据的最大值和最小值2求出最大值与最小值的差3确定组距分组4列出频数分布表5由频数分布表画出频数分布直方图.5画频数分布直方图的注意事项1分组时不能出现数据中同一数据在两个组中的情况为了避免通常分组时比题中要求数据单位多一位. 例如题中数据要求到整数位分组时要求数据到0.5即可.2组距和组数的确定没有固定的标准要凭借数据越多分成的组数也就越多当数据在100以内时根据数据的多少通常分成512组. 四、规律方法指导【总结】。
第十章-数据的收集、整理与描述

§10.1 统计调查(1)【教学目标】1.了解通过全面调查收集数据的方法和划记法,经历简单的数据的收集、整理、描述和分析数据得出结论,即数据处理的一般过程;2.会设计简单的调查问卷收集数据,能根据问题查找有关资料,获得数据信息,会用表格整理数据,用条形图、扇形图直观地描述数据;3.通过实际参与收集、整理、描述、分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计的观念,初步培养重视调查研究的良好习惯和科学态度.【教学过程】一、预习导航回忆小学所学的统计的有关知识,并在旁边空白处记录下来.二、新知探究自学课本回答下列问题:我们可以采用的方法收集数据;统计中经常用整理数据;可以用和来直观地描述数据.叫做全面调查.尝试练习1:问题一:如果要了解全班同学对语文、数学、外语、政治、历史、地理、生物七个学科的喜爱情况,你会怎样做?1.收集数据如何收集数据,让各小组的同学在下面的问卷调查中获取数据.填完后交小组长,由小组长表唱票,小组成员在表格中进行统计.1. 确定调查目的;2. 选择调查对象;3. 设计调查问题.2.整理数据语数外物政历地生51 1 2 人学科类3.描述数据描述数据的方法通常用条形统计图或扇形统计图来直观地反映数据揭示的信息. 条形统计图:就是用坐标的形式来描述.如:扇形统计图:用一个圆代表总体,然后将各部分所占的百分比将圆分成若干个部分,再在各部分中标出相应的百分比和名称.如图所示:制作扇形统计图关键是确定各部分所占圆心角的大小,它的确定方法就是用该部分数据所占的百分比×360o ,如语文所占的百分比是20%,则相对应的圆心角为360o ×20%=72o.注意:各部分的圆心角之和可能与360 o有一定的误差.条形统计图与扇形统计图的优缺点各是什么? 4.全面调查的意义 在上面的调查中,我们利用调查问卷得到了全班同学喜爱的学科数据,利用表格整理数据,并用统计图直观形象的描述了数据.利用表和图分析了解到了全班同学喜爱学科的情况.在这个调查中,全班同学是要考查的全体对象.像这样考查全体对象的调查就叫做全面调查(也叫做普查).三、巩固提高例 经调查,某班同学上学所用的交通工具中,自行车占60%,公交车占30%,其他占10%,请画出扇形图描述以上统计数据.例 春节文艺晚会是大家都喜欢的节目,下面是路刚班级喜爱某种节目的人数分布 表,但因不小心,他打翻墨水,有些地方被墨水遮掉了.请你帮他解决以下问题.(1)被墨水遮掉的3处应是① _______ ②_______ ③________;(2)从上表中可知该班同学喜欢_______的人数最多;(3)画出条形图表示全班同学喜欢某种节目的分布情况. 四、课堂小结五、当堂检测1. 某中学初一(3)班50名学生参加数学测验,测验题目共20题,每题5分满分100分.统计结果如下:节目编号节目类别 划计 人数 百分比 1 相声 ① ② ③_ 2 小品 正 8 19% 3 歌曲 正5 12% 4 舞蹈 正 8 19% 5 杂技 正 7 17%6 戏曲 3 7% 合计42421语文% 数学25 %全对的2人对19题的8人对18题的10人对17题的9人对16题的6人对15题的6人对14题的5人对12题的2人对10题的1人对6题的1人.(1)请你设计一张表格对以上数据进行统计并填上相应数据?(2)你能用条形图把上述数据表示出来吗?2. 根据下面的数据制作扇形统计图并回答问题.对滨州市家庭人口数据的一次统计结果表明:2口之家占24%,3口之家占41%,4口之家占20%,5口之家占10%,6口之家占3%,其他占2%.(1)哪一类家庭人口多?占百分之几?(2)哪两类家庭的百分比之和超过了半数,且最多?(3)哪两类家庭的百分比之和刚达到30%?§10.1 统计调查(2)【教学目标】1.了解总体、个体、样本及样本容量的概念,通过抽样调查,初步感受抽样的必要性及样本的代表性,明确在什么情况下采用抽样调查或全面调查,进一步熟悉对数据的收集、整理、描述和分析;2.理解抽样调查的方法,通过案例理解简单随机抽样,体会用样本估计总体的统计思想,合理运用抽样调查方法来解决实际问题;3.通过实际参与收集、整理、描述、分析数据的活动,体会数学在生活和生产中的作用,激发学生爱数学的热情.【教学过程】一、预习导航我们可以采用的方法收集数据;统计中经常用整理数据;可以用和来直观地描述数据.叫做全面调查.二、新知探究自学课本,回答下列问题:如果要对某校2000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,怎样进行调查?(1) 抽样调查的意义在上述问题中,由于学生人数比较多,全面调查花费的时间长,消耗的人力、物力大,因此需要寻求既省时又省力又能解决问题的方法,这就是抽样调查.,叫做抽样调查.(2)总体、个体、样本、样本容量的定义总体: .个体: .样本: .样本容量: .(3)抽样的注意事项:①抽样调查要具有广泛性和代表性,即样本容量要恰当.样本容量过少,那么不能很好地反映总体的情况,比如要调查2000名学生对电视节目的喜爱情况,若抽取的样本容量为几名学生就不能反映2000名学生的喜爱情况;如果抽取的学生人数过多,必然花费大量的时间、精力,达不到省时省力的目的.再如要调查60岁以上的老人的生病情况,在医院去抽取一些60岁以上的住院病人,它又不具有代表性,则应从60岁以上的老人册中任意抽取部分老人的生病情况来反映总体的60岁老人的生病情况,才能达到目的.②抽取的样本要有随机性.为了使样本能较好地反映总体的情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体都有相等的机会被抽到,所谓随机就是机会相等.例如在2000名学生的注册学号中,随意抽取100个学号,调查这些学号对应的100名学生.当然还可以在上学或放学时,在学校门口随机进行调查;或则每隔10个人调查一个,直到调查满确定的样本容量.总体说来抽样调查最大的优点就是在抽样过程中避免了人为的干扰和偏差,因此,随机抽样是最科学、应用最广泛的抽样方法,一般情况下,样本容量越大,估计精确度就越高.尝试练习:某校有2000名学生,要想了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,怎样进行调查?⑴可以用全面调查的方法对全校学生逐个进行调查吗?这样做你认为有什么不足之处?⑵能否有既省时省力又能解决问题的新方法?请阅读教材P153-155后,小组讨论交流你的理解.⑶什么是总体、个体、样本、样本容量?在上面的问题中总体、个体、样本、样本容量分别是什么?⑷你明白了统计的思想了吗?抽样调查是实际中经常采用的调查方式.抽样调查有什么优点?需要注意什么?⑸见教材P154表10-2,你知道哪个节目最受学生喜爱?百分比为多少?据此你知道全校2000名学生中有多少学生最喜爱这个节目?⑹试用条形图和扇形图来描述表10-2中的数据.三、巩固提高1. 为了解全校学生的平均身高,小明调查了座位在自己旁边的3名同学,把他们的身高的平均值作为全校学生的平均身高的估计.⑴小明的调查是抽样调查吗?⑵如果是抽样调查,指出调查的总体、个体、样本和样本容量.⑶这个调查结果能较好地反映总体的情况吗?如果不能,请说明理由.2. 举出不宜用全面调查的例子,并说明理由.3. 某班要选3名学生代表本班参加班级间的交流活动.现在按下面的办法抽取:把全班同学的姓名分别写在没有明显差别的小纸片上,把纸片混放在一个盒子里,充分搅拌后,随意抽取3张,按照纸片上所写的名字选取3名同学.你觉得上面的抽取过程是简单随机抽样吗?为什么?四、课堂小结五、当堂检测1.要调查下面几个问题,你认为应该作全面调查还是抽样调查?⑴了解全班同学每周体育锻炼的时间.⑵调查市场上某种食品的色素含量是否符合国家标准.⑶鞋厂检测生产的鞋底能承受的弯折次数.2.指出下列调查中的总体、个体、样本和样本容量.⑴从一批电视机中抽取20台,调查电视机的使用寿命.⑵从学校七年级中抽取30名学生,调查学校七年级学生每周用于数学作业的时间.3.小明家搞池塘养鱼已三年,头一年放养鱼苗20000尾,其成活率约为70%,在秋季捕捞时,随意捞出10尾,称得每尾的质量如下(单位:千克):0.8 0.9 1.2 1.3 0.8 0.9 1.1 1.0 1.2 0.8.⑴估计这塘鱼的总产量是多少千克?⑵如果把这塘鱼全部卖掉,其市场售价为每千克4元,那么能收入多少元?除去当年的投资成本16000元,第一年纯收入是多少元?⑶已知该养鱼户的第二年纯收入为48000元,那么第二年比第一年增长的百分率是多少?§10.1 统计调查(3)【教学目标】1.感受分层抽样的必要性,初步掌握分层抽样的基本步骤和方法;2.经历收集、处理数据的过程,会用分层抽样的方法来收集数据、整理数据、分析数据、做出决策,能利用分层抽样的知识解决简单实际生活中的问题;3.增强用统计方法解决实际问题的意识,通过研究解决问题的过程,初步培养学生合作交流的意识和探究精神.【教学过程】一、预习导航1.什么是抽样调查?2.什么是总体、个体、样本和样本容量?3.统计的思想是什么?4.抽样调查有什么优点?简单随机抽样时需要注意什么?二、新知探究:自学课本,回答下列问题:(1)分层抽样:.分层抽样的优点:.(2)在什么情况下分层?分层的根据是什么?尝试练习问题某地区有500万电视观众,要想了解他们对新闻、体育、动画、娱乐、戏曲五类节目的喜爱情况.⑴不能用对学生调查数据去估计整个地区电视观众的情况呢?⑵如果抽取一个容量为1000的样本进行调查,你会怎样调查?⑶采用分层抽样与在整个地区直接进行简单随机抽样相比,这样抽取样本一般能更好地反映总体.如果青少年、成年人、老年人的人数比为2∶5∶3,则可按下表抽取:教材P157表10-3是按上述做法进行调查并整理得到的数据,从中可以大致估计出整个地区观众对五种节目的喜爱情况.请你画条形图和扇形图描述表10-3中的数据.⑷由表10-3中数据还可以估计各个年龄段中观众对某类节目喜爱的情况.如,各个娱乐37% 35.2% 19.7%三、巩固提高1. 如果整个地区的观众中,青少年、成年人、老年人的人数比为3∶4∶3,要抽取容量为500的样本,则各年龄段分别抽取多少人合适?2. 根据表10-3,请你计算各个年龄段中最喜爱新闻、体育、戏曲类节目的百分比,画出折线图,分析随年龄变化,观众喜爱节目的变化情况.3. 活动1的问题中,除了根据年龄段分不同的人群,还可以按其他特征分吗?四、课堂小结五、当堂检测1.调查收集数据的方式通常有______________和_____________两种.当总体中个体数目较少时用________________的方式获得数据较好,当总体中个体数目较多时用____________的方式获得数据较好.但关于电视机寿命、火柴质量等具有破坏性的调查不宜采用_____________,国家人口普查采用________________.2.对某中学学生户外活动时间进行抽样调查,学校共有学生1500名,其中男生有800名,女生有700名.如果样本大小为150,小明现有三种方案:A:在七年级学生中用简单随机抽样,抽取150名学生进行调查;B:对全校学生进行简单随机抽样,抽取150名学生进行调查;C:分别在男生中用简单随机抽样抽取80名,在女生中用简单随机抽样抽取70名进行调查.你觉得哪种方案调查的结果会更精确一点?说说你的理由.3.小张和小李去练习射击,第一轮10枪打完后两人的成绩如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小张和小李两人中新手是 .4.小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成 下列各题:(1) 该月小王手机话费共有多少元?(2) 扇形统计图中,表示短信费的扇形的圆心角为多少度? (3) 请将表格补充完整; (4)50403020100项目金额/§10.2 直方图(1)【教学目标】1.了解频数及频数分布的概念,根据实际问题,会选择合适组距对数据进行等距分组,用表格整理数据,表示频数分布,会画简单的频数分布直方图(等距分组),并利用频数分布直方图解释数据中蕴含的信息;2.通过学习用表格整理数据表示频数分布,体会表格在整理数据中的作用,通过学习用简单频数分布直方图描述数据的方法,进一步体会统计图表在描述数据中的作用;3. 初步建立统计的观念,初步培养调查研究的良好习惯和实事求是的科学态度.【教学过程】一、预习导航1.什么是分层抽样?2.分层抽样的优点是什么?二、新知探究自学课本回答下列问题:称为组距.叫做频数.尝试练习:活动1提出问题探索解决问题的方法问题1:为了参加学校年级之间的广播操比赛,七年级准备从63名同学中挑出身高相差不多的40名同学参加比赛.你知道应该怎样选择吗?为什么?问题2:已知63名学生的身高数据,为了使选取的参赛选手身高比较整齐,你知道怎样做才能知道数据(身高)的分布情况吗?(即在哪些身高范围学生比较多?而哪些身高范围学生比较少?)活动2 用频数分布描述数据的方法阅读教材,并结合以上探究,你知道用频数分布描述数据的一般步骤是什么?注意对以下概念的理解:1.组距2.频数3.频数分布直方图4.频数折线图活动3 应用频数分布解决简单的实际问题为了考察某种大麦穗长的分布情况,在一块试验田里抽取了100个麦穗,量得它们的长度(数据见教材).列出样本的频数分布表,画出频数分布直方图.问题在活动1的问题2中,对数据进行分组时,组距取3,把数据分成8组.如果组距取2或4,那么数据分成几个组?这样做能否选出身高比较整齐的40名队员?三、巩固提高1. 为了解九年级女生的身高(单位:cm)情况,某中学对部分九年级女生身高进行了一次测量, 所得数据整理后列出了频数分布表,并画了部分频数分布直方图(图、表如下):cm)根据以上图表,回答下列问题:(1)M=_______,m=_______,N=_______,n=__________; (2)补全频数分布直方图.四、课堂小结五、当堂检测1.一个容量为80的样本最大值是143,最小值是50,取组距为10,则可以分成( ) A .10组 B .9组 C .8组 D .7组2.已知在一个样本中,50个数据分别落在5个组内,第一、二、三、五组数据的个数分别是2, 8, 15, 5,则第四组频数是______.3.超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间6分钟到7分钟表示大于或等于6分钟而小于7分钟,其它类同).这个时间段内顾客等待时间不少于6分钟的人数为( ) A .5 B .7 C .16 D .33(第3题)/min§10.2 直方图(2)【教学目标】1.根据实际问题,会选择合适组距对数据进行等距分组,用表格整理数据,表示频数分布;2.会画简单的频数分布直方图(等距分组),并利用频数分布直方图解释数据中蕴含的信息. 进一步体会统计图表在描述数据中的作用;3. 增强学习统计的兴趣,初步培养调查研究的良好习惯和科学态度.【教学过程】一、预习导航1.什么是组距、频数?2.用频数分布描述数据的一般步骤是什么?二、新知探究:活动熟练掌握用频数分布直方图解决问题的一般步骤从蔬菜大棚中收集到50株西红柿秧上小西红柿的个数:28 62 54 29 32 47 68 27 55 4336 79 46 54 25 82 16 39 32 6461 59 67 56 45 74 49 36 39 5285 65 48 58 59 64 91 67 54 5768 54 71 26 59 47 58 52 52 70请按组距为10将数据分组,列出频数分布表,画出频数分布直方图和频数折线图,分析数据分布的情况.(先独立思考后分组交流评讲)三、巩固提高:⑴全班有多少同学?⑵组距是多少?组数是多少?⑶跳绳的次数x在100≤x<140范围内的同学有多少?占全班同学的百分之几?⑷画出适当的统计图表示上面的信息.⑸你怎样评价这个班的跳绳成绩?四、课堂小结五、当堂检测1.某县教育部门对该县参加奥运知识竞赛的7500名初中学生的初试成绩(成绩均为整数..)(1)抽取样本的容量为;(2)根据表中数据,补全图中频数分布直方图;(3)若规定初试成绩在90分以上(不包括90分)的学生进入决赛,则全县进入决赛的学生约为人.2.为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小护士”组成了“控制噪声污染”课题学习研究小组.该小组抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位: dB ),将调查的数据进行处理(设所测数据均为正整数)组别噪声声级分组频数频率1 44.5~59.5 4 0.12 59.5~74.5 a 0.23 74.5~89.5 10 0.254 89.5~104.5 b c5 104.5~119.56 0.15合计40 1.00根据表中提供的信息解答下列问题:(1)频数分布表中的a=___________,b=____________,c=____________;(2)补充完整频数分布直方图;(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75 dB的测量点约有多少个?第十章 数据的收集、整理与描述复习【教学目标】1. 通过复习小结,进一步领悟到现实生活中通过数据处理,对未知的事情作出合理的推断的事实;2. 通过复习,进一步明确数据处理的一般过程;3. 在与他人交流合作的过程中学会收集、整理、描述数据. 【教学过程】一、本章知识网络: 数据处理的一般过程得出结论直方图折线图扇形图条形图据收集数据抽样调查全面调查二、知识链接:1. 统计图 扇形统计图 容易表示出一个对象在总体中所占的百分比. 条形统计图 可以表示出各种情况下各个项目的具体数目. 折线统计图 可以表现出同一对象的发展变化情况2. 全面调查 为一特定目的而对所有考察对象作的全面调查 抽样调查 为一特定目的而对部分考察对象作的调查 抽样调查中的总体 所要考察的对象的全体 个体 其中每一个考察对象样本 从总体中取出的一部分个体 样本容量 样本中个体的数目 3. 直方图画频数分布直方图的一般步骤(1)计算最大值与最小值 (2)决定组距与组数(3)列频数分布表 (4)画频数分布直方图三、巩固练习:1. 右图是根据某中学为地震灾区捐款情况而制作的统计图,已知该校在校学生2000人,请你根据统计图计算该校七年级有学生 人, 七年级共捐款 元,该校三个年级共捐款 元.人均捐款数(元)0246810121416七年级八年级九年级年级/日4821温度/℃2. 某校七年级学生进行体育测试,七年级(2)班男生的立定跳远成绩制成频数分布直方图,图中从左到右各矩形的高之比是2:3:7:5:3,最后一组的频数是6,根据直方图所表达的信息,解答下列问题.(1)该班有多少名男生?(2)若立定跳远的成绩在 2.0米以上(包括2.0米)为合格率是多少四、当堂检测 一、精心选一选,你一定能行1.下列调查适合作全面调查的是( ) A.了解在校大学生的主要娱乐方式 B.了解我市居民对废电池的处理情况 C.日光灯管长要检测一批灯管的使用寿命D.对甲型HINI 流感患者的同一车厢乘客进行医学检查2.要了解全校学生的课外作业负担情况,你认为作抽样方法比较合适的是( ) A.调查全校女生 B.调查全校男生C.调查九年级全体学生D.调查七、八、九年级各100人 3.要反映某市一周内每天的最高气温的变化情况,宜采用( ) A.条形统计图 B.扇形统计图 C.折线统计图 D.频数分布直方图4.小明在选举班委时得了28票,下列说法错误的是( ) A.不管小明所在的班级有多少学生,所有选票中选小明的选票频率不变 B. 不管小明所在的班级有多少学生,所有选票中选小明的选票频数不变 C.小明所在班级的学生人数不少于28人 D.小明的选票的频率不能大于15.一个班有40名学生,在期末体育考试中,优秀的有18人,在扇形统计图中,代表体育优秀扇形的圆心角度数是( ) A.144 B.162 C.216 D.250二、耐心填一填,你一定很棒的! 6.为了考察某校七年级男生的身高情况,调查了60名男生的身高,那么它的总体是____________,个体是__________________,样本是______________.7.小明家本月的开支情况如右图所示,如果用于其它方面的支出是150元,那么他家用于教育支出是____________元.8.某市为了了解七年级学生的身体素质情况,随机抽取了500名七年级学生进行检测,身体素质达标率为92%,请你估计该市6万名七年级学生中,身体素质达标的大约有_____________万人.9.测得某市2月份1~10日最低气温随日期变化折线图如图所示 ()1 最低气温为2c 的天数为_______天.()2 该市这10天的天气变化趋势是___________________.三、挑战你的技能10.老师布置每位学生估计本班的数学平均成绩,小玲是数学兴趣小组的成员,就向数学兴趣小组的全体成员做了调查,用他们的数学平均成绩估计本班的数学平均成绩,这样的抽样调查合理吗?为什么?11.某校为了了解七年级学生的学习情况,在这个年级抽取了50名学生对某课进行了测试.将所得的成绩(成绩均为整数)进行整理(如下边所示),请你画出频数分布直方图和频数折线图,并回答问题:(1)全班有多少同学?(2)组距是多少?组数是多少?(3)测试成绩在70≤x<80范围的同学有多少?占全班同学的百分比?(4)画出适当的统计图表示上面的信息.(5)你怎样评价这个班的测试成绩?12. 某校学生会准备调查全校七年级学生 每天(除课间操外)的课外锻炼时间. (1)确定调查方式时,甲说:“我到(1)班去调查全体同学”;乙同学说:“我到体育场上去询问参加锻炼的同学”;丙同学说:“我到全校七年级每个班去随机调查一定数量的同学”.你认为调查方式最合理的是(填“甲”、或“乙”或“丙”)____________________(2)他们采用了最为合适的调查方法收集数据,并绘制了条形和扇形统计图,请将两幅统计图补充完整;图1(3)若该七年级共有1200名同学,请你估计其中每天(除课间操外)课外锻炼时间不大于20分钟的人数.20分钟约40分钟及以上图2。
第十章《数据的收集、整理与描述》教材分析

七年级数学(人教版)第十章《数据的收集、整理与描述》教材分析西葛中学董介文一、教材的地位:在当今的信息社会里,我们需要用数据解决问题。
统计概率所提供的“运用数据进行推断”的思考方法已成为现代社会一种普遍使用并且强有力的思维方式。
数据的收集、整理与描述与我们的生活息息相关。
例如:日本的福田地震、海啸和核泄漏问题已成为全世界人民关注的焦点,每天都需要收集大量的统计数据,并对这些数据进行精细的分析,并得出结论,从而采取有效措施;全国的人口普查;一个家庭的收入与支出;分析中考学生的数学成绩;统计学生的视力情况、身高、体重等等,都需要收集数据、整理数据、描述数据、得出结论。
这一章的知识充分体现了数学来源于生活,并服务于生活,更注重了数学的时效性。
在人教版的数学课程中,已加强统计概率的份量,已将“统计与概率”列为知识领域之一,成为与“数与代数”“图形与几何”并重的内容,这使得义务教育阶段的数学课程结构更加合理,使学生解决问题的能力得到更全面的培养。
在近几年的中考120分中,与数据的收集、整理与描述相关的这些统计知识和概率知识所占的比重有所加大,占9分左右。
“统计与概率”领域主要学习收集、整理、描述和分析数据等处理数据的基本方法和概率的初步知识,这些内容在三个年级均有安排,教学要求随着年级的升高和学生水平的增长逐渐提高。
本套教材安排了三章。
这三章内容采用统计部分和概率部分分开编排的方式,前两章是统计,最后一章是概率。
统计部分的两章内容按照数据处理基本过程的不同侧重点来安排,分别是7年级下册的第10章“数据的收集、整理与描述”,8年级下册的第20章“数据的分析”;概率部分为9年级上册的第25章“概率初步”。
二、教材安排:第十章是统计部分的第一章,内容包括:1.利用全面调查与抽样调查(以抽样调查为重点)收集和整理数据;2.利用统计图表(以直方图为重点)描述数据;3.展现收集、整理、描述和分析数据得出结论的统计调查的基本过程。
七年级下册数学第十章数据的收集,整理与描述《统计调查》听课记录

2024七年级下册数学第十章数据的收集,整理与描述《统计调查》听课记录一、导入一、教师行为:1.1 激发兴趣:“同学们,想象一下如果你们是一家公司的市场调研员,你们会如何收集客户对产品的意见呢?这就是我们今天要学习的内容——统计调查。
”1.2 引出主题:“统计调查是获取数据的重要手段,通过调查我们可以了解很多有用的信息。
那么,如何进行统计调查呢?这就是我们今天要探讨的问题。
”学生活动:•学生思考并回答教师的问题,表达自己对统计调查的理解。
•认真聆听教师的导入,对即将学习的内容产生好奇和兴趣。
过程点评:•导入部分通过引入实际场景,激发了学生的学习兴趣和探究欲望。
•教师的提问有助于学生将统计调查与实际生活相联系,为接下来的学习做好铺垫。
二、教学过程2.1 教师行为:2.1.1 讲解统计调查的基本步骤:“统计调查通常包括明确调查目的、设计调查问卷、选择调查对象、收集数据、整理数据和分析数据等步骤。
”2.1.2 举例说明:“比如我们要调查同学们对课外活动的喜好,首先我们要明确调查目的是了解大家的喜好;然后设计问卷,列出不同的课外活动选项;接着选择调查对象,可以是全班同学;然后发放问卷收集数据;最后整理和分析数据,得出结果。
”2.1.3 引导学生参与:“现在,请大家分组设计一份关于‘学生睡眠时间’的调查问卷,并讨论如何收集和分析数据。
”学生活动:•认真听讲,理解统计调查的基本步骤。
•分组讨论并设计问卷,明确调查目的和选项。
•讨论如何收集和分析数据,制定调查计划。
过程点评:•教师通过详细讲解和举例,使学生对统计调查有了更深刻的理解。
•分组讨论和设计问卷的活动培养了学生的合作精神和实践能力。
2.2 教师行为:2.2.1 点评学生设计的问卷:“请大家展示自己的问卷,并说明设计思路和目的。
我会给出点评和建议。
”2.2.2 示范数据整理和分析:“现在我来示范如何根据收集到的数据整理成表格,并绘制统计图来展示结果。
”2.2.3 引导学生分析数据:“从统计图中,我们可以得出哪些结论?这些数据对我们有什么启示?”学生活动:•展示并说明自己设计的问卷,接受教师的点评和建议。
第十章__数据的收集、整理与描述

第十章数据的收集、整理与描述测试1 统计调查(1)学习要求了解全面调查是一种收集数据的方法,会设计简单的调查问卷收集数据,会用统计表和扇形图描述数据;能根据问题查找有关资料,获得数据信息。
(一)课堂学习检测一、填空题1.做统计调查时,通常先采用问卷调查的方法______,为此要设计______;为了更清楚地了解数据所蕴含的规律,经常用表格______;为了更直观地看出表中的信息,还可以用统计图来______.2.在调查中,考察全体对象的调查叫做______.3.某校组织学生开展“八荣八耻”宣传教育活动,其中有38%的同学走出校门进行宣讲,这部分学生在扇形统计图中应为______部分(选择A、B、C、D填空).4.2008年4月16日至20日,在北京奥林匹克公园公共区举办了“好运北京”综合测试赛,测试期间,公共餐饮售卖点5日的营业额如图所示:则营业额最高的是______日,它和营业额最低的那天相比,相差______元.二、选择题5.一般常用居民家庭恩格尔系数来衡量居民的生活质量(系数值越小代表生活质量越好),下表为我国某几年生活质量统计表:则下列说法正确的是( ).(A)生活质量稳步提高(B)生活质量稳步下降(C)生活质量有升有降(D)生活质量稳定不变6.如图是某班学生最喜欢的球类活动人数统计图,则下列说法不正确...的是( ).(A)该班喜欢乒乓球的学生最多(B)该班喜欢排球与篮球的学生一样多(C)该班喜欢足球的人数是喜欢排球人数的1.25倍(D)该班喜欢其它球类活动的人数为5人三、解答题7.学校食堂的主食主要有:米饭、馒头、花卷、面条,你班上同学最喜欢哪种主食,请设计一个调查问卷.(二)综合运用诊断8.查阅动物百科全书,得到信息:丹顶鹤体长约140厘米,营巢于周围环水的浅滩或深草丛中,每次产卵2枚,为国家一级保护动物;绿孔雀体长100~230厘米,营巢于灌木丛、竹丛间的地面,每次产卵4~8枚,为国家一级保护动物;鸳鸯体长38~44厘米,营巢于树洞中,每次产卵7~12枚,为国家二级保护动物.请用一张统计表表示上述信息.9.以区域发展水平为分类标志,我国将全国划分为三个带状经济区,即东部地区、中部地区、西部地区,观察各区域面积扇形图,并回答问题:⑴哪个地区面积最大?哪个地区面积最小?(2)哪个地区的面积超过全国的一半?(3)看此图,你能知道中部地区的面积是多少吗?如果能,请计算;如果不能,请说明理由.10.有一位同学调查了一个月内全校学生的借书情况,数据如下:(1)先完成上面表格,然后根据数据画出扇形统计图;(2)根据扇形图分析学校图书馆的借书率高吗?(3)根据以上信息,请你向学校提出一条好的建议.11.小李通过对某地区1998年至2000年快餐公司发展情况的调查,制成了该地区快餐公司个数情况的条形图和快餐公司盒饭年销量的平均数情况条形图,解答下列问题:(1)1999年该地区销售盒饭共______万盒;(2)该地区盒饭销量最大的年份是______年,这一年的年销量是______万盒;(3)计算出这三年中该地区平均每家快餐公司的年销售盒饭数量(精确到0.01万).答:测试2 统计调查(2)学习要求1.了解通过抽样调查收集处理数据的方法,明确用样本估计总体是统计的基本思想.2.通过实例理解总体、样本和样本容量的概念.会用折线图表示经过整理的数据,直观地反映数据规律.(一)课堂学习检测一、填空题1.抽样调查是只从总体中抽取______进行调查,然后根据______推断全体对象的情况;要考察的全体对象称为______,组成其的每一个考察对象称为______,被抽取的那些______组成一个______.2.为了了解一批手表的防水性能,从中抽取10只手表进行防水性能测试,在这个问题中,总体是__________________,个体是__________________,抽取的样本是__________________,样本容量是______.3.抽样调查具有____________的优点,它的缺点是不如全面调查得到的结果______,它得到的只是____________.比如为了解某牛奶公司生产的酸奶的质量情况作调查,这个调查适合作____________.4.下列调查的样本中不缺乏代表性的有哪几个______.(填序号)①为了了解你校七年级学生期中考试数学成绩,抽取七(一)班50名学生的成绩进行分析;②为了了解我国18岁青年的身高,从不同的地区随机抽取1000名18岁青年的身高;③为了了解一批洗衣粉的质量情况,从中抽取50袋进行调查;④为了了解某公园的每天游园人数,从中抽查一年中每个星期天的游园人数.5.如图的折线图反映的是某个家庭每天购菜情况(统计时间为一周),则这个星期中购菜钱数最大值与最小值的差为______元.二、选择题6.为了了解某校九年级学生的双眼视力,从中抽取60名学生进行视力检查,在这个问题中,总体是( ).(A)每名学生的视力(B)60名学生的视力(C)60名学生(D)该校九年级学生的双眼视力7.为了反映某地区的天气变化趋势,最好选择( ).(A)扇形统计图(B)条形统计图(C)折线统计图(D)以上三种都不行8.要调查某校七年级学生周日的睡眠时间,选取调查对象最合适的是( ).(A)选取一个班级的学生(B)选取50名男生(C)选取50名女生(D)随机选取50名七年级学生三、解答题9.某学校为丰富大课间自由活动的项目,随机选取本校100名学生进行调查,调查内容是“你最喜欢的自由活动项目是什么?”,整理收集的数据,绘制成下图.⑴学校采用的调查方式是______;(2)求喜欢“踢毽子”的学生人数,并在图中将“踢毽子”部分的图形补完整;(3)该校共有800名学生,请通过计算估计出喜欢“跳绳”的学生人数.10.为了提高长跑成绩,小彬坚持锻炼并每周日记录下1500米的成绩:小彬1500米成绩变化统计表 (单位:分)(1)请画出能反映小彬1500米成绩变化的统计图;(2)如果要清楚地看出小彬成绩的变化情况,你选择统计图还是统计表?如果要方便、准确地获得他锻炼5个星期的跑步成绩,你会如何选择?测试3 直方图学习要求1.初步认识直方图,能分析简单的频数分布情况.2.会制作频数分布直方图,并根据统计图作出分析和判断.(一)课堂学习检测一、填空题1.分析数据的频数分布,首先计算出这组数据中__________的差,参照这个差值对数据进行__________,然后利用____________给出数据的分布情况,进而用____________来描述数据的分布情况.2.对某中学同年龄的70名女学生的身高进行测量,得到一组数据,其中最大值是170cm,最小值是147cm,对这组数据进行整理时,打算把它分成8组,则组距是______.3.某班数学考试成绩如下:由此可知,该班的成绩的优秀率是______%,及格率是______%.4.如图是某单位职工年龄(取正整数)的频数分布直方图,根据图形直接回答下列问题:第4题图⑴该单位共有职工______人;(2)______年龄段的职工人数最多,该年龄段职工人数占职工总人数的______%;年龄不小于38岁,但小于44岁的职工人数占职工总人数的______%;(3)如果42岁的职工有4人,则年龄在42岁以上的职工有______人.5.如图是某班学生的一次考试成绩的频数分布直方图,由图可知:第5题图(1)该班有______名学生;(2)该班不及格的学生共有______名,占全班人数的______%;(3)该班成绩优秀(分数在85分以上)的学生范围应该在______.二、解答题6.网瘾低龄化问题已引起社会各界的高度关注.有关部门在全国范围内对12~35岁的网瘾人群进行了抽样调查.下图是用来表示在调查的样本中不同年龄段的网瘾人数的,其中30~35岁的网瘾人数占样本总人数的20%.(1)被抽样调查的样本总人数为______人.(2)请把统计图中缺失的数据、图形补充完整.(3)据报道,目前我国12~35岁网瘾人数约为200万人,那么其中12~17岁的网瘾人数约有多少人?。
人教版七年级数学下第十章-数据的收集与整理归类总结

第十章数据的收集与整理【知识梳理】一、调查与收集数据想知道“喜欢哪种动物的同学最多”,要通过调查来收据数据.其过程主要有如下步骤:1、明确调查问题——喜欢哪种动物的同学最多;2、明确调查对象——全班每个同学;3、选择调查方法——采用问卷调查;4、展开调查——每位同学将自己最喜欢的动物写在调查问卷上,收集每位同学最喜欢的动物,进行编号;5、整理数据——用“划记法”记录数据;6、得出结论——划记最多的动物,即为同学们喜欢的最多的动物;7、描述数据——统计表是描述数据最常用的方式,为了更直观地获取信息,还可以用条形统计图和扇形统计图来描述数据.二、调查方式的有关概念统计调查是收集数据常用的方法,一般有全面调查和抽样调查两种方式.实际上最常用的调查方式是抽样调查.1、全面调查:在“喜欢哪种动物的同学最多”调查活动中,全班同学都是考察对象。
像这样考察全体对象的调查属于全面调查,又称为“普查”.2、抽样调查:在“调查中小学生的视力情况”调查活动中,采用了调查部分学生的方式来收集数据,根据部分学生的视力来估计整个地区学生的视力情况.这种调查称为抽样调查.这里,整个地区的中小学生的视力情况是要考察的全体对象,称为总体;所有实际被调查的小学生、初中生和高中生的视力组成一个样本.注意:(1)抽样调查只考虑总体中的一个样本,因此其优点是调查范围小,节省时间、人力、物力,但其调查结果往往不如全面调查得到的结果准确.(2)抽样调查时一般应注意:被调查的对象不能太少,被调查的对象应是随意抽取的,调查的对象应是真实的.因此,抽样调查时既要关注样本的广泛性又要关注其代表性.方法点拨:(1)全面调查是对总体中每个对象进行调查,调查范围广,数据详细;而调查样本有局限性,数据不全面;(2)当受客观条件限制,无法对所有对象进行全面调查时,往往采用抽样调查;(3)当调查具有破坏性时,不允许进行全面调查;4. ⑴总体:把所要考察对象的①叫总体.⑵个体:②考察对象叫做个体.⑶样本:从总体中所抽取的一部分③叫做总体的一个样本.⑷样本容量:样本中个体的④叫做样本容量.规律总结:①弄清考察对象是明确总体、个体、样本的关键;②总体或样本中的每一个数据表示个体,不同的个体在数值上是可以相同的,样本中有多少个体,样本容量就是多少,样本容量没有单位.三、统计图的选择——条形统计图、扇形统计图和折线统计图,它们各具特色:条形统计图能清晰地展现出每个项目的具体数目,扇形统计图能清晰地展现出各部分在总体中所占的百分比,折线统计图能清晰地展现出事物变化的情形。
第十章 数据的收集、整理与描述 复习练习题(二)

数据的收集、整理与描述1.下列调查中,调查方式选择正确的是()A.为了了解100个灯泡的使用寿命,选择全面调查;B.为了了解某公园全年的游客流量,选择全面调查;C.为了了解生产的50枚炮弹的杀伤半径,选择全面调查;D.为了了解一批袋装食品是否有防腐剂,选择全面调查.2.为了解某初中学校学生的视力情况,需要抽取部分学生进行调查,下列抽取学生的方最合适的是()A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中各班随机抽取10%的学生3.某地区有8所高中和22所初中,要了解该地区中学生的视力情况,下列抽样方式获得的数据最能反映该地区中学生视力情况的是( )A.从该地区随机选取一所中学里的学生B.从该地区30所中学生里随机选取800名学生C.从该地区的一所高中和一所初中各选取一个年级的学生D.从该地区的22所初中里随机选取400名学生4.为了了解某市八年级学生的肺活量,从中抽样调查了500名学生的肺活量,这项调查中的样本是()A、某市八年级学生的肺活量B、从中抽取的500名学生的肺活量C、从中抽取的500名学生D、5005.为了解某市参加中考的32000名学生的体质情况,抽查了其中1600名学生的体重进行统计分析.下面叙述正确的是()A、32000名学生是总体B、1600名学生的体重是总体的一个样本C、每名学生是总体的一个个体D、以上调査是普查6.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机;B.这批电视机的寿命;C.抽取的100台电视机的寿命;D.100.7.滨州市教育局为了了解实行课改后七年级学生在家的学习时间,应采用的最佳调查方式是()A.对所有学校进行全面调查B.抽取农村和城区部分学校进行调查C.只对一所学校进行调查D.只对城区学校进行调查8.为了了解某校七年级500名学生的身高情况,从中抽取了100名学生进行测量,这100名学生的身高是()A.总体的一个样本 B.个体C.总体 D.样本容量9.今年我市有9万名初中毕业生参加升学考试,为了了解9万名考生的数学成绩,从中抽取2000名考生数学成绩进行统计分析.在这个问题中总体是()A.9万名考生B.2000名考生C.9万名考生的数学成绩D.2000名考生的数学成绩10.期末统考中,甲校优秀人数占30%,乙校优秀人数占35%,则两校优生人数()A.甲校多于乙校B.乙校多于甲校C..甲、乙校—样多D.无法比较11.某校公布了该校反映各年级学生体育达标情况的两张统计图,该校七、八、九三个年级共有学生800人。
人教版七年级下册数学第10章 数据的收集、整理与描述 数据的收集与描述

感悟新知
知2-练
2. 设计调查问卷时要注意( C ) ①问题应尽量简明;②不要提问被调查者不愿意回 答的问题;③提问不能涉及提问者的个人观点; ④提供的选择答案要尽可能全面;⑤问卷应简洁. A.①②④⑤B.①③④⑤ C.①②③④⑤D.①⑤
感悟新知
知识点 3 统计图
知3-讲
1.数据的描述方法有: 统计表和统计图两种.其中统计图常见的有: 条形统计图,折实际需要,常要把日常工作中所得到的相互关联的 知2-讲 数据按照一定的要求进行整理、归类,并按照一定的顺 序把数据排列起来,制成表格,这种表格叫做统计表. (2)统计表的作用: ①使数据更直观、清楚,便于分析; ②用数据把研究对象之间的变化规律清楚地表示出来; ③用数据把研究对象之间的差别清楚地表示出来,以便 于人们分析问题和研究问题.
知2-讲
感悟新知
知2-讲
选项
A
B
C
问题
划 记
人 数
百 分 比
划 记
人 数
百 分 比
划 记
人 数
百 分 比
1
2
感悟新知
归纳
知2-讲
1.设计调查问卷要根据调查的需要和要求进行设计,如果考虑不 周,有的数据了解不到,调查的结果就不具备代表性.因此设计 调查问卷时要进行周密的考虑.一份调查问卷的设计包括问题的 设计和答案的设计:(1)问题的设计要求:①表述要清楚;②表述 要简单明了;③一个问题只能包含一个内容;④易于回答.(2)答 案的设计:①答案要不同;②答案要涉及各种情况.
的变化规律.
感悟新知
知2-讲
例3 某厂准备在“六一”儿童节时送一批气球给幼儿园的 小朋友,特地对50名小朋友最喜欢的气球颜色进行调 查,数据如下: 红蓝红黄红蓝绿绿黄红 红蓝红蓝蓝蓝红蓝红绿 黄红红蓝红绿黄红黄红 黄红绿蓝蓝黄蓝红蓝红 绿红红蓝蓝红红黄蓝绿
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• •
(四)目的性原则 目的性原则是指数据整理的目标应符合调 查研究的目的和要求。数据整理的内容很丰富, 层次也有高低之分。数据整理要达到什么目标, 层次是高是低,是简单还是复杂,在很大程度 上要取决于调查研究的目的和要求。只要整理 的结果能够满足研究的需要,整理结果具有较 好的系统性和条理性就可以了,而不必刻意去 追求形式,更不必要无用的烦琐。
• • • • • • •
组 别 名称码 百货组 01—30 食品组 31—50 家电组 51—65 服装组 66—80 其他组 81—100 这种编码能以较少的位数分组,其缺点是, 一旦编码体系确定遇到某些组内资料增加时, 处理起来就会相当麻烦。 • 4.表义式文字编码法 •
• 该方法又称为助忆编码法,是用数字符号等表 明编码对象的属性,并依此方式对调查数据进 行编码的方法。例如,用180BXJ表示容量为 180升的进口电冰箱,其中180为冰箱的容量, BX表示冰箱,J表示进口。这种方法比较直观, 易于理解,便于记忆。
•
需要说明的是,以上步骤是数据整理的大 致顺序和主要内容,各步整理工作有时是不能 绝对分开的。例如,数据的分组与数据的汇总 往往是同时进行的。
二、调查数据的整理
• 一、审核与筛选 • 收集到的数据是否真实可靠、符合研究的需要, 还应进行审核。一般从准确性、完整性两方面 进行审核。审核准确性是关键,主要是检查数 据是否存在差错,有无异常值。检查的方法有 逻辑检查与计算检查,逻辑检查是通过数据间 相关部分是不是存在违反常识常理彼此矛盾的 地方来判断数据的真实性,如问卷中的答案所 有选项均是A,就可能是填写者敷衍应付。
• •
三、数据整理的一般步骤 数据整理工作是由多个环节组成的,其一 般步骤如下: • (一)数据的审核 • 这是数据整理的第一步。为了保证调查数 据的质量,也为了保证整个调查研究的质量, 在数据整理之初,必须对原始数据的真实性、 准确性和完整性进行严格的审核。对于发现的 问题,要及时加以解决。
• •
• •
(三)科学性原则 科学性原则是指数据整理应根据调查研究 的目的和要求以及数据本身的性质,合理地选 择科学的方法和技术,对原始数据进行系统的 加工和处理,使之能够满足研究的需要。调查 研究的目的和要求不同,数据整理所使用的方 法也会有所不同。例如,如果研究的目的是要 分析居民的收入水平对消费水平的影响,则在 分组整理时,应该对居民的收入水平进行分组, 并计算各收入组的平均消费水平。数据的性质 不同,采用的整理方法也会有所区别。例如, 累计频数和累计频率,适合于定序数据,而不 适合于定类数据。
• •
二、数据整理的原则 数据整理是连接数据调查与数据分析的桥 梁和纽带,为了达到数据整理的目的和作用, 使整理出来的数据符合数据分析的需要,数据 整理应该遵循如下原则: • (一)真实性原则 • 真实性原则是指数据整理必须最大限度地 保证原始数据的真实性。这有两方面的含义: 一是在数据整理之初,必须严格审核原始数据 的真实性,对于审核出来的不真实的数据应该 坚决加以剔除,对于缺失的数据应采取相应的 补救措施;
• • •
二、编码 (一)编码的意义 随着电子计算机使用的普及,调查数据的 整理与分析工作一般都要借助电子计算机来完 成。调查数据中既有数量数据,也有品质数据。 由于计算机只能识别数字符号,因此,对于数 量数据,可以直接录入计算机,而对于品质数 据,则需要将其全部转化为数字符号,以便计 算机的识别。所谓编码,就是将调查数据中的 品质数据转化为数字符号的过程。数据的编码 总是与数据的分类紧密结合的,编码首先要将 数据进行分类,然后给每一个类别指派一个数 字代码。
•
计算检查是运用数据间的平衡关系来判断 数值是否有误。如总量应等于各个子项之和, 总额应等于数量乘单价。审核数据的完整性是 检查应调查的个体是否有遗漏,所要求了解的 范围能否达到,所要调查的项目是否齐全,有 无缺项等。如发现问题应积极采取补救措施, 重新调查搜集,更正错误,数据不全的需要进 一步补充。如果无法纠正错误,又不能补充完 整,对不符合调查要求的数据,则应进行筛选。 筛选有两方面的内容,一是对不符合要求或确 认有错误的数据剔除掉,保留可靠性的数据; 二是过滤,将符合某种特定条件的数据选取出 来,而不符合条件的数据予以剔除。
• 如果是问卷调查,对于封闭型问题,都设计了 若干选项,每一个选项就是一个类别,编码时 只需要对每一个类别指派一个数字代码即可; 对于开放型问题,则先要对全部的回答进行分 类,然后再进行编码。 • 编码有事前编码和事后编码之分。事前编 码是在调查问卷设计时对有结构的问卷所进行 的编码,所以,事前编码适合于问卷中的封闭 型问题。事后编码则是在数据的搜集工作结束 后整理开始之初,对调查问题的可能答案所进 行的编码。对于开放型问题,只能采取事后编 码的方式,而对于封闭型问题,如果未作事前 编码,则必须进行事后编码。
•
例如,某项关于社会公众保险意识调查中, 对被调查者个人的基本情况(性别、居住地、 家庭人口和月收入水平)进行了调查,运用分 组编码法对有关信息编码如下(见表2-1):
• 若某个被调查者是女性,居住在中等城市, 家中有三口人,月收入为1100-1200元,则其 回答信息的编码就是:22312。 • 分组编码法应用广泛,容易记忆,处理方便, 但有时位数过多,造成系统维护上的困难。 • 3.信息组码编码法 • 该方法是把调查数据区分为不同的组,给 每一个组以一定的组码(数字区间)来进行编 码的方法。例如,对某地市场上的100种商品 的价格变动进行调查,在运用信息组码编码法 对调查的信息进行编码时,首先可以将这100 种商品划分为百货组、食品组、家电组、服装 组和其他组,然后给每一个组分配一个组码:
• •
一、数据整理的含义 数据整理,就是根据调查研究的目的与任务,运 用科学的方法,将调查所获得的原始数据进行审核汇 总与初步加工,使之系统化和条理化,并以图表的方 式集中显示数据特征的工作过程。 • 数据整理在整个调查研究过程中具有很重要的作 用和地位: • 第一,数据整理全面地检查了调查数据的质量, 保证了调查数据的有用性。由于各种主客观原因,通 过调查所获得的原始数据,难免出现虚假、差错、缺 损、余冗等现象。因此,只有对调查数据进行科学的 整理与审核,捡漏与补缺,去伪存真,去粗取精,才 能保证调查数据的真实性、准确性、完整性和有用性, 从而保证整个调查研究工作的质量,达到调查研究的 目的。
•
由于在数据的编码工作完成后,为了便于 数据的录入,还要根据编码手册将问卷或调查 表上的数据数字化,并将这些数字过录到登录 卡上。一般的登录卡是每张80列(因为个人计 算机屏幕的宽度为80个字节;每列记录一个数 字)25行(每行记录一份问卷或调查表上的回 答信息,每行可以记录一个80位的代码数字)。 这样,就需要将每个调查项目的代码在行上的 位置确定好。代码位置的确定要根据调查项目 的顺序和各个项目的编码位数依次排列下来, 则各代码在登录卡上行列上的位置就自然确定 了。下面是本次调查编码手册一个• • • •
1.您的职务 (1)正高级 (2)副高级 (3)中级 (4)其他 2.您的年龄 3.您从事的专业 4.您对自己工作状况的评价是 (1)已充分发挥积极性 (2)基本发挥了积极性 (3)积极性有所发挥
• 5.目前,您是否有离开学校的想法 • (1)有 • (2)没有 • 6.请您按投入精力的多少,将下列三项活动排序 • (1)校内工作 • (2)校外兼职 • (3)生活琐事 • 第一位 第二位 第三位 • 上述六个问题中既有封闭型问题(1、4、5、6),也 有开放型问题(2、3)。该项调查收回有效问卷2000 份。对于封闭型问题,问题1、4、5的代码位数均为1 位,问题6的代码位数均为3位;对于开放型问题,问 题2的代码位数为2位(本次调查中年龄最大的为65 岁),问题3的代码位数为3位(本次调查根据被调查 者的回答,共涉及112个专业)。
•
第二,数据整理是数据分析的基础。数据 分析的目的是揭示所要研究现象总体的数量特 征和统计规律,而通过调查所获得的原始数据 是关于总体中若干个体的分散的、零碎的数据 资料,只有通过汇总整理,使原始数据系统化、 条理化、综合化,才能在此基础上对数据进行 分析和研究。数据整理的质量如何,直接关系 到数据分析的质量,关系到调查研究能否科学、 客观地认识事物和现象。 • 第三,数据整理是积累和保存资料的客观 要求。通过调查获得的原始数据,既是对现象 进行分析研究的客观依据,又是对今后研究同 类现象的重要参考资料。只有通过数据整理, 才能使原始资料具有真实性、可靠性和有用性, 才能使原始调查数据具有长期保存和利用的价 值。
• (1)小于500元 • (2)500元—1000元 • (3)1000元—1500元 • (4)1500元以上 • 这种编码方法操作简便,但不便于进行分 组处理。 • 2.分组编码法 • 该方法又称为区间编码法,是根据调查数据的 属性特点和处理要求,将具有一定位数的代码 单元分成若干个组(或区间),每一个组(或 区间)的数字均代表一定的意义。
第十章 调查数据的处理与呈现
框架
• 一、调查数据的整理 • 二、调查数据的整理方法 • 三,调查数据的显示
一、数据的整理
•
通过调查所获得的数据都是关于个体的有 关属性与特征的表现,这些数据零碎而不系统, 分散而无条理,还不能概括和描述所要研究现 象总体的数量特征,也不能直接据之分析现象 总体的本质特征与统计规律。所以,在对调查 数据进行分析之前,必须根据分析研究的目的 和要求,对其进行系统的加工与整理。这一阶 段的工作是联系数据调查与数据分析的中间环 节,在整个调查研究过程中具有重要的地位。
(二)数据的编码 对于一些样本量较大或调查项目较多的调 查,往往要借助计算机来进行数据的整理。这 就需要对调查数据进行编码,将问卷或调查表 的信息转化成计算机能识别的符号。 • (三)数据的分组 • 数据的分组是数据整理的一项十分重要的 工作。它是根据调查研究目的的需要,按照一 定的标准,对原始数据进行分组整理,为数据 分析做准备。