统计概率知识点梳理总结
统计概率所有知识点总结

统计概率所有知识点总结一、基本概率论概率论是统计学中最基础的部分,它研究的是随机事件的可能性。
随机事件是不确定的事件,而概率就是描述这种不确定性的量。
在概率论中,经常用到的概念包括事件、概率、样本空间等。
事件是指可能发生或者不发生的事物,而概率则是衡量事件发生可能性的大小。
样本空间是所有可能结果的集合,它包括了所有可能的事件。
二、条件概率条件概率是指在已知某些信息的情况下,另一个事件发生的概率。
条件概率的计算方法通常使用乘法法则。
条件概率在许多领域中都有着广泛的应用,比如医学诊断、市场营销、风险管理等。
三、独立性在概率论中,独立性是一个非常重要的概念。
两个事件如果是独立的,那么它们的发生不会互相影响。
独立性的概念在统计推断中有着广泛的应用,比如在抽样调查中,我们通常要求样本之间是独立的,以保证统计推断的准确性。
四、随机变量随机变量是统计学中的一个重要概念,它是对随机事件的量化描述。
随机变量可以是离散的,也可以是连续的。
对于离散的随机变量,我们通常关心的是它的概率分布;而对于连续的随机变量,我们通常关心的是它的密度函数。
五、概率分布概率分布是描述随机变量取值可能性的函数。
常见的概率分布包括均匀分布、正态分布、泊松分布、指数分布等。
概率分布在统计学中有着广泛的应用,比如在假设检验、参数估计等问题中。
六、抽样分布抽样分布是指统计量在重复抽样过程中的概率分布。
常见的抽样分布包括t 分布、F分布、卡方分布等。
抽样分布在统计推断中有着重要的作用,它可以帮助我们理解样本统计量的性质,从而进行参数估计和假设检验。
七、统计推断统计推断是统计学中一个重要的领域,它研究的是如何通过样本数据对总体特征进行推断。
统计推断通常包括参数估计和假设检验两个部分。
参数估计是指在已知总体分布的情况下,通过样本数据估计总体参数的值;而假设检验是指在总体参数未知的情况下,通过样本数据来对总体特征进行检验。
统计推断在医学、经济学、社会学等领域中有着广泛的应用。
概率与统计知识点总结

概率与统计知识点总结一、概率的基本概念概率,简单来说,就是衡量某个事件发生可能性大小的一个数值。
比如抛硬币,正面朝上的概率是 05,意思是在大量重复抛硬币的实验中,正面朝上的次数大约占总次数的一半。
随机事件,就是在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。
比如掷骰子得到的点数就是随机事件。
必然事件,就是在一定条件下必然会发生的事件。
比如太阳从东方升起,这就是必然事件。
不可能事件,就是在一定条件下不可能发生的事件。
比如在地球上,水往高处流就是不可能事件。
概率的取值范围在 0 到 1 之间。
0 表示事件不可能发生,1 表示事件必然发生。
二、古典概型古典概型是一种最简单、最基本的概率模型。
它具有两个特点:试验中所有可能出现的基本事件只有有限个;每个基本事件出现的可能性相等。
计算古典概型中事件 A 的概率公式为:P(A) = A 包含的基本事件个数/基本事件的总数。
例如,一个袋子里有 5 个红球和 3 个白球,从中随机摸出一个球是红球的概率,基本事件总数是 8(5 个红球+ 3 个白球),红球的个数是 5,所以摸到红球的概率就是 5/8。
三、几何概型与古典概型不同,几何概型中的基本事件个数是无限的。
比如在一个时间段内等可能地到达某一地点,或者在一个区域内等可能地取点。
几何概型的概率计算公式是:P(A) =构成事件 A 的区域长度(面积或体积)/试验的全部结果所构成的区域长度(面积或体积)。
举个例子,在区间0, 10中随机取一个数,这个数小于 5 的概率就是 5/10 = 05。
四、条件概率条件概率是在已知某个事件发生的条件下,另一个事件发生的概率。
记事件 A 在事件 B 发生的条件下发生的概率为 P(A|B)。
计算公式为:P(A|B) = P(AB) / P(B) ,其中 P(AB) 表示事件 A 和事件 B 同时发生的概率。
比如说,已知今天下雨,明天也下雨的概率就是一个条件概率。
(完整版)(最全)高中数学概率统计知识点总结

(完整版)(最全)高中数学概率统计知识点总结-CAL-FENGHAI.-(YICAI)-Company One1概率与统计一、普通的众数、平均数、中位数及方差1、 众数:一组数据中,出现次数最多的数。
2、平均数:①、常规平均数:12nx x x x n++⋅⋅⋅+=②、加权平均数:112212n n n x x x x ωωωωωω++⋅⋅⋅+=++⋅⋅⋅+3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。
4、方差:2222121[()()()]n s x x x x x x n=-+-+⋅⋅⋅+-二、频率直方分布图下的频率1、频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数2、频率之和:121n f f f ++⋅⋅⋅+=;同时 121n S S S ++⋅⋅⋅+=; 三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。
2、平均数: 112233n nx x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+3、中位数:从左到右或者从右到左累加,面积等于0.5时x 的值。
4、方差:22221122()()()n n s x x f x x f x x f =-+-+⋅⋅⋅+-四、线性回归直线方程:ˆˆˆybx a =+ 其中:1122211()()ˆ()nni i i i i i nni i i i x x y y x y nxybx x x nx ====---∑∑==--∑∑ , ˆˆay bx =- 1、线性回归直线方程必过样本中心(,)x y ;2、ˆ0:b>正相关;ˆ0:b <负相关。
3、线性回归直线方程:ˆˆˆy bx a =+的斜率ˆb 中,两个公式中分子、分母对应也相等;中间可以推导得到。
五、回归分析1、残差:ˆˆi i i ey y =-(残差=真实值—预报值)。
统计概率知识点梳理总结

统计概率知识点梳理总结统计概率是统计学中非常重要的一个分支,它研究随机现象的概率规律,为我们处理不确定性的问题提供了一种方法。
在统计概率的学习中,有一些基本概念和方法是必须掌握的。
本文将对统计概率的相关知识进行梳理总结,包括概率基本概念、概率分布、概率密度函数、概率函数、随机变量、概率质量函数、期望、方差等内容。
1.概率基本概念概率是一个介于0-1之间的数,用来度量一个事件发生的可能性。
概率的基本概念包括样本空间、随机事件、事件的概率、事件的互斥和事件的独立性等。
样本空间是指试验中所有可能结果的集合,随机事件是指样本空间中的一个子集,事件的概率是指该事件发生的可能性大小,用P(A)表示。
事件的互斥指两个事件不可能同时发生,事件的独立性指两个事件之间的发生没有关系。
2.概率分布概率分布是描述随机变量所有可能取值及其对应概率的分布情况。
常见的概率分布包括离散型概率分布和连续型概率分布。
离散型概率分布是指随机变量只能取其中的一个值的概率分布,如伯努利分布和泊松分布;连续型概率分布是指随机变量可以取任意实数值的概率分布,如正态分布和指数分布。
3.概率密度函数概率密度函数是描述连续型随机变量的概率分布的函数,用f(x)表示。
概率密度函数具有非负性、非减性和归一性等性质。
通过概率密度函数可以计算随机变量在其中一区间内取值的概率。
4.概率函数概率函数是描述离散型随机变量的概率分布的函数,它给出了随机变量取各个值的概率。
概率函数具有非负性和归一性等性质。
通过概率函数可以计算随机变量取一些特定值的概率。
5.随机变量随机变量是一个实数值函数,它的取值是试验结果的函数。
随机变量可以是离散型的,也可以是连续型的。
离散型随机变量通常用字母大写表示,如X;连续型随机变量通常用字母小写表示,如x。
随机变量可以有多种数学表达方式,如分布函数、概率密度函数和概率函数等。
6.概率质量函数概率质量函数是描述离散型随机变量的概率分布的函数,用p(x)表示。
统计和概率知识点总结

统计和概率知识点总结1.概率的基本概念概率是描述事件发生可能性的一种数学工具。
在概率论中,事件可以是任何可能的结果,而概率是描述一个事件发生的可能性大小的数字。
概率的基本概念包括样本空间、事件空间、概率分布、随机变量等等。
样本空间是指所有可能结果的集合,而事件空间是指样本空间中的子集。
概率分布描述了各个事件发生的可能性,而随机变量则描述了事件对应的数值。
2.概率的规则和定理概率的计算有一些基本的规则和定理,如加法法则、乘法法则、条件概率、贝叶斯定理等等。
这些规则和定理可以帮助我们计算事件发生的概率,并且在实际应用中非常重要。
3.统计学的基本概念统计学是研究如何收集、分析、解释和展示数据的科学。
统计学的基本概念包括总体和样本、统计量、抽样、推断等等。
总体是指我们想要研究的一组对象或者变量,而样本是从总体中抽取出来的一部分。
统计量是对总体或者样本的某些特征进行描述的具体数值,而抽样则是从总体中选择样本的过程。
推断是通过对样本进行分析得出对总体的推断。
4.常见的概率分布在概率论和统计学中,有一些常见的概率分布模型,如均匀分布、正态分布、泊松分布、指数分布等等。
这些概率分布具有不同的特性和应用场景,在实际应用中非常重要。
正态分布在实际应用中非常普遍,它描述了许多自然现象和人类行为的分布规律。
5.统计假设检验统计假设检验是统计学中的一项重要方法,它可以帮助我们判断一个假设是否成立。
假设检验的基本步骤包括提出假设、选择检验方法、计算统计量、进行判断等等。
在实际应用中,我们可以利用假设检验来进行医学研究、经济分析、质量控制等等。
6.回归分析和相关性分析在统计学中,回归分析和相关性分析是描述变量之间关系的重要工具。
回归分析可以帮助我们理解一个自变量对因变量的影响程度,而相关性分析可以帮助我们理解变量之间的关系强度。
这些方法在经济学、社会学、医学等领域都有广泛的应用。
总的来说,统计和概率是一门非常重要的学科,它们在实际应用中具有广泛的使用价值。
高中数学概率与统计知识点

高中数学概率与统计知识点1、概率的定义随机事件A的概率是频率的稳定值;频率是概率的近似值。
2、等可能事件的概率如果一次试验中可能出现的结果有n个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是1/n,如果某个事件A包含的结果有m个,那么事件A的概率为P(A)=m/n。
3、互斥事件不可能同时发生的两个事件叫互斥事件。
如果事件A、B互斥,那么事件A+B发生(A、B中有一个发生)的概率,等于事件A、B 分别发生的概率和,即P(A+B)=P(A)+P(B)。
4、对立事件对立事件是指两个事件必有一个发生的互斥事件。
例如:从1~52张扑克牌中任取一张抽到“红桃”与抽到“黑桃”互为互斥事件,因为其中一个不可能同时发生,但又不能保证其中一个必然发生,故不是对立事件。
而抽到“红色牌”与抽到“黑色牌”互为对立事件,因为其中一个必发生。
对立事件的性质:1)对立事件的概率和等于1:P(A)+P(Ä)=P(A+A)=1。
2)互为对立的两个事件一定互斥,但互斥不一定是对立事件。
5、相互独立事件事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(A·B)=P(A)·P(B)。
相互独立事件的性质:1)如果事件A与B相互独立,那么A与B,A与B,A与B也都相互独立。
2)必然事件与任何事件都是相互独立的。
3)独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件。
6、独立重复试验若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的。
如果在一次试验中某事件发生的概率为P,那么在n次独立重复试验中这个事件恰好发生k 次的概率:P…(k)=CP*(1-P)"-*7、两个事件之间的关系对任何两个事件都有P(A+B)=P(A)+P(B)-P(A·B)。
统计概率知识点梳理总结

统计概率知识点梳理总结第一章随机事件与概率一、教学要求1.理解随机事件的概念,了解随机试验、样本空间的概念,掌握事件之间的关系与运算.2.了解概率的各种定义,掌握概率的基本性质并能运用这些性质进行概率计算. 3.理解条件概率的概念,掌握概率的乘法公式、全概率公式、贝叶斯公式,并能运用这些公式进行概率计算.4.理解事件的独立性概念,掌握运用事件独立性进行概率计算.5.掌握贝努里概型及其计算,能够将实际问题归结为贝努里概型,然后用二项概率计算有关事件的概率.本章重点:随机事件的概率计算.二、知识要点1.随机试验与样本空间具有下列三个特性的试验称为随机试验:(1) 试验可以在相同的条件下重复地进行;·(2) 每次试验的可能结果不止一个,但事先知道每次试验所有可能的结果;(3) 每次试验前不能确定哪一个结果会出现.试验的所有可能结果所组成的集合为样本空间,用Ω表示,其中的每一个结果用eΩ=.表示,e称为样本空间中的样本点,记作{}e2.随机事件在随机试验中,把一次试验中可能发生也可能不发生、而在大量重复试验中却呈现某 种规律性的事情称为随机事件(简称事件).通常把必然事件(记作Ω)与不可能事件(记作φ)看作特殊的随机事件.3.**事件的关系及运算(1) 包含:若事件A 发生,一定导致事件B 发生,那么,称事件B 包含事件A ,记作A B ⊂(或B A ⊃).(2) 相等:若两事件A 与B 相互包含,即A B ⊃且B A ⊃,那么,称事件A 与B 相等,记作A B =.(3) 和事件:“事件A 与事件B 中至少有一个发生”这一事件称为A 与B 的和事件,记作A B ⋃;“n 个事件1,2,,nA A A 中至少有一事件发生”这一事件称为1,2,,nA A A 的和,记作12n A A A ⋃⋃⋃(简记为1nii A =).(4) 积事件:“事件A 与事件B 同时发生”这一事件称为A 与B 的积事件,记作A B ⋂(简记为AB );“n 个事件1,2,,nAA A 同时发生”这一事件称为1,2,,nA A A 的积事件,记作12n A A A ⋂⋂⋂(简记为12n A A A 或1nii A =).(5) 互不相容:若事件A 和B 不能同时发生,即AB φ=,那么称事件A 与B 互不相容(或互斥),若n 个事件1,2,,n A A A 中任意两个事件不能同时发生,即i j A A φ=(1≤i<j ≤几),那么,称事件1,2,,nA A A 互不相容.(6) 对立事件:若事件A 和B 互不相容、且它们中必有一事件发生,即AB φ=且A B ⋃=Ω,那么,称A 与B 是对立的.事件A 的对立事件(或逆事件)记作A . (7) 差事件:若事件A 发生且事件B 不发生,那么,称这个事件为事件A 与B 的差事件,记作A B -(或AB ) .(8) 交换律:对任意两个事件A和B 有A B B A ⋃=⋃,AB BA =.(9) 结合律:对任意事件A ,B ,C 有()()A B C A B C ⋃⋃=⋃⋃, ()()A B C A B C ⋂⋂=⋂⋂.(10) 分配律:对任意事件A ,B ,C 有()()()A B C A B A C ⋃⋂=⋃⋂⋃, ()()()A B C A B A C ⋂⋃=⋂⋃⋂.(11) 德摩根(De Morgan )法则:对任意事件A 和B 有A B A B ⋃=⋂, A B A B ⋂=⋂.4.频率与概率的定义 (1) 频率的定义设随机事件A 在n 次重复试验中发生了A n 次,则比值A n /n 称为随机事件A 发生的频率,记作()n f A ,即 ()An n f A n =.(2) 概率的统计定义在进行大量重复试验中,随机事件A 发生的频率具有稳定性,即当试验次数n 很大时,频率()n f A 在一个稳定的值p (0<p <1)附近摆动,规定事件A 发生的频率的稳定值p 为概率,即()P A p =. (3) **古典概率的定义具有下列两个特征的随机试验的数学模型称为古典概型: (i) 试验的样本空间Ω是个有限集,不妨记作12{,,,}n e e e Ω=;(ii) 在每次试验中,每个样本点i e (1,2,,i n =)出现的概率相同,即12({})({})({})n P e P e P e ===.在古典概型中,规定事件A 的概率为()An A P A n ==Ω中所含样本点的个数中所含样本点的个数.(4) 几何概率的定义如果随机试验的样本空间是一个区域(可以是直线上的区间、平面或空间中的区域),且样本空间中每个试验结果的出现具有等可能性,那么规定事件A的概率为()A P A =的长度(或面积、体积)样本空间的的长度(或面积、体积)·(5) 概率的公理化定义设随机试验的样本空间为Ω,随机事件A 是Ω的子集,()P A 是实值函数,若满足下列三条公理:公理1 (非负性) 对于任一随机事件A,有()P A ≥0; 公理2 (规范性) 对于必然事件Ω,有()1P Ω=;公理3 (可列可加性) 对于两两互不相容的事件1,2,,,n A A A ,有11()()i i i i P A P A ∞∞===∑,则称()P A 为随机事件A的概率. 5.**概率的性质由概率的三条公理可导出下面概率的一些重要性质 (1) ()0P φ=.(2) (有限可加性) 设n 个事件1,2,,nA A A 两两互不相容,则有121()()nn i i P A A A P A =⋃⋃⋃=∑.(3) 对于任意一个事件A :()1()P A P A =-.(4) 若事件A ,B 满足A B ⊂,则有()()()P B A P B P A -=-,()()P A P B ≤.(5) 对于任意一个事件A ,有()1P A ≤. (6) (加法公式) 对于任意两个事件A ,B ,有()()()()P A B P A P B P AB ⋃=+-.对于任意n 个事件1,2,,nA A A ,有111111()()()()(1)()nnn i i i j i j k n i i j ni j k ni P A P A P A A P A A A P A A -=≤<≤≤<<≤==-+-+-∑∑∑.6.**条件概率与乘法公式设A 与B 是两个事件.在事件B 发生的条件下事件A 发生的概率称为条件概率,记作(|)P A B .当()0P B >,规定()(|)()P AB P A B P B =.在同一条件下,条件概率具有概率的一切性质.乘法公式:对于任意两个事件A 与B ,当()0P A >,()0P B >时,有()()(|)()(|)P AB P A P B A P B P A B ==.7.*随机事件的相互独立性如果事件A 与B 满足()()()P AB P A P B =,那么,称事件A 与B 相互独立.关于事件A ,月的独立性有下列两条性质:(1) 如果()0P A >,那么,事件A 与B 相互独立的充分必要条件是(|)()P B A P B =;如果()0P B >,那么,事件A 与B 相互独立的充分必要条件是(|)()P A B P A =. 这条性质的直观意义是“事件A 与B 发生与否互不影响”. (2) 下列四个命题是等价的: (i) 事件A 与B 相互独立; (ii) 事件A 与B 相互独立; (iii) 事件A 与B 相互独立; (iv) 事件A 与B 相互独立.对于任意n 个事件1,2,,nA A A 相互独立性定义如下:对任意一个2,,k n =,任意的11k i i n ≤<<≤,若事件1,2,,nA A A 总满足11()()()k k i i i i P A A P A P A =,则称事件1,2,,nA A A 相互独立.这里实际上包含了21nn --个等式.8.*贝努里概型与二项概率设在每次试验中,随机事件A发生的概率()(01)P A p p =<<,则在n 次重复独立试验中.,事件A恰发生k 次的概率为()(1),0,1,,kn k n n P k p p k nk -⎛⎫=-= ⎪⎝⎭,称这组概率为二项概率. 9.**全概率公式与贝叶斯公式全概率公式:如果事件1,2,,nA A A 两两互不相容,且1ni i A ==Ω,()0i P A >,1,2,,i n =,则1()(|)(|),1,2,,()(|)k k k niii P A P B A P A B k nP A P B A ===∑.第二章 离散型随机变量及其分布一、教学要求1.理解离散型随机变量及其概率函数的概念并掌握其性质,掌握0-1分布、二项分布、泊松(Poisson)分布、均匀分布、几何分布及其应用.2.理解二维离散型随机变量联合概率函数的概念及性质;会利用二维概率分布计算有关事件的概率.3.理解二维离散型随机变量的边缘分布,了解二维随机变量的条件分布. 4.掌握离散型随机变量独立的条件.5. 会求离散型随机变量及简单随机变量函数的概率分布. 本章重点:离散型随机变量的分布及其概率计算.二、知识要点 1.一维随机变量若对于随机试验的样本空间Ω中的每个试验结果e ,变量X 都有一个确定的实数值与e 相对应,即()X X e =,则称X 是一个一维随机变量.概率论主要研究随机变量的统计规律,也称这个统计规律为随机变量的分布. 2.**离散型随机变量及其概率函数如果随机变量X 仅可能取有限个或可列无限多个值,则称X 为离散型随机变量. 设离散型随机变量X 的可能取值为(1,2,,,)i a i n =,(),1,2,,,.i i p P X a i n ===若11ii p∞==∑,则称(1,2,,,)i p i n =离散型随机变量X 的概率函数,概率函数也可用下列表格形式表示:X12n a a ar P12np p p3.*概率函数的性质 (1) 0i p ≥, 1,2,,,;i n =(2)11ii p∞==∑.由已知的概率函数可以算得概率()i ia SP X S p ∈∈=∑,其中,S 是实数轴上的一个集合. 4.*常用离散型随机变量的分布(1) 0—1分布(1,)B p ,它的概率函数为1()(1)i i P X i p p -==-,其中,0i =或1,01p <<.(2) 二项分布(,)B n p ,它的概率函数为()(1)in in P X i p p i -⎛⎫==- ⎪⎝⎭,其中,0,1,2,,i n =,01p <<.(4) 泊松分布()P λ,它的概率函数为()!iP X i e i λλ-==,其中,0,1,2,,,i n =,0λ>.(5) 均匀分布,它的概率函数为1()i P X a n ==,其中,0,1,2,,i n =.5.二维随机变量若对于试验的样本空间Ω中的每个试验结果e ,有序变量(,)X Y 都有确定的一对实数值与e 相对应,即()X X e =, ()Y Y e =,则称(,)X Y 为二维随机变量或二维随机向量.6.*二维离散型随机变量及联合概率函数如果二维随机变量(,)X Y 仅可能取有限个或可列无限个值,那么,称(,)X Y 为二维离散型随机变量.二维离散型随机变量(,)X Y 的分布可用下列联合概率函数来表示:(,),,1,2,,i j ij P X a Y b p i j ====其中,0,,1,2,,1ij ijijp i j p≥==∑∑.7.二维离散型随机变量的边缘概率函数 设(,)X Y 为二维离散型随机变量,ijp 为其联合概率函数(,1,2,i j =),称概率()(1,2,)i P X a i ==为随机变量X 的边缘概率函数,记为i p 并有.(),1,2,i i ij jp P X a p i ====∑,称概率()(1,2,)j P Y b j ==为随机变量Y 的边缘概率函数,记为.jp ,并有.jp =(),1,2,j ij iP Y b p j ===∑.8.随机变量的相互独立性 .设(,)X Y 为二维离散型随机变量,X 与Y 相互独立的充分必要条件为,,1,2,.ij i j p p p i j ==对一切多维随机变量的相互独立性可类似定义.即多维离散型随机变量的独立性有与二维相应的结论.9.随机变量函数的分布设X 是一个随机变量,()g x 是一个已知函数,()Y g X =是随机变量X 的函数,它也是一个随机变量.对离散型随机变量X ,下面来求这个新的随机变量Y 的分布.设离散型随机变量X 的概率函数为X12n a a ar P12np p p则随机变量函数()Y g X =的概率函数可由下表求得()Y g X = 12()()()n g a g a g ar P1p 2pn p但要注意,若()i g a 的值中有相等的,则应把那些相等的值分别合并,同时把对应的概率i p 相加.第三章 连续型随机变量及其分布一、教学要求1.理解连续型随机变量及其概率密度的概念,并掌握其性质,掌握均匀分布、指数分布、正态分布及其应用.2.理解二维随机变量的联合分布的概念、性质以及连续型随机变量联合概率密度;会利用二维概率分布计算有关事件的概率.3.理解二维随机变量的边缘分布,了解二维随机变量的条件分布. 4.理解随机变量的独立性概念,掌握连续型随机变量独立的条件.5.掌握二维均匀分布;了解二维正态分布的密度函数,理解其中参数的概率意义.(不考)6.会求两个独立随机变量的简单函数的分布,会求两个独立随机变量的简单函数的分布,会求两个随机变量之和的概率分布. (不考)7.会求简单随机变量函数的概率分布.本章重点:一维及二维随机变量的分布及其概率计算,边缘分布和独立性计算.二、知识要点 1.*分布函数随机变量的分布可以用其分布函数来表示,随机变量X 取值不大于实数x 的概率()P X x ≤称为随机变量X 的分布函数,记作()F x , 即()(),F x P X x x =≤-∞<<∞.2.分布函数()F x 的性质 (1) 0()1;F x ≤≤(2) ()F x 是非减函数,即当12x x <时,有12()()F x F x ≤;(3) ()0,()1lim lim x x F x F x →-∞→+∞==;(4) ()F x 是右连续函数,即0()()lim x a F x F a →+=.由已知随机变量X 的分布函数()F x ,可算得X 落在任意区间(,]a b 内的概率()()();P a X b F b F a <≤=-也可以求得()()(0)P X a F a F a ==--.3.联合分布函数二维随机变量(,)X Y 的联合分布函数规定为随机变量X 取值不大于x 实数的概率,同时随机变量Y 取值不大于实数y 的概率,并把联合分布函数记为(,)F x y ,即(,)(,),,F x y P X x Y y x y =≤≤-∞<<+∞-∞<<+∞.4.联合分布函数的性质 (1) 0(,)1F x y ≤≤;(2) (,)F x y 是变量x (固定y )或y (固定x )的非减函数;(3)(,)0,(,)0lim lim x y F x y F x y →-∞→-∞==,(,)0,(,l i m l i mx x y y F x y Fx y→-∞→+∞→-∞→+∞==;(4) (,)F x y 是变量x (固定y )或y (固定x )的右连续函数;(5) 121222211211(,)(,)(,)(,)(,)P x X x y Y y F x y F x y F x y F x y <≤<≤=--+. 5.**连续型随机变量及其概率密度设随机变量X 的分布函数为()F x ,如果存在一个非负函数()f x ,使得对于任一实数x ,有()()xF x f x dx-∞=⎰成立,则称X 为连续型随机变量,函数()f x 称为连续型随机变量X 的概率密度. 6.**概率密度()f x 及连续型随机变量的性质 (1)()0;f x ≥(2)()1f x dx +∞-∞=⎰;(3)连续型随机变量X 的分布函数为()F x 是连续函数,且在()F x 的连续点处有()()F x f x '=;(4)设X 为连续型随机变量,则对任意一个实数c ,()0P X c ==; (5) 设()f x 是连续型随机变量X 的概率密度,则有()()()()P a X b P a X b P a X b P a X b <<=≤<=≤≤=<≤=()baf x dx⎰.7.**常用的连续型随机变量的分布 (1) 均匀分布(,)R a b ,它的概率密度为1,;()0,a xb f x b a⎧<<⎪=-⎨⎪⎩其余. 其中,)a b -∞<<<+∞.(2) 指数分布()E λ,它的概率密度为,0;()0,x e x f x λλ-⎧>=⎨⎩其余. 其中,0λ>.(3) 正态分布2(,)N μσ,它的概率密度为22()21(),2x f x ex μσπσ--=-∞<<+∞,其中,,0μσ-∞<<+∞>,当0,1μσ==时,称(0,1)N 为标准正态分布,它的概率密度为221(),2x f x e x π-=-∞<<+∞,标准正态分布的分布函数记作()x Φ,即()x Φ221()2t xx e dt π--∞Φ=⎰,当出0x ≥时,()x Φ可查表得到;当0x <时,()x Φ可由下面性质得到()1()x x Φ-=-Φ.设2~(,)X N μσ,则有()()x F x μσ-=Φ;()()()b a P a X b μμσσ--<≤=Φ-Φ.8.**二维连续型随机变量及联合概率密度对于二维随机变量(X ,Y)的分布函数(,)F x y ,如果存在一个二元非负函数(,)f x y ,使得对于任意一对实数(,)x y 有(,)(,)xyF x y f s t dtds-∞-∞=⎰⎰成立,则(,)X Y 为二维连续型随机变量,(,)f x y 为二维连续型随机变量的联合概率密度.9.二维连续型随机变量及联合概率密度的性质 (1) (,)0,,f x y x y ≥-∞<<+∞;(2)(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰;(3) 设(,)X Y 为二维连续型随机变量,则对任意一条平面曲线L ,有((,))0P X Y L ∈=; ’(4) 在(,)f x y 的连续点处有2(,)(,)F x y f x y x y ∂=∂∂;(5) 设(,)X Y 为二维连续型随机变量,则对平面上任一区域D 有((,))(,)DP X Y D f x y dxdy∈=⎰⎰.10,**二维连续型随机变量(,)X Y 的边缘概率密度设(,)f x y 为二维连续型随机变量的联合概率密度,则X 的边缘概率密度为()(,)X f x f x y dy+∞-∞=⎰;Y 的边缘概率密度为()(,)Y f y f x y dx+∞-∞=⎰.11.常用的二维连续型随机变量 (1) 均匀分布如果(,)X Y 在二维平面上某个区域G 上服从均匀分布,则它的联合概率密度为1,(,)x y f x y G ⎧∈⎪=⎨⎪⎩,()G;的面积0,其余. (2) 二维正态分布221212(,,,,)N μμσσρ 如果(,)X Y 的联合概率密度2211212222112112()()()()11(,)exp 22(1)21x x y x f x y μμμμρρσσσσπσσρ⎧⎫⎡⎤----⎪⎪=--+⎨⎬⎢⎥-⎪⎪-⎣⎦⎩⎭则称(,)X Y 服从二维正态分布,并记为221212(,)~(,,,,)X Y N μμσσρ.如果221212(,)~(,,,,)X Y N μμσσρ,则211~(,)X N μσ,222~(,)Y N μσ,即二维正态分布的边缘分布还是正态分布. 12.**随机变量的相互独立性 .如果X 与Y 的联合分布函数等于,X Y 的边缘分布函数之积,即(,)()(),,X Y F x y F x F y x y =-∞<<+∞对一切,那么,称随机变量X 与Y 相互独立.设(,)X Y 为二维连续型随机变量,则X 与Y 相互独立的充分必要条件为(,)()(),X Y f x y f x f y =在一切连续点上.如果221212(,)~(,,,,)X Y N μμσσρ.那么,X 与Y 相互独立的充分必要条件是0ρ=.多维随机变量的相互独立性可类似定义.即多维随机变量的联合分布函数等于每个随机变量的边缘分布函数之积,多维连续型随机变量的独立性有与二维相应的结论. 13.随机变量函数的分布 **一维随机变量函数的概率密度设连续型随机变量X 的概率密度为()X f x ,则随机变量()Y g X =的分布函数为()()(())()()yY y XI F y P Y y P g X y P X I fx dx=≤=≤=∈=⎰其中,{}y X I ∈与{()}g X y ≤是相等的随机事件,而{||()}y I x g x y =≤是实数轴上的某个集合.随机变量Y 的概率密度()Y f y 可由下式得到:'()()Y Y f y F y =.连续型随机变量函数有下面两条性质:(i) 设连续型随机变量的概率密度为()X f x ,()Y g X =是单调函数,且具有一阶连续导数,()x h y =是()y g x =的反函数,则()Y g X =的概率密度为()(())|'()|Y f y f h y h y =⋅.(ii) 设2~(,)X N μσ,则当0k ≠时,有22~(,)Y kX b N k b k μσ=++,特别当1,k b μσσ==-时,有~(0,1)Y kX b N =+,~(0,1)X N μσ-.特别有下面的结论:设211~(,)X N μσ,222~(,)Y N μσ,且X 与Y 相互独立,则221212~(,)X Y N μμσσ+++.第四章 随机变量的数字特征一、教学要求1.理解随机变量的数学期望、方差的概念,并会运用它们的基本性质计算具体分布的期望、方差,2.掌握二项分布、泊松分布、均匀分布、指数分布、正态分布的数学期望和方差. 3.会根据随机变量X 的概率分布计算其函数()g X 的数学期望[()]E g X ;会根据随机变量(,)X Y 的联合概率分布计算其函数(,)g X Y 的数学期望正[(,)]E g X Y .(不考)4.理解协方差、相关系数的概念,掌握它们的性质,并会利用这些性质进行计算,了解矩的概念。
数学必修三统计和概率知识点总结

数学必修三统计和概率知识点总结
数学必修三统计和概率的主要知识点包括:
1. 统计:
- 样本调查与总体推断:样本的选择和调查方法,通过样本推断总体特征;
- 随机变量与概率分布:离散型和连续型随机变量的概念,概率质量函数和概率密度函数;
- 期望与方差:随机变量的期望值和方差;
- 离散型随机变量的分布:二项分布、泊松分布等离散型随机变量的性质;
- 连续型随机变量的分布:均匀分布、正态分布等连续型随机变量的性质;
- 多元随机变量与边缘分布:多个随机变量之间的关系与边缘分布;
- 相关与回归:随机变量之间的相关性和回归分析;
- 统计与误差:抽样误差和非抽样误差。
2. 概率:
- 随机事件与概率:样本空间、随机事件和概率的概念;
- 概率的运算:事件的和、积以及互斥事件的概率;
- 条件概率:在已知一事件发生的条件下,另一事件发生的概率;
- 事件的独立性:事件之间的独立性和联合概率;
- 正态分布的应用:正态分布的特性、标准正态分布的应用;
- 抽样与抽样分布:抽样的概念,样本均值的分布;
- 参数估计:点估计和区间估计;
- 假设检验:零假设和备择假设的提出,检验统计量的构造。
以上是数学必修三统计和概率的主要知识点总结,具体内容可根据教材的要求进行深入学习和了解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计概率知识点梳理总结第一章随机事件与概率一、教学要求1•理解随机事件的概念,了解随机试验、样本空间的概念,掌握事件之间的关系与运算.2•了解概率的各种定义,掌握概率的基本性质并能运用这些性质进行概率计算. 3.理解条件概率的概念,掌握概率的乘法公式、全概率公式、贝叶斯公式,并能运用这些公式进行概率计算.4•理解事件的独立性概念,掌握运用事件独立性进行概率计算5•掌握贝努里概型及其计算,能够将实际问题归结为贝努里概型,然后用二项概率计算有关事件的概率.本章重点:随机事件的概率计算.二、知识要点1•随机试验与样本空间具有下列三个特性的试验称为随机试验:(1)试验可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,但事先知道每次试验所有可能的结果;(3)每次试验前不能确定哪一个结果会出现.试验的所有可能结果所组成的集合为样本空间,用门表示,其中的每一个结果用e表示,e称为样本空间中的样本点,记作门二{e}.2•随机事件在随机试验中,把一次试验中可能发生也可能不发生、而在大量重复试验中却呈现某种规律性的事情称为随机事件(简称事件)•通常把必然事件(记作】)与不可能事件(记作)看作特殊的随机事件.3 . **事件的关系及运算(1)包含:若事件A发生,一定导致事件B发生,那么,称事件B包含事件A , 记作A B(或B二A).⑵相等:若两事件A与B相互包含,即A二B且B二A ,那么, 称事件A与B相等,记作A二B .(3)和事件:“事件A与事件B中至少有一个发生”这一事件称为A与B的和事件, 记作A _• B n个事件A A2,山,A中至少有一事件发生”这一事件称为nIJ AA, A2,III,A n 的和,记作A l A2 11( A n (简记为宫).(4)积事件:“事件A与事件B同时发生”这一事件称为A与B的积事件,记作A^B(简记为AB);“n个事件A,A川,A n同时发生”这一事件称为n1AA, A2,川,A n的积事件,记作A i「A2-山-人(简记为AAJHA n或L ).(5)互不相容:若事件A和B不能同时发生,即AB = • •,那么称事件A与B互不相容(或互斥),若n个事件A1,A2,山,A n中任意两个事件不能同时发生,即AA j =(1 < i<j w几),那么,称事件A,A2,川,A n互不相容.(6)对立事件:若事件A和B互不相容、且它们中必有一事件发生,即AB = •且A 一B —,那么,称A与B是对立的•事件A的对立事件(或逆事件)记作A .(7)差事件:若事件A发生且事件B不发生,那么,称这个事件为事件A与B的差事件,记作A-B(或AB)(8) 交换律:对任意两个事件A 和 B 有A .B = B 1 .A , AB = BA .(9) 结合律:对任意事件A , B , C 有Au(BuC) =(Au B).CAc (BcC) = (Ac B)c C> •(10) 分配律:对任意事件A, B, C 有Au(BcC) =(Au B)c (AuC)Ac(B.C) =(Ac B)u (A^C)(11)德U 摩根(De Morgan )法则:对任意事件 A 和B 有A 一B 二 A 一 B , A 一 B 二 A 一 B .4 .频率与概率的定义 (1) 频率的定义设随机事件A 在n 次重复试验中发生了nA次,则比值nA/n 称为随机事件A 发生P({e}) =P({e») =ill = P(g})在古典概型中,规定事件 A 的概率为A 中所含样本点的个数P (A = I ■■中所含样本点的个数(4) 几何概率的定义如果随机试验的样本空间是一个区域(可以是直线上的区间、平面或空间中的区域),且样本空间中每个试验结果的出现具有等可能性,那么规定事件A 的概率为aA 的长度(或面积、体积)的频率,记作f n (A),即f n (A)£n .(ii)n AP(A)=样本空间的的长度(或面积、体积)•(5)概率的公理化定义设随机试验的样本空间为,随机事件A是门的子集,P(A)是实值函数,若满足下列三条公理:公理1 (非负性)对于任一随机事件A,有P(A)>0;公理2 (规范性)对于必然事件门,有PC)二1;公理3 (可列可加性)对于两两互不相容的事件A'AzjlbAnNl,有cd oOP(U A)八P(A)i 1 i d则称P(A)为随机事件A的概率.5 . **概率的性质由概率的三条公理可导出下面概率的一些重要性质(1)P()".⑵(有限可加性)设n个事件AA,川人两两互不相容,则有P(A _• A ?— 代)八 P(A)i 4.(3) 对于任意一个事件A :P(A) =1 _ P(A)⑷若事件A, B 满足A B ,则有P (B - A) =P(B) - P(A)5P(A)乞 P(B).(5) 对于任意一个事件A ,有P( A)叮.(6) ( 加法公式)对于任意两个事件A , B,有P(A B) =P(A) P(B) - P(AB)对于任意 n 个事件A n ,有nP( A i An\)八 P(AJ-、P(AA j )'p (AA j AQ-|l| (-1)n 」P(A"IA n )i 壬 1巴直 1知6 . **条件概率与乘法公式设A 与B 是两个事件.在事件B 发生的条件下事件 A 发生的概率称为条件概率,记 作 P(A|B) •当P(B) 0,规定在同一条件下,条件概率具有概率的一切性质.乘法公式:对于任意两个事件A 与B,当P(A) 0,P(B) 0时,有P(AB) = P(A)P(B | A) =P(B)P(A| B)7 . *随机事件的相互独立性P(A| B)二P(AB) P(B)如果事件A与B满足P(AB)二P(A)P(B) 那么,称事件A与B相互独立.关于事件A,月的独立性有下列两条性质:(1)如果P(A) 0,那么,事件A与B相互独立的充分必要条件是P(B|A)二P(B);如果P(B) 0,那么,事件A与B相互独立的充分必要条件是P(A|B)r P(A).这条性质的直观意义是“事件A与B发生与否互不影响”.(2)下列四个命题是等价的:(i)事件A与B相互独立;(ii)事件A与B相互独立;(iii)事件A与B相互独立;(iv)事件A与B相互独立.对于任意n个事件A,A2,川,A n相互独立性定义如下:对任意一个k=2」|l,n,任意的1斗汕(:::i k “,若事件AAIHA总满足P(r |l(A k)二P(AJ川P(AJ则称事件AA,山,A n相互独立•这里实际上包含了2n - n-1个等式.8. *贝努里概型与二项概率设在每次试验中,随机事件A发生的概率P(A)二P(°”:p ::1),则在n次重复独立试验中.,事件A恰发生k次的概率为m ) k n kP n (k ) = h p (1—p ) ,k=o,1,|||,n l k 丿称这组概率为二项概率.9 . **全概率公式与贝叶斯公式、P(A)P(B|A)i 4第二章离散型随机变量及其分布一、教学要求1 .理解离散型随机变量及其概率函数的概念并掌握其性质,掌握0-1分布、二项分布、泊松(Poisson )分布、均匀分布、几何分布及其应用.2 •理解二维离散型随机变量联合概率函数的概念及性质;会利用二维概率分布计 算有关事件的概率.3 .理解二维离散型随机变量的边缘分布,了解二维随机变量的条件分布.4. 掌握离散型随机变量独立的条件.5. 会求离散型随机变量及简单随机变量函数的概率分布.本章重点:离散型随机变量的分布及其概率计算.、知识要点 1 .一维随机变量全概率公式:如果事件i = 12111,n ,则AAlllA 两两互不相容,且P(A) oP(A k |B)二P(AQP(B| AQn若对于随机试验的样本空间 门中的每个试验结果e,变量X 都有一个确定的实数值 与e 相对应,即X =X(e),则称X 是一个一维随机变量.概率论主要研究随机变量的统计规律,也称这个统计规律为随机变量的分布. 2 . **离散型随机变量及其概率函数如果随机变量X 仅可能取有限个或可列无限多个值,则称 X 为离散型随机变量.设离散型随机变量X 的可能取值为a(i“2m, n,HI),P i =P(X =3i ), i =1,2,|l(, n,l|l.QO£ Pi = 1若y ,则称P i (i"2川,n,M)离散型随机变量X 的概率函数,概率函数也可用 下列表格形式表示:3. *概率函数的性质无 Pi =1 ⑵心 .由已知的概率函数可以算得概率P(X S )八 P ia i Ws其中,s 是实数轴上的一个集合.4. *常用离散型随机变量的分布(1) P i 启0 , i =12川,n,HI;⑴0—1分布B(1,P),它的概率函数为P(X =i) *'(1一卩)1」其中,i =0或1, Q P :: 1.(2) 二项分布B(n, p),它的概率函数为⑴i nP(X=i)= . p'(1—p)nU丿其中,i =0,1,2川|, n , 0 c p c1 .(4 )泊松分布P('),它的概率函数为iP(X =i) e_,i!,其中,i =0,1,2川I,n,|||,人>0 .(5 )均匀分布,它的概率函数为1P(X 二a)二n ,其中i =0,1,2,111, n丿、I ? ♦5.二维随机变量若对于试验的样本空间11中的每个试验结果e ,有序变量(X,丫)都有确定的一对实数值与e相对应,即X=X(e) , 丫二丫(e),则称(X,Y)为二维随机变量或二维随机向量.6. *二维离散型随机变量及联合概率函数如果二维随机变量(X,Y)仅可能取有限个或可列无限个值,那么,称(X,Y)为二维离散型随机变量.二维离散型随机变量(X,Y)的分布可用下列联合概率函数来表示:P(X=a i,Y=b j) = p, i,j=1,2,川,P j -0, i, j =1,2, Hl,二P j =1其中,i j•7•二维离散型随机变量的边缘概率函数设(X,Y)为二维离散型随机变量,P ij为其联合概率函数(i,j=12HI ),称概率P(X二a i)(i =1,2JIO为随机变量X的边缘概率函数,记为p L并有p.= P(X =印)=瓦p「i =1,2川j,称概率P(Y = b j )(j二1,2,川)为随机变量Y的边缘概率函数,记为P.j,并有p P(丫=b j)P j, j=1,2」11P.j = i8•随机变量的相互独立性设(X,Y)为二维离散型随机变量,X与Y相互独立的充分必要条件为P j 二P iL P_j ,对一切i, j =1,2,|l|.多维随机变量的相互独立性可类似定义•即多维离散型随机变量的独立性有与二维相应的结论.9.随机变量函数的分布设X是一个随机变量,g(x)是一个已知函数,丫二g(x)是随机变量X的函数,它也是一个随机变量.对离散型随机变量X,下面来求这个新的随机变量Y的分布.(2) 概率的统计定义在进行大量重复试验中,随机事件A发生的频率具有稳定性,即当试验次数n很大时,频率f n(A)在一个稳定的值P(0< P<1)附近摆动,规定事件A发生的频率的稳定值P为概率,即P(A)二p.(3) ** 古典概率的定义具有下列两个特征的随机试验的数学模型称为古典概型:(i) 试验的样本空间门是个有限集,不妨记作门二{乳佥,川,弓};在每次试验中,每个样本点e(i =1,2 3^l,n)出现的概率相同,即。