匀变速直线运动知识点

合集下载

匀变速直线运动知识点

匀变速直线运动知识点

匀变速直线运动知识点匀变速直线运动是物理学中的一个重要概念,在力学中经常涉及到。

本文将从定义、运动方程、速度和加速度等方面详细探讨匀变速直线运动的知识点。

一、定义匀变速直线运动指的是物体在直线上以一定的加速度进行运动,且加速度保持不变。

这种运动的特点是速度的变化是匀速的,即速度随时间线性变化。

二、运动方程匀变速直线运动的运动方程可以用以下公式表示:s = ut + 1/2at^2其中,s表示物体的位移,u表示物体的初速度,a表示物体的加速度,t表示时间。

三、速度在匀变速直线运动中,速度是随时间变化的。

根据运动方程可以得到速度的表达式:v = u + at其中,v表示物体的速度。

四、加速度加速度是匀变速直线运动的一个重要参数,表示速度的变化率。

根据运动方程可以得到加速度的表达式:a = (v - u) / t其中,a表示物体的加速度。

五、位移与时间、初速度、加速度的关系根据运动方程可以看出,位移与时间、初速度和加速度之间存在一定的关系。

位移随时间的平方成正比,与初速度成正比,与加速度的平方成正比。

六、加速度与运动方向的关系在匀变速直线运动中,加速度的正负与运动方向有关。

当加速度与速度方向一致时,加速度为正值;当加速度与速度方向相反时,加速度为负值。

七、匀变速直线运动的示例一个常见的示例是自由落体运动。

当物体自由下落时,加速度为重力加速度,速度随时间线性增加。

总结:匀变速直线运动是物理学中的一个重要概念,它可以用运动方程来描述物体的位移、速度和加速度。

在匀变速直线运动中,速度的变化是匀速的,加速度保持不变。

加速度与运动方向有关,当加速度与速度方向一致时,加速度为正值,反之为负值。

匀变速直线运动的一个示例是自由落体运动,物体自由下落时加速度为重力加速度。

通过研究匀变速直线运动,可以更好地理解物体在运动中的行为和规律。

匀变速直线运动知识点

匀变速直线运动知识点

匀变速直线运动知识点匀变速直线运动是物理学中最基本的运动形式之一。

在这种运动中,物体在直线方向上运动,其速度随时间的推移而变化,可以是匀速变化或者不匀速变化。

下面将介绍匀变速直线运动的一些基本概念和相关知识点。

一、位移和位移公式在匀变速直线运动中,物体从初始位置移动到某个位置的距离称为位移。

位移是一个矢量量,具有方向和大小。

位移的大小等于物体最终位置与初始位置之间的直线距离。

位移公式用于计算匀变速直线运动的位移。

根据物体速度和时间的关系,位移公式可以表示为:Δx = (v0 + v)t / 2其中,Δx表示位移,v0表示初始速度,v表示末速度,t表示时间。

二、速度和速度公式速度是描述物体运动的物理量,是位移随时间的导数。

速度的方向与位移的方向一致。

在匀变速直线运动中,物体的速度随时间的变化而改变。

速度的大小可以使用速度公式计算:v = v0 + at其中,v0表示初始速度,a表示加速度,t表示时间。

三、加速度和加速度公式加速度是描述物体速度变化率的物理量,是速度随时间的导数。

在匀变速直线运动中,加速度是常数。

根据速度和时间的关系,可以使用加速度公式计算加速度:a = (v - v0) / t其中,a表示加速度,v表示末速度,v0表示初始速度,t表示时间。

四、时间和时间公式在匀变速直线运动中,时间是描述物体运动的一个基本概念,表示运动发生的时长。

根据位移和速度的关系,可以使用时间公式计算时间:t = 2Δx / (v0 + v)其中,t表示时间,Δx表示位移,v0表示初始速度,v表示末速度。

五、运动图像匀变速直线运动可以通过运动图像来描述。

运动图像是在坐标轴上绘制物体的位移随时间变化的曲线。

在匀变速直线运动中,当物体匀速运动时,运动图像是一条直线;当物体加速运动或减速运动时,运动图像是一条斜线。

六、运动的实例匀变速直线运动在生活中有很多实例。

例如,一个汽车从静止状态开始加速行驶,这是一个匀变速直线运动;一个自由落体运动的物体在重力作用下速度不断增加,这也是一个匀变速直线运动。

《匀变速直线运动的规律》 知识清单

《匀变速直线运动的规律》 知识清单

《匀变速直线运动的规律》知识清单一、匀变速直线运动的定义匀变速直线运动是指在直线运动中,加速度保持不变的运动。

加速度是描述速度变化快慢的物理量,如果加速度恒定,那么速度随时间的变化就呈现出一定的规律。

二、匀变速直线运动的分类1、匀加速直线运动:加速度方向与速度方向相同,物体的速度不断增大。

2、匀减速直线运动:加速度方向与速度方向相反,物体的速度不断减小。

三、匀变速直线运动的基本公式1、速度公式:v = v₀+ at其中,v 表示末速度,v₀表示初速度,a 表示加速度,t 表示运动时间。

这个公式表明,末速度等于初速度加上加速度与时间的乘积。

如果加速度为正,速度增加;加速度为负,速度减小。

2、位移公式:x = v₀t + 1/2 at²此公式描述了在时间 t 内,物体的位移与初速度、加速度和时间的关系。

3、速度位移公式:v² v₀²= 2ax这个公式可以在已知初速度、末速度和加速度时,方便地求出位移。

四、匀变速直线运动的重要推论1、平均速度公式:v 平均=(v₀+ v)/ 2平均速度等于初速度与末速度的算术平均值。

2、中间时刻的瞬时速度:v 中间时刻=(v₀+ v)/ 2即匀变速直线运动中,某段时间中间时刻的瞬时速度等于这段时间初末速度的平均值。

3、连续相等时间内的位移差:Δx = aT²在匀变速直线运动中,连续相等的时间 T 内,相邻位移之差是一个常数,等于加速度与时间平方的乘积。

五、初速度为零的匀加速直线运动的特殊规律1、 1T 末、2T 末、3T 末……nT 末的速度之比:v₁: v₂:v₃:…… : vₙ = 1 : 2 : 3 :…… : n2、 1T 内、2T 内、3T 内……nT 内的位移之比:x₁: x₂:x₃:…… : xₙ = 1²: 2²: 3²:…… : n²3、第 1 个 T 内、第 2 个 T 内、第 3 个 T 内……第 n 个 T 内的位移之比:xⅠ: xⅡ: xⅢ:…… : xn = 1 : 3 : 5 :…… :(2n 1)六、匀变速直线运动的图像1、 v t 图像v t 图像是一条倾斜的直线,直线的斜率表示加速度,直线与时间轴所围的面积表示位移。

匀变速直线运动 知识点整理

匀变速直线运动 知识点整理

第二章 匀变速直线运动第一节 匀变速直线运动的速度与时间的关系一.匀变速直线运动的速度与时间的关系式由 000t t v v v v v a t t t--∆===∆- 得 = ― 解得0t v v at =+,两种特殊情况:(1) 当a =0时,v =v 0,做匀速直线运动.(2) 当v 0=0时,v =at ,做初速为零的匀加速直线运动.二.中间时刻的速度 : =推导: 0~= +①~t, = +②②—①得— = — 2 = +所以 =第二节 匀变速直线运动的位移与时间的关系一.匀速直线运动位移与时间的关系由xv t∆=∆得△x=v △t, 即x=vt x 为v-t 图像围成矩形的面积二.匀变速直线运动的位移与时间的关系:△x=( )t= t+①把△t 等分成n 份,每一份时间为△t/n,当n 很大时,每一份△t/n 时间内v 与△t/n 所围成的小梯形面积就近似等于小矩形面积,小矩形面积就是△t/n 内的位移,所以△t 时间内所有小梯形面积加起来就近似等于所有小矩形面积,所有小矩形面积加起来就是△t 时间内总位移,所以△t 时间内所有小梯形面积加起来就近似等于总位移②当n 趋向无穷大时,△t/n 趋向无穷小,在无穷小时间内,小梯形面积严格等于小矩形面积,所以△t 时间内所有小梯形面积加起来就等于总位移,所以匀变速直线运动v-t 图像围成的梯形面积就是位移 ③位移公式推导 △x= =( )①△x =21201122S S S OA OQ AR RP v t at =+=⨯+⨯=+ ② (1)当a =0时,△x= v 0 (2)当v 0=0时,△x=三.匀变速直线运动平均速度:=由xvt∆=∆得△x=t又因为△x=()t所以t=()t消掉t得=四.纸带问题⑴判断物体是否做匀变速直线运动时:利用公式如图是相邻两计数点间的距离,△x是两个连续相等的时间内的位移之差,即,…T是相邻两计数点间的时间间隔,对两段距离进行分析则任意相邻两计数点间的位移差为:拓展公式:-= (m-n)²(2)用逐差法求加速度由-=(4-1)²可得:同理可得:加速度的平均值为:第三节 匀变速直线运动的位移与速度的关系一.匀变速直线运动的位移与速度的关系:△x==由 =得 =把 △x=( )t 中t 替换得△x=( ) ( ) =公式习惯写成: △x=二.中间位移的速度:因为 ==所以=所以 = 所以2 =所以<第四节自由落体运动一.自由落体运动1定义:物体只在重力作用下,从静止开始下落的运动叫做自由落体运动。

匀变速直线运动知识点归纳及练习

匀变速直线运动知识点归纳及练习

匀变速直线运动公式、规律一.基本规律:(1)平均速度=1.公式(2)加速度= (1)加速度=(3)平均速度=(2)平均速度=(4)瞬时速度(3)瞬时速度(5)位移公式(4)位移公式(6)位移公式(5)位移公式(7)重要推论(6)重要推论注意:基本公式中(1)式适用于一切变速运动,其余各式只适用于匀变速直线运动。

二.匀变速直线运动的两个重要规律:1.匀变速直线运动中某段时间内中间时刻的瞬时速度等于这段时间内的平均速度:即2.匀变速直线运动中连续相等的时间间隔内的位移差是一个恒量:设时间间隔为T,加速度为a,连续相等的时间间隔内的位移分别为S1,S2,S3,……SN;则S=S2-S1=S3-S2= …… =SN-SN-1= aT2三.运用匀变速直线运动规律解题的一般步骤。

(1)审题,弄清题意和物体的运动过程。

(2)明确已知量和要求的物理量(知三求一:知道三个物理量求解一个未知量)。

例如:知道、、求解末速度用公式:(3)规定正方向(一般取初速度为正方向),确定正、负号。

(4)选择恰当的公式求解。

(5)判断结果是否符合题意,根据正、负号确定所求物理量的方向。

1.在匀变速直线运动中,下列说法中正确的是()A. 相同时间内位移的变化相同B. 相同时间内速度的变化相同C. 相同时间内加速度的变化相同D. 相同路程内速度的变化相同2.做匀减速直线运动的质点,它的位移随时间变化的规律是s=24t-1.5t2(m),当质点的速度为零,则t为多少()A.1.5s B.8s C.16s D.24s3.某火车从车站由静止开出做匀加速直线运动,最初一分钟内行驶,那么它在最初10s行驶的距离是()A. B. C. D. 15m4.一物体做匀减速直线运动,初速度为/s,加速度大小为/s2,则物体在停止运动前ls内的平均速度为()A./s B./s C.l m/s D./s5. 一辆汽车从车站以初速度为0匀加速直线开出一段时间之后,司机发现一乘客未上车,便紧急刹车做匀减速运动。

匀变速直线运动

匀变速直线运动

匀变速直线运动【知识点归纳】1、匀变速直线运动位移与时间的关系的公式表达:2021at t v s += s 为t 时间内的位移。

当a=0时,t v s 0=当v 0=0时,221at s =当a<0时,2021at t v s -= 可见2021at t v s +=是匀变速直线运动位移公式的一般表示形式,只要知道运动物体的初速度v 0和加速度a ,就可以计算出任意一段时间内的位移,从而确定任意时刻物体所在的位置。

位移公式也可以用速度——时间图像求出面积得位移而推出。

2、匀变速直线运动的位移和速度的关系as v v t 2202=-这个关系式是匀变速直线运动规律的一个重要的推论。

关系式中不含时间t ,在一些不涉及到时间的问题中,应用这个关系是较方便的。

3、匀变速直线运动的两个推论1.匀变速直线运动的物体在连续相等的时间(T)内的位移之差为一恒量。

①公式:S 2-S 1=S 3-S 2=S 4-S 3=…=S n -S n-1=△S=aT2 ②推广:S m -S n =(m-n )aT 22.某段时间中间时刻的瞬时速度等于这段时间的平均速度,即: v v t =2【案例分析】例1.某物体作变速直线运动,关于此运动下列论述正确的是( )A .速度较小,其加速度一定较小B .运动的加速度减小,其速度变化一定减慢C .运动的加速度较小,其速度变化一定较小D .运动的速度减小,其位移一定减小例2.火车从车站由静止开出做匀加速直线运动,最初一分钟行驶540米,则它在最初l0秒行驶的距离是( )A .90米B .45米C .30米D .15米例3一物体由静止沿光滑斜面匀加速下滑距离为L 时,速度为V ,当它的速度是v /2时,它沿全面下滑的距离是A .L /2B . 2L/2C .L /4D .3L /4例4:一物体以初速度v 1做匀变速直线运动,经时间t 速度变为v 2求:(1)物体在时间t 内的位移. (2)(3)比较vt/2和v s/2例5:一辆沿平直路面行驶的汽车,速度为36km/h.刹车后获得加速度的大小是4m/s2,求:(1)刹车后3s末的速度;(2)从开始刹车至停止,滑行一半距离时的速度.例6、一个质点作初速为零的匀加速运动,试求它在1s,2s,3s,…内的位移s1,s2,s3,…之比和在第1s,第2s,第3s,…内的位移SⅠ,SⅡ,SⅢ,…之比各为多少?【一试身手】1、甲、乙两辆汽车速度相等,在同时制动后,均做匀减速运动,甲经3s停止,共前进了36m,乙经1.5s停止,乙车前进的距离为:()(A)9m (B)18m (C)36m (D)27m2、质量都是m的物体在水平面上运动,则在下图所示的运动图像中表明物体做匀速直线运动的图像的是()3、物体运动时,若其加速度恒定,则物体:(A)一定作匀速直线运动; (B)一定做直线运动;(C)可能做曲线运动; (D)可能做圆周运动。

专题一 1 匀变速直线运动(知识点完整归纳)

专题一 1 匀变速直线运动(知识点完整归纳)

1 匀变速直线运动1.匀变速直线运动:沿着一条直线,且加速度不变的运动. 2.基本规律 (1)两个基本公式 速度公式:v =v 0+at . 位移公式:x =v 0t +12at 2.(2)常用的导出公式①速度和位移公式:v 2-v 02=2ax . ②平均速度公式:v =v t 2=v 0+v2.③位移差公式:Δx =x n +1-x n =aT 2.即任意两个连续相等时间内的位移差是一个恒量.1.匀变速直线运动公式的选用一般情况下用两个基本公式可以解决,当遇到以下特殊情况时,用导出公式会提高解题的速度和准确率:(1)不涉及时间,比如从v 0匀加速到v 后求位移x ,可用v 2-v 02=2ax .(2)平均速度公式的应用:纸带运用v t 2=xt =v 求瞬时速度;传送带问题、板块问题、追及问题运用x =v 0+v2t 求位移或相对位移;带电粒子在匀强电场中的运动运用类平抛运动两个方向的速度、位移联系,如x =v 0t ,y =v y2t ,根据x 、y 的大小关系,确定v y 和v 0的关系.(3)位移差公式的应用:纸带运用Δx =x 2-x 1=aT 2,x m -x n =(m -n )aT 2求加速度,已知4段、5段、6段位移用逐差法求加速度.研究平抛运动实验,利用平抛运动轨迹,根据y 2-y 1=gT 2求时间间隔或求重力加速度. (4)初速度为零的比例式:特别应记住运动开始连续相等时间内的位移之比为1∶3∶5∶7∶…. 2.三种常见的方法:(1)全过程法:全过程中若加速度不变,虽然有往返运动,但可以全程列式,此时要注意各矢量的方向(即正负号).如竖直上抛运动、沿光滑斜面上滑等.(2)逆向思维法:对于末速度为零的匀减速直线运动,可以采用逆向思维法,倒过来看成是初速度为零的匀加速直线运动.如一个人投篮球垂直砸到篮球板上,这是一个斜抛运动,也可以运用逆向思维当作反向的平抛运动.(3)图象法:比如带电粒子在交变电场中的运动,可借助v -t 图象分析运动过程. 3.分析匀变速直线运动的技巧:“一画、二选、三注意” 一画:根据题意画出物体运动示意图,使运动过程直观清晰; 二选:选用合适的方法和公式;三注意:列方程前首先选取正方向,且所列的方程式中每一个物理量均需对应同一个物理过程.4.一个二级结论如图1,两段匀变速直线运动,先从静止匀加速再匀减速,若经相同时间,又回到原位置. 根据x 2=-x 1,可得到a 2=-3a 1.图1示例1 (平均速度法)(2016·上海卷·14)物体做匀加速直线运动,相继经过两段距离为16 m 的路程,第一段用时4 s ,第二段用时2 s ,则物体的加速度是( ) A.23 m/s 2 B.43 m/s 2 C.89 m/s 2 D.169m/s 2 答案 B解析 物体做匀加速直线运动,t 时间内的平均速度等于中间时刻的瞬时速度,在第一段内中间时刻的瞬时速度为:v 1=x t 1=164 m /s =4 m/s ;在第二段内中间时刻的瞬时速度为:v 2=xt 2=162 m /s =8 m/s ;则物体加速度为:a =v 2-v 1Δt =8-43 m/s 2=43 m/s 2,故选项B 正确. 示例2 (逆向思维法)(2019·全国卷Ⅰ·18)如图2,篮球架下的运动员原地垂直起跳扣篮,离地后重心上升的最大高度为H .上升第一个H 4所用的时间为t 1,第四个H4所用的时间为t 2.不计空气阻力,则t 2t 1满足( )图2A .1<t 2t 1<2B .2<t 2t 1<3C .3<t 2t 1<4D .4<t 2t 1<5答案 C解析 本题应用逆向思维法求解,即运动员的竖直上抛运动可等同于从一定高度处开始的自由落体运动的逆运动,所以第四个H4所用的时间为t 2=2×H 4g ,第一个H4所用的时间为t 1=2H g-2×34H g ,因此有t 2t 1=12-3=2+3,即3<t 2t 1<4,选项C 正确. 示例3 (全过程法)如图3所示,一个可视为质点的滑块从倾角为30°的光滑固定斜面底端A 以10 m /s 的初速度上滑,斜面足够长,求:(g =10 m/s 2)图3(1)滑块从A 点开始又回到A 点所用的时间; (2)滑块到达距A 点7.5 m 处的B 点时所用的时间. 答案 (1)4 s (2)1 s 或3 s解析 (1)设滑块在斜面上的加速度为a . 由牛顿第二定律:mg sin θ=ma得a =g sin 30°滑块上滑、下滑过程中加速度不变 由全过程法分析,位移x 1=0由x 1=v 0t 1-12at 12,得t 1=4 s(另一解不符合题意,舍去)(2)滑块由A 至B ,位移x 2=7.5 m , 由x 2=v 0t -12at 2得t =1 s 或t =3 s.示例4 (初速度为零的比例式)两块足够大的平行金属极板水平放置,如图4甲所示,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图乙、丙所示(规定垂直纸面向里为磁感应强度的正方向).在t =0时刻,由负极板释放一个初速度为零的带负电的粒子(不计重力).若电场强度E 0、磁感应强度B 0、粒子的比荷q m 均已知,且t 0=2πm qB 0.粒子在0~t 0时间内运动的位移为L ,且在5t 0时刻打在正极板上(在此之前未与极板相碰).求:图4(1)两极板之间的距离;(2)粒子在两极板之间做圆周运动的最大半径. 答案 (1)9L (2)4πmE 0qB 02解析 在0~t 0时间内粒子只受电场力作用,做初速度为零的匀加速直线运动.在t 0~2t 0时间内粒子只受洛伦兹力作用做匀速圆周运动,因为t 0=2πmqB 0,所以t 0~2t 0时间内粒子完成完整的圆周运动,在0~5t 0时间内粒子的运动轨迹如图所示.(1)粒子在电场中做直线运动的三段位移之比为x1∶x2∶x3=1∶3∶5,又x1=L所以两板距离d=x1+x2+x3=9L(2)t0末粒子的速度v1=at0=qE0m t0,3t0末粒子的速度v2=a·2t0=qE0m·2t0由q v B0=m v2r ,得r=m vqB0,则r1=E0t0B0,r2=2E0t0B0,r2>r1,所以粒子最大半径为r2,由于t0=2πmqB0则粒子最大半径r2=4πmE0qB20.。

匀变速直线运动知识点

匀变速直线运动知识点

匀变速直线运动知识点匀变速直线运动是物理学中的重要内容之一,是运动学的一部分。

在匀变速直线运动中,物体以直线路径运动,速度随时间变化。

普通物理课程中主要介绍匀变速直线运动的相关知识点有:运动的描述、速度与位移、加速度和时间的关系、速度和时间的关系以及运动图象与运动规律等。

一、运动的描述运动的描述主要包括起点、终点、位移、时刻、时间间隔等。

起点是运动物体运动的初始点,终点是运动物体运动的最后点。

位移是描述物体位置变化的大小和方向,可以用矢量表示。

时刻是运动物体的其中一瞬间,是描述运动的时间点。

时间间隔是描述运动物体在其中一段时间内运动的变化情况。

二、速度与位移速度是描述运动物体运动快慢和运动方向的物理量。

匀变速直线运动中,速度随时间变化,根据速度的定义可知速度等于位移与时间的比值。

速度可以用矢量表示,包括大小和方向。

在匀变速直线运动中,速度的大小为常数,方向可以为正、负或零,分别表示正向、负向和静止。

三、加速度和时间的关系加速度是描述物体速度变化快慢和变化方向的物理量。

匀变速直线运动中,加速度为常数。

根据加速度的定义可知,加速度等于速度的变化率。

在匀变速直线运动中,速度的变化量等于加速度乘以时间,即△v=a△t。

加速度可以为正、负或零,分别表示加速、减速和匀速。

四、速度和时间的关系速度与时间的关系是匀变速直线运动中重要的运动规律之一、在匀变速直线运动中,速度随时间线性变化。

根据速度的定义可知,速度等于位移与时间的比值,即v=△x/△t。

由此可知,位移等于速度乘以时间,即△x=v△t。

五、运动图象与运动规律运动图象是描述运动物体运动情况的图形,常用的运动图象有位移-时间图象、速度-时间图象和加速度-时间图象。

针对不同的运动情况,可以得到相应的运动规律。

1.位移-时间图象:位移-时间图象是通过运动物体的位移与时间的关系绘制的图象。

在匀变速直线运动中,位移-时间图象为一条直线,直线的斜率代表速度。

2.速度-时间图象:速度-时间图象是通过运动物体的速度与时间的关系绘制的图象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

匀变速直线运动知识点 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-专题二:直线运动考点例析直线运动是高中物理的重要章节,是整个物理学的基础内容之一。

本章涉及位移、速度、加速度等多个物理量,基本公式也较多,同时还有描述运动规律的s-t图象、V-t图象等知识。

从历年高考试题的发展趋势看,本章内容作为一个孤立的知识点单独考查的命题并不多,更多的是体现在综合问题中,甚至与力、电场中带电粒子、磁场中的通电导体、电磁感应现象等结合起来,作为综合试题中的一个知识点加以体现。

为适应综合考试的要求,提高综合运用学科知识分析、解决问题的能力。

同学们复习本章时要在扎实掌握学科知识的基础上,注意与其他学科的渗透以及在实际生活、科技领域中的应用,经常用物理视角观察自然、社会中的各类问题,善于应用所学知识分析、解决问题,尤其是提高解决综合问题的能力。

本章多与公路、铁路、航海、航空等交通方面知识或电磁学知识综合。

一、夯实基础知识(一)、基本概念1.质点——用来代替物体的有质量的点。

(当物体的大小、形状对所研究的问题的影响可以忽略时,物体可作为质点。

)2.速度——描述运动快慢的物理量,是位移对时间的变化率。

3.加速度——描述速度变化快慢的物理量,是速度对时间的变化率。

4.速率——速度的大小,是标量。

只有大小,没有方向。

5.注意匀加速直线运动、匀减速直线运动、匀变速直线运动的区别。

(二)、匀变速直线运动公式1.常用公式有以下四个:at V V t +=0,2021at t V s +=,as V V t 2202=- t V V s t 20+= ⑴以上四个公式中共有五个物理量:s 、t 、a 、V 0、V t ,这五个物理量中只有三个是独立的,可以任意选定。

只要其中三个物理量确定之后,另外两个就唯一确定了。

每个公式中只有其中的四个物理量,当已知某三个而要求另一个时,往往选定一个公式就可以了。

如果两个匀变速直线运动有三个物理量对应相等,那么另外的两个物理量也一定对应相等。

⑵以上五个物理量中,除时间t 外,s 、V 0、V t 、a 均为矢量。

一般以V 0的方向为正方向,以t =0时刻的位移为零,这时s 、V t 和a 的正负就都有了确定的物理意义。

2.匀变速直线运动中几个常用的结论①Δs=aT 2,即任意相邻相等时间内的位移之差相等。

可以推广到s m -s n =(m-n)aT 2 ②202t t V V V +=,某段时间的中间时刻的即时速度等于该段时间内的平均速度。

22202t s V V V += ,某段位移的中间位置的即时速度公式(不等于该段位移内的平均速度)。

可以证明,无论匀加速还是匀减速,都有22s t V V <。

3.初速度为零(或末速度为零)的匀变速直线运动 做匀变速直线运动的物体,如果初速度为零,或者末速度为零,那么公式都可简化为:gt V = , 221at s = , as V 22= , t V s 2= 以上各式都是单项式,因此可以方便地找到各物理量间的比例关系。

4.初速为零的匀变速直线运动①前1s 、前2s 、前3s ……内的位移之比为1∶4∶9∶……②第1s 、第2s 、第3s ……内的位移之比为1∶3∶5∶……③前1m 、前2m 、前3m ……所用的时间之比为1∶2∶3∶……④第1m 、第2m 、第3m ……所用的时间之比为1∶()12-∶(23-)∶……5、自由落体运动是初速度为零的匀加速直线运动,竖直上抛运动是匀减速直线运动,可分向上的匀减速运动和竖直向下匀加速直线运动。

二、解析典型问题问题1:注意弄清位移和路程的区别和联系。

位移是表示质点位置变化的物理量,它是由质点运动的起始位置指向终止位置的矢量。

位移可以用一根带箭头的线段表示,箭头的指向代表位移的方向,线段的长短代表位移的大小。

而路程是质点运动路线的长度,是标量。

只有做直线运动的质点始终朝着一个方向运动时,位移的大小才与运动路程相等。

例1、一个电子在匀强磁场中沿半径为R 的圆周运动。

转了3圈回到原位置,运动过程中位移大小的最大值和路程的最大值分别是:A .2R ,2R ;B .2R ,6πR ;C .2πR ,2R ;D .0,6πR 。

分析与解:位移的最大值应是2R ,而路程的最大值应是6πR 。

即B 选项正确。

问题2.注意弄清瞬时速度和平均速度的区别和联系。

瞬时速度是运动物体在某一时刻或某一位置的速度,而平均速度是指运动物体在某一段时间t ∆或某段位移x ∆的平均速度,它们都是矢量。

当0→∆t 时,平均速度的极限,就是该时刻的瞬时速度。

例2、甲、乙两辆汽车沿平直公路从某地同时驶向同一目标,甲车在前一半时间内以速度V 1做匀速直线运动,后一半时间内以速度V 2做匀速直线运动;乙车在前一半路程中以速度V 1做匀速直线运动,后一半路程中以速度V 2做匀速直线运动,则( )。

A .甲先到达;B.乙先到达; C.甲、乙同时到达; D.不能确定。

分析与解:设甲、乙车从某地到目的地距离为S ,则对甲车有212V V S t +=甲;对于乙车有 2121212)(22V V S V V V S V S t +=+=乙,所以22121)(4V V V V t t +=乙甲,由数学知识知212214)(V V V V >+,故t 甲<t 乙,即正确答案为A 。

问题3.注意弄清速度、速度的变化和加速度的区别和联系。

加速度是描述速度变化的快慢和方向的物理量,是速度的变化和所用时间的比值,加速度a 的定义式是矢量式。

加速度的大小和方向与速度的大小和方向没有必然的联系。

只要速度在变化,无论速度多小,都有加速度;只要速度不变化,无论速度多大,加速度总是零;只要速度变化快,无论速度是大、是小或是零,物体的加速度就大。

加速度的与速度的变化ΔV 也无直接关系。

物体有了加速度,经过一段时间速度有一定的变化,因此速度的变化ΔV 是一个过程量,加速度大,速度的变化ΔV 不一定大;反过来,ΔV 大,加速度也不一定大。

例3、一物体作匀变速直线运动,某时刻速度的大小为4m/s,1s 后速度的大小变为10m/s.在这1s 内该物体的( ).(A)位移的大小可能小于4m (B)位移的大小可能大于10m(C)加速度的大小可能小于4m/s 2 (D)加速度的大小可能大于10m/s 2. 分析与解:本题的关键是位移、速度和加速度的矢量性。

若规定初速度V 0的方向为正方向,则仔细分析“1s 后速度的大小变为10m/s ”这句话,可知1s后物体速度可能是10m/s ,也可能是-10m/s,因而有: 同向时,.72,/6/1410012201m t V V S s m s m t V V a t t =+==-=-= 反向时,.32,/14/1410022202m t V V S s m s m t V V a t t -=+=-=--=-=式中负号表示方向与规定正方向相反。

因此正确答案为A 、D 。

问题4.注意弄清匀变速直线运动中各个公式的区别和联系。

加速度a 不变的变速直线运动是匀变速直线运动,是中学阶段主要研究的一种运动。

但匀变速直线运动的公式较多,不少同学感觉到不易记住。

其实只要弄清各个公式的区别和联系,记忆是不困难的。

加速度的定义式是“根”,只要记住“tV V a t 0-=”,就记住了“V t =V 0+at”;基本公式是“本”,只要记住“V t =V 0+at”和“20_21at t V t V S +==”,就记住了“20_V V V t +=”和as V V t 2202+=; 推论公式是“枝叶”,一个特征:2aT S =∆,物理意义是做匀变速直线运动的物体在相邻相等时间间隔内位移差相等;二个中点公式:时间中点20t V V V +=-,位移中点2220t V V V +=中点;三个等时比例式:对于初速度为零的匀加速直线运动有,S 1:S 2:S 3……=1:4:9……,S Ⅰ:S Ⅱ:SⅢ……=1:3:5……,V 1:V 2:V 3……=1:2:3……;两个等位移比例式:对于初速度为零的匀加速直线运动有, ::::::321321=t t t 和例4、.一汽车在平直的公路上以s m V /200=做匀速直线运动,刹车后,汽车以大小为2/4s m a =的加速度做匀减速直线运动,那么刹车后经8s 汽车通过的位移有多大分析与解:首先必须弄清汽车刹车后究竟能运动多长时间。

选V 0的方向为正方向,则根据公式t V a 00-=-,可得s s a V t 54200=== 这表明,汽车并非在8s 内都在运动,实际运动5s 后即停止。

所以,将5s 代入位移公式,计算汽车在8s 内通过的位移。

即不少学生盲目套用物理公式,“潜在假设”汽车在8s 内一直运动,根据匀减速直线运动的位移公式可得:这是常见的一种错误解法,同学们在运用物理公式时必须明确每一个公式中的各物理量的确切含义,深入分析物体的运动过程。

例5、物体沿一直线运动,在t 时间内通过的路程为S ,它在中间位置S 21处的速度为V 1,在中间时刻t 21时的速度为V 2,则V 1和V 2的关系为( )A .当物体作匀加速直线运动时,V 1>V 2; B.当物体作匀减速直线运动时,V 1>V 2;C .当物体作匀速直线运动时,V 1=V 2; D.当物体作匀减速直线运动时,V 1<V 2。

分析与解:设物体运动的初速度为V 0,未速度为V t ,由时间中点速度公式20t V V V +=-得202t V V V +=;由位移中点速度公式2220t V V V +=中点得22201t V V V +=。

用数学方法可证明,只要t V V ≠0,必有V 1>V 2;当t V V =0,物体做匀速直线运动,必有V 1=V 2。

所以正确选项应为A 、B 、C 。

例6、一个质量为m 的物块由静止开始沿斜面下滑,拍摄此下滑过程得到的同步闪光(即第一次闪光时物块恰好开始下滑)照片如图1所示.已知闪光频率为每秒10次,根据照片测得物块相邻两位置之间的距离分别为AB =,BC =,CD =,DE =.由此可知,物块经过D 点时的速度大小为________m/s ;滑块运动的加速度为________.(保留3位有效数字)分析与解:据题意每秒闪光10次,所以每两次间的时间间隔T=,根据中间时刻的速度公式得s m s m T CE V D /46.1/102.01.172.1222_=⨯+==-. 图1根据2aT S =∆得2)2(T a AC CE =---,所以=-=--24T AC CE a s 2. 问题5.注意弄清位移图象和速度图象的区别和联系。

相关文档
最新文档