自动控制原理实验2解析

合集下载

《自动控制原理》实验2(线性系统时域响应分析)

《自动控制原理》实验2(线性系统时域响应分析)

实验二 线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。

2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。

二、基础知识及MATLAB 函数(一)基础知识时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。

为了研究控制系统的时域特性,经常采用瞬态响应(如阶跃响应、脉冲响应和斜坡响应)。

本次实验从分析系统的性能指标出发,给出了在MATLAB 环境下获取系统时域响应和分析系统的动态性能和稳态性能的方法。

用MATLAB 求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分别以s 的降幂排列写为两个数组num 、den 。

由于控制系统分子的阶次m 一般小于其分母的阶次n ,所以num 中的数组元素与分子多项式系数之间自右向左逐次对齐,不足部分用零补齐,缺项系数也用零补上。

1.用MATLAB 求控制系统的瞬态响应1)阶跃响应 求系统阶跃响应的指令有:step(num,den) 时间向量t 的范围由软件自动设定,阶跃响应曲线随即绘出step(num,den,t) 时间向量t 的范围可以由人工给定(例如t=0:0.1:10)[y ,x]=step(num,den) 返回变量y 为输出向量,x 为状态向量在MATLAB 程序中,先定义num,den 数组,并调用上述指令,即可生成单位阶跃输入信号下的阶跃响应曲线图。

考虑下列系统:25425)()(2++=s s s R s C 该系统可以表示为两个数组,每一个数组由相应的多项式系数组成,并且以s的降幂排列。

则MATLAB 的调用语句:num=[0 0 25]; %定义分子多项式 den=[1 4 25]; %定义分母多项式step(num,den) %调用阶跃响应函数求取单位阶跃响应曲线grid %画网格标度线 xlabel(‘t/s’),ylabel(‘c(t)’) %给坐标轴加上说明 title(‘Unit -step Respinse of G(s)=25/(s^2+4s+25)’) %给图形加上标题名 则该单位阶跃响应曲线如图2-1所示:为了在图形屏幕上书写文本,可以用text 命令在图上的任何位置加标注。

自控原理实验二

自控原理实验二

实验二 二阶系统的阶跃响应一、实验目的1. 通过实验了解参数ζ(阻尼比)、n ω(阻尼自然频率)的变化对二阶系统动态性能的影响;2. 掌握二阶系统动态性能的测试方法。

二、实验内容1. 观测二阶系统的阻尼比分别在0<ζ<1,ζ=1和ζ>1三种情况下的单位阶跃响应曲线;2. 调节二阶系统的开环增益K ,使系统的阻尼比21=ζ,测量此时系统的超调量p δ、调节时间t s (Δ= ±0.05);3. ζ为一定时,观测系统在不同n ω时的响应曲线。

三、实验原理1. 二阶系统的瞬态响应用二阶常微分方程描述的系统,称为二阶系统,其标准形式的闭环传递函数为2222)()(n n n S S S R S C ωζωω++= (2-1) 闭环特征方程:0222=++n n S ωζω 其解 122,1-±-=ζωζωn n S ,针对不同的ζ值,特征根会出现下列三种情况:1)0<ζ<1(欠阻尼),22,11ζωζω-±-=n n j S此时,系统的单位阶跃响应呈振荡衰减形式,其曲线如图2-1的(a)所示。

它的数学表达式为: 式中21ζωω-=n d ,ζζβ211-=-tg 。

2)1=ζ(临界阻尼)n S ω-=2,1此时,系统的单位阶跃响应是一条单调上升的指数曲线,如图2-1中的(b)所示。

3)1>ζ(过阻尼),122,1-±-=ζωζωn n S此时系统有二个相异实根,它的单位阶跃响应曲线如图2-1的(c)所示。

(a) 欠阻尼(0<ζ<1) (b)临界阻尼(1=ζ) (c)过阻尼(1>ζ)图2-1 二阶系统的动态响应曲线虽然当ζ=1或ζ>1时,系统的阶跃响应无超调产生,但这种响应的动态过程太缓慢,故控制工程上常采用欠阻尼的二阶系统,一般取ζ=0.6~0.7,此时系统的动态响应过程不仅快速,而且超调量也小。

2. 二阶系统的典型结构典型的二阶系统结构方框图和模拟电路图如下图所示。

自动控制实验2实验报告

自动控制实验2实验报告

⾃动控制实验2实验报告:实验报告项⽬名称: MATLAB⽤于时域分析课程名称: ⾃动控制原理信息科学与⼯程学院通信⼯程系⼀、实验名称:MATLAB⽤于时域分析⼆、1)⼀阶系统响应sys1=tf([100],[1 0]);sys2=tf([0.1],[1]);sys=feedback(sys1,sys2);step(sys)1)⼆阶系统响应%Wn=1;t=0:0.1:12;num=[1];zetal=0;den1=[1 2*zetal 1]; zeta3=0.3; den3=[1 2*zeta3 1]; zeta5=0.5; den5=[1 2*zeta5 1]; zeta7=0.7; den7=[1 2*zeta7 1]; zeta9=1.0; den9=[1 2*zeta9 1]; [y1,x,t]=step(num,den1,t);[y3,x,t]=step(num,den3,t);[y5,x,t]=step(num,den5,t);[y7,x,t]=step(num,den7,t);[y9,x,t]=step(num,den9,t);plot(t,y1,t,y3,t,y5,t,y7,t,y9); grid on3)稳定性分析den=[1 1 2 24];roots(den)4)动态性能分析t=0:0.01:2;num=[1000];den=[1 34.5 1000];[y,x,t]=step(num,den,t);plot(t,y);%求超调量maxy=max(y);yss=y(length(t));pos=100*(maxy-yss)/yss%求峰值时间for i=1:1:201if y(i)==maxy,n=i;endendtp=(n-1)*0.01%求调节时间for i=n:1:201if(y(i)<1.05&y(i)>0.95),m=i;break;endendym=y(18)ts=(m-1)*0.015)稳态误差分析%-----------单位冲击-------t=0:0.1:15;[num1,den1]=cloop([1],[1,1]);[num2,den2]=cloop([1],[1,1,0]); [num3,den3]=cloop([4,1],[1,1,0,0]); y1=impulse(num1,den1,t); y2=impulse(num2,den2,t);y3=impulse(num3,den3,t);subplot(3,1,1);plot(t,y1);subplot(3,1,2);plot(t,y2);subplot(3,1,3);plot(t,y3);er1=0-y1(length(t))%0型系统稳态误差er2=0-y2(length(t))%1型系统稳态误差er3=0-y3(length(t))%2型系统稳态误差figure;%-----------单位阶跃-------t=0:0.1:20;[num1,den1]=cloop([1],[1,1]);[num2,den2]=cloop([1],[1,1,0]); [num3,den3]=cloop([4,1],[1,1,0,0]); y1=step(num1,den1,t);y2=step(num2,den2,t);y3=step(num3,den3,t);subplot(3,1,1);plot(t,y1);subplot(3,1,2);plot(t,y2);subplot(3,1,3);plot(t,y3);er4=0-y1(length(t))%0型系统稳态误差er5=0-y2(length(t))%1型系统稳态误差er6=0-y3(length(t))%2型系统稳态误差figure%-----------单位斜坡-------t=0:0.1:20;t1=0:0.1:20;[num1,den1]=cloop([1],[1,1]);[num2,den2]=cloop([1],[1,1,0]); [num3,den3]=cloop([4,1],[1,1,0,0]); y1=step(num1,[den1 0],t);y2=step(num2,[den2 0],t);y3=step(num3,[den3 0],t);subplot(3,1,1);plot(t1,y1,t1,t1); subplot(3,1,2);plot(t,y2,t,t); subplot(3,1,3);plot(t,y3,t,t);er7=t1(length(t1))-y1(length(t))%0型系统稳态误差er8=t(length(t))-y2(length(t))%1型系统稳态误差er9=t(length(t))-y3(length(t))%2型系统稳态误差6)实例分析:kp=[0.11 6];t=[0:0.01:1];num1=303.03*kp(1);den1=[0.00001 0.00633 0.20167 21.21*kp(1)+1]; y1=step(num1,den1,t);num2=303.03*kp(2);den2=[0.00001 0.00633 0.20167 21.21*kp(2)+1]; y2=step(num2,den2,t);subplot(211),plot(t,y1);subplot(212);plot(t,y2);gtext('kp=0.11');gtext('kp=6');。

自动控制原理实验二阶系统的阶跃响应

自动控制原理实验二阶系统的阶跃响应

自动控制原理实验二阶系统的阶跃响应一、实验目的通过实验观察和分析阶跃响应曲线,了解二阶系统的动态特性,掌握用MATLAB仿真二阶系统阶跃响应曲线的绘制方法,提高对二阶系统动态性能指标的计算与分析能力。

二、实验原理1.二阶系统的传递函数形式为:G(s)=K/[(s+a)(s+b)]其中,K为系统增益,a、b为系统的两个特征根。

特征根的实部决定了系统的稳定性,实部小于零时系统稳定。

2.阶跃响应的拉氏变换表达式为:Y(s)=G(s)/s3.阶跃响应的逆拉氏变换表达式为:y(t)=L^-1{Y(s)}其中,L^-1表示拉氏逆变换。

三、实验内容1.搭建二阶系统,调整增益和特征根,使系统稳定,并记录实际的参数数值。

2.使用MATLAB绘制二阶系统的阶跃响应曲线,并与实际曲线进行对比分析。

四、实验步骤1.搭建二阶系统,调整增益和特征根,使系统稳定。

根据实验要求,选择适当的数字电路元件组合,如电容、电感、电阻等,在实际电路中搭建二阶系统。

2.连接模拟输入信号。

在搭建的二阶系统的输入端接入一个阶跃信号发生器。

3.连接模拟输出信号。

在搭建的二阶系统的输出端接入一个示波器,用于实时观察系统的输出信号。

4.调整增益和特征根。

通过适当调整二阶系统的增益和特征根,使系统达到稳定状态。

记录实际调整参数的数值。

5.使用MATLAB进行仿真绘制。

根据实际搭建的二阶系统参数,利用MATLAB软件进行仿真,绘制出二阶系统的阶跃响应曲线。

6.对比分析实际曲线与仿真曲线。

通过对比分析实际曲线与仿真曲线的差异,分析二阶系统的动态特性。

五、实验结果与分析1.实际曲线的绘制结果。

根据实际参数的输入,记录实际曲线的绘制结果,并描述其特点。

2.仿真曲线的绘制结果。

利用MATLAB软件进行仿真,绘制出仿真曲线,并与实际曲线进行对比分析。

3.实际曲线与仿真曲线的对比分析。

通过对比实际曲线与仿真曲线的差异,分析二阶系统的动态特性,并讨论影响因素。

六、实验讨论与结论1.实验过程中遇到的问题。

自动控制原理实验报告 (2)

自动控制原理实验报告 (2)

实验一 典型环节的模拟研究及阶跃响应分析1、比例环节可知比例环节的传递函数为一个常数:当Kp 分别为0.5,1,2时,输入幅值为1.84的正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。

实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号, 相对误差分别为1.8%,2.2%,0.2%. 在误差允许范围内可认为实际输出满足理论值。

2、 积分环节积分环节传递函数为:(1)T=0.1(0.033)时,C=1μf (0.33μf ),利用MATLAB ,模拟阶跃信号输入下的输出信号如图: T=0.1 T=0.033与实验测得波形比较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许范围内可认为满足理论条件。

3、 惯性环节惯性环节传递函数为:if i o R RU U -=TS1CS R 1Z Z U U i i f i 0-=-=-=1TS K)s (R )s (C +-=K = R f /R 1,T = R f C,(1) 保持K = R f /R 1 = 1不变,观测T = 0.1秒,0.01秒(既R 1 = 100K,C = 1μf ,0.1μf )时的输出波形。

利用matlab 仿真得到理论波形如下: T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较大。

K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近。

T=0.01时t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3%由于ts 较小,所以读数时误差较大。

K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近(2) 保持T = R f C = 0.1s 不变,分别观测K = 1,2时的输出波形。

华南农业大学自动控制原理实验报告二

华南农业大学自动控制原理实验报告二

专业班次 组别题 目 典型环节的电路模拟与软件仿真研究 姓名(学号) 日期 2019.03.27一、实验目的1.通过实验熟悉并掌握实验装置和上位机软件的使用方法。

2.通过实验熟悉各种典型环节的传递函数及其特性,掌握电路模拟和软件仿真研究方法。

二、实验内容1.设计各种典型环节的模拟电路。

2.完成各种典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。

3.利用上位机界面上的软件仿真功能,完成各典型环节阶跃特性的软件仿真研究,并与电路模拟测试的结果作比较。

三、实验原理1.积分(I )环节的传递函数、方块图、模拟电路和阶跃响应 积分环节的传递函数为:0()1()()i U s G s U s Ts== 其方块图、模拟电路和阶跃响应,分别如图4、图5和图6所示。

U 为输入阶跃信号的幅值。

式中:1T R C =为积分时间常数。

1K T=为积分增益。

3.惯性环节的传递函数、方块图、模拟电路和阶跃响应 惯性环节的传递函数为:0()1i U KG s U Ts ==+ 其方块图、模拟电路和阶跃响应,分别如图2-1-7、图2-1-8和图2-1-9所示。

U 为输入阶跃信号的幅值。

式中:2T R C =为惯性时间常数。

21R K R =为惯性增益。

专业班次组别题目典型环节的电路模拟与软件仿真研究姓名(学号)日期 2019.03.27四、实验步骤1.积分(I)环节(1)步骤1:构造模拟电路典型积分环节模拟电路连线图如图16所示图16 典型积分环节模拟电路(2)步骤2:打开labview的时域特性程序后,软件界面的参数设置如下: 测试信号:阶跃;幅值:3V(偏移0);频率/周期:1s(占空比50%);运行程序,直接进行实验。

阶跃响应曲线如图17图17 积分环节阶跃响应曲线(3)步骤3:按表2-6改变实验参数,并将结果记录到表2-6中。

※注意:为提高实验精度,在示波器屏幕上测取T时,数据应作均值滤波。

自控实验报告实验二

自控实验报告实验二

自控实验报告实验二一、实验目的本次自控实验的目的在于深入理解和掌握控制系统的性能指标以及相关参数对系统性能的影响。

通过实验操作和数据分析,提高我们对自控原理的实际应用能力,培养解决实际问题的思维和方法。

二、实验设备本次实验所使用的设备主要包括:计算机一台、自控实验箱一套、示波器一台、信号发生器一台以及相关的连接导线若干。

三、实验原理在本次实验中,我们主要研究的是典型的控制系统,如一阶系统和二阶系统。

一阶系统的传递函数通常表示为 G(s) = K /(Ts + 1),其中 K 为增益,T 为时间常数。

二阶系统的传递函数则可以表示为 G(s) =ωn² /(s²+2ζωn s +ωn²),其中ωn 为无阻尼自然频率,ζ 为阻尼比。

通过改变系统的参数,如增益、时间常数、阻尼比等,观察系统的输出响应,从而分析系统的稳定性、快速性和准确性等性能指标。

四、实验内容与步骤1、一阶系统的阶跃响应实验按照实验电路图连接好实验设备。

设置不同的时间常数 T 和增益 K,通过信号发生器输入阶跃信号。

使用示波器观察并记录系统的输出响应。

2、二阶系统的阶跃响应实验同样按照电路图连接好设备。

改变阻尼比ζ 和无阻尼自然频率ωn,输入阶跃信号。

用示波器记录输出响应。

五、实验数据记录与分析1、一阶系统当时间常数 T = 1s,增益 K = 1 时,系统的输出响应呈现出一定的上升时间和稳态误差。

随着时间的推移,输出逐渐稳定在一个固定值。

当 T 增大为 2s,K 不变时,上升时间明显变长,系统的响应速度变慢,但稳态误差基本不变。

2、二阶系统当阻尼比ζ = 05,无阻尼自然频率ωn = 1rad/s 时,系统的输出响应呈现出较为平稳的过渡过程,没有明显的超调。

当ζ 减小为 02,ωn 不变时,系统出现了较大的超调,调整时间也相应变长。

通过对实验数据的分析,我们可以得出以下结论:对于一阶系统,时间常数 T 越大,系统的响应速度越慢;增益 K 主要影响系统的稳态误差。

自动控制原理实验报告二

自动控制原理实验报告二

-500
-400
-1
-300
-200
-100
Real Axis (seconds )
Step Response 1 0.9 0.8 0.7
System: sys Settling time (seconds): 0.174 System: sys Rise time (seconds): 0.00405 System: sys Peak amplitude: 1 Overshoot (%): 0 At time (seconds): 5
2 1 0 -1 -2 -3 -4 -5 -2.5 -2 -1.5 -1 -0.5
-1
0
0.5
Real Axis (seconds )
Root Locus 5 0.707 4 3
System: Gb Gain: 4.32 Pole: -3.16 + 3.16i Damping: 0.707 Overshoot (%): 4.33 Frequency (rad/s): 4.47
5
Real Axis (seconds )
0.03
System: sys Peak amplitude: 0.0288 Overshoot (%): 15.4 Step Response At time (seconds): 0.44
System: sys 0.025 Rise time (seconds): 0.194 System: sys Settling time (seconds): 0.927
1.2
1
Amplitude
0.8
0.6
0.4
0.2
0
0
0.5
1
1.5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。





学生:
学号:
班级:
专业:电气工程及其自动化学院:自动化学院
典型系统的时域响应和稳定性分析
一、实验目的
1.研究二阶系统的特征参量 (ξ、ωn)对过渡过程的影响。

2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。

3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。

二、实验设备
PC 机一台,TD-ACC+教学实验系统一套。

三、实验原理及内容
1.典型的二阶系统稳定性分析 (1)结构框图:如图 1.2-1所示。

(2)对应的模拟电路图:如图 1.2-2所示。

(3)理论分析
系统开环传递函数为:()()()()
;11101
101
+=+=
S T S T K S T S T K S H S G
开环增益:0
1T K K =
(4)实验内容
先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中
观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。

在此实验中(图 1.2-2)
R
K R K s T s T 200200,2.0,1110=⇒===
系统闭环传递函数为:()K
S S K
S S S W n n n ++=++=5222
22ωζωω 其中自然振荡角频率:;10101R T K n ==
ω 阻尼比:40
1025R n ==ωζ 2.典型的三阶系统稳定性分析 (1)结构框图:如图 1.2-3所示。

(2)模拟电路图:如图 1.2-4所示。

(3)理论分析
系统开环传递函数:()()()()
()
R K S S S R S H S G 50015.011.0500
=++=
其中
系统特征方程为:()()020********=+++⇒=+K S S S S H S G (4)实验内容
实验前由Routh 判断得Routh 行列式为:
()0
200
2035201220
1
12
3K S K S K
S S +-
为了保证系统稳定,第一列各值应为正数,所以有⎪⎩⎪⎨⎧>>+-0
200
2035K K
得:Ω>⇒<<K R K 7.41120 系统稳定 Ω=⇒=K R K 7.4112 系统临界稳定
Ω<⇒>K R K 7.4112 系统不稳定 四、实验步骤
1.将信号源单元的“ST ”端插针与“S ”端插针用“短路块”短接。

由于每个运放单元均设置了锁零场效应管,所以运放具有锁零功能。

将开关分别设在“方波”档和“500ms ~12s ”档,调节调幅和调频电位器,使得“OUT ”端输出的方波幅值为 1V ,周期为 10s 左右。

2.典型二阶系统瞬态性能指标的测试
①按模拟电路图 1.2-2接线,将 1中的方波信号接至输入端,取 R = 10K 。

②用示波器观察系统响应曲线C(t),测量并记录超调MP 、峰值时间tp 和调节时间tS 。

③分别按R = 20K ;40K ;100K ;改变系统开环增益,观察响应曲线C(t),测量并记录性能指标MP 、tp 和tS ,及系统的稳定性。

并将测量值和计算值进行比较 (实验前必须按公式计算出)。

将实验结果填入表 1.2-1中。

3.典型三阶系统的性能
(1)按图 1.2-4接线,将 1中的方波信号接至输入端,取 R = 30K 。

(2)观察系统的响应曲线,并记录波形。

(3)减小开环增益 (R = 41.7K;100K),观察响应曲线,并将实验结果填入表 1.2-3中。

五、实验现象分析:
1.典型二阶系统瞬态性能指标实验测试值:见下表1-1:
表1-1
参考测试值见表1-2
表1-2
()2
2
12
11,4
,1,ζζπ
ζζπ
ζωζ
ωπ----+==
-=
=e
t C t t e
M p n
s n p p 其中
R40时,响应图:=K
Ω
R220时,响应图:=K
Ω
2.典型三阶系统在不同开环增益下的响应情况实验参考测试值见表 1.2-4
表1.2-3
(K稳定性R开环增益)
K
)

30 16.7 不稳定发散
41.7 12 临界稳定等幅振荡
100 5 稳定衰减收敛
表1.2-4
(K稳定性R开环增益)
K

)
30 16.7 不稳定发散
41.7 12 临界稳定等幅振荡
100 5 稳定衰减收敛R30时,响应图:
Ω
=K
41时,响应图:
Ω
R7.
=K
R100时,响应图:
=K
Ω
六、实验心得:
经过这次实验,我们学习了典型的二阶和三阶系统的稳定性分析,我们不仅更加深刻了解了TD-ACC+实验系统的使用,也收获了课堂上所得不到的知识,对系统的时域响应和稳定性有了更进一步的理解。

首先,在试验系统的使用中,
熟练利用虚拟仪器,调整输出的方波是非常的方便的。

通过对实验所得波形与数据的分析,我们小组总结了一下几点:
(1)通过调整系统的参数可改变系统阻尼系数,从而改变系统动态性能。

(2)当阻尼系数小于1为欠阻尼,阻尼系数越小,系统超调越大,峰值时间越小,调整时间越大。

(3)当阻尼系数等于1为临界阻尼,无超调,调整时间最小。

(4)当阻尼系数大于1为过阻尼,阻尼越大,响应越慢,调整时间越大。

11 / 11。

相关文档
最新文档