三角函数的两角和差及倍角公式练习题

合集下载

(完整版)两角和与差及二倍角公式经典例题及答案

(完整版)两角和与差及二倍角公式经典例题及答案

成功是必须的:两角和与差及其二倍角公式知识点及典例知识要点: 1、 两角和与差的正弦、余弦、正切公式 C( a — 3 ): cos( a — 3 )= S( a + 3 ): sin( a + 3 )=T( a + 3 ): tan( a + 3 )=2、 二倍角的正弦、余弦、正切公式 S 2 : sin2 a = C( a + 3 ): cos( a + 3 )= S( a — 3 ): T( a — 3 ): 2h例 2 设 cos a —21 9’T 2 : tan2 . asin 2 — 23,其中n 2,n0, 2,求 cos( a+ 3).sin( a — 3 )= tan( a — 3 )= C 2 : cos2 a =— — ,3、 在准确熟练地记住公式的基础上 ,要灵活运用公式解决问题:如公式的正用、逆用和变形用等。

如T( a± 3可变形为:tan a± tan 3= 考点自测: 1、已知tan A 、7 11 B、 tan 3 = 3, 7 11 变式2:已知03.ncos(— 4 435,sin( 4)—,求 sin( a + 3 )的值. 13则 tan( a C 、? 13 tan a an 3= 3)=( 13 题型3给值求角已知三角函数值求角,一般可分以下三个步骤:(1)确定角所在的范围;值(要求该三角函数应在角的范围内严格单调 );(3)求出角。

1 1例 3 已知 a, 3^ (0, n,且 tan (a — 3 ="2, tan 3=— 7 求 2 a — 3 的值.(2)求角的某一个三角函数n a — 6 +A —症A . 5 2、已知cos 3、在厶ABC 中,若 sin a= 43」 B辺B.5 4 q 5cosA = 5,cosB = 13, B 56 B.65sin 7 n a+舀的值是( C . — 4 5 则cosC 的值是( c 丄或56 C.65或65 4、若 cos2 9+ cos 0= 0,贝U sin2 0+ sin B 的值等于( )C . 0 或 3 4D ・516 65 0或土 3A . 0B . ± 3 一.卜 2cos55 — j‘3sin55、二角式 A 辽 2 题型训练 题型1给角求值 一般所给出的角都是非特殊角,利用角的关系(与特殊角的联系)化为特殊角 cos5B.o■值为( 例 1 求[2si n50 sin 10 (1 3tan10)]? 2sin 280 的值• 11变式3:已知tan a =, tan 3 =-,并且a , 3均为锐角,求a +23的值.7 3题型4辅助角公式的应用J 22asinx bcosx a b sin x (其中 角所在的象限由 a, b 的符号确定,角的值由btan —确定)在求最值、化简时起着重要作用。

三角恒等变换化简练习题

三角恒等变换化简练习题

三角恒等变换化简练习题两角和公式 sin= sin= cos= cos= tan=tan= 倍角公式 tan2α= cos2α= sin2α=半角公式 sin= cos=tan=和差化积sinAcosB= cosAsinB= cosAcosB= -2sinAsinB=积化和差公式 sinαsinβ= cosαcosβ=sinαcosβ=万能公式sin= )/) cos= )/) tαn= )/)角函数公式两角和公式sin=sinΑcosB+cosΑsinB sin=sinΑcosB-sinBcosΑ cos=cosΑcosB-sinΑsinB cos=cosΑcosB+sinΑsinB tαn=/ tαn=/倍角公式cos2??cos2??sin2??2cos2??1?1?2sin2?;。

sin2??2sin?cos?;2tan?tan2??1?tan2?半角公式sin=/ cos=/ tαn=/和差化积2sinΑcosB=sin+sin cosΑsinB=sin-sin ) cosΑcosB=cos+cos -2sinΑsinB=cos-cos积化和差公式sinsin=—1/2*[cos-cos] coscos=1/2*[cos+cos] sincos=1/2*[sin+sin]1.三角函数式的化简降幂公式sin?cos??11?cos2?1?cos2?2sin2?;sin2??;cos??。

22 辅助角公式asinx?bcosx?sin?x?,其中sin??cos??。

2.在三角函数化简时注意:①能求出的值应求出值;②尽量使三角函数种类最少;③尽量使项数最少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数;⑥必要时将1与sin2??cos2?进行替换化简的方法:弦切互化,异名化同名,异角化同角,降幂或升幂等《三角恒等变换练习题》一、选择题1. 已知x?,cosx?45,则tan2x?Α.4B. ?7242424C.D. ?72. 函数y?3sinx?4cosx?5的最小正周期是Α.5B.2C. ?D. ?3. 在△ΑBC中,cosAcosB?sinAsinB,则△ABC为Α. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法判定4. 设a?sin140?cos140,b?sin160?cos160,c?,则a,b,c大小关系Α. 周期为4的奇函数B. 周期为?4的偶函数C. 周期为?2的奇函数D. 周期为?2的偶函数6.已知cos2??sin4??cos4的值为Α.1318B. 11718C. D. ?1二、填空题1.求值:tan200tan400200tan400_____________.)2. 若1?tan?12008,则?tan2??.1?tan?cos2?3.已知sin4. ?ABC的三个内角为A、B、C,当A为时,cosA?2cos 值,且这个最大值为.三、解答题1. ① 已知sin??sin??sin??0,cos??cos??cos??0,求cos的值.②若sin??sin??2cos2那么sin?的值为,cos2?的值为.3B?C取得最大22,求cos??cos?的取值范围.21?cos2000?100sin10. 求值:02sin20三角恒等变换测试题第Ⅰ卷一.选择题 1.已知cos??1213,??,则cos?A.521 B.1771 C. D.2.若均?,?为锐角,sin??25,sin?35,则cos?? A. 5B. C.2255或D. ?5.?A. ?11 B. ? C. D.4.tan700tan500tan700tan500A.B.C. ?33D. ?5.2sin2?cos21?cos2cos2?A. tanB. tan2C. 1D.126.已知x为第三象限角,化简?cos2x?A.2sinx B. ?2sinx C.cosx D. ?2cosx 7. 已知等腰三角形顶角的余弦值等于45,则这个三角形底角的正弦值为A. ?6B.6C. ? D. ?5?6)9. 已知sin??cos??1,则sin2??1188A.? B.?C. D.229910.已知cos2??44cos??sin?的值为 A.11. 求cos4BC. D.192?3?4?5?coscoscos?111111111111A. B. C. 1 D. 022xx12.函数y?sin?的图像的一条对称轴方程是 22115?5??A.x?? B.x?C.x?? D.x??3333二.填空题cos13.已知?,?为锐角,cos??1,cos??15,则的值为14.在?ABC中,已知tanA ,tanB是方程3x2?7x?2?0的两个实根,则tanC? 15.若sin3?4,cos,则角?的终边在象限.52516.代数式sin15ocos75o?cos15osin105o?三角恒等变换测试题2009-5-11一、选择题:;;三.解答题3517.△ABC中,已知cosA?,cosB?,求sinC的值.5133123,cos?,sin??,求sin2?.18.已知24135)19.已知α为第二象限角,且 sinα=的值. ,求4sin2??cos2??1sin,??,且tan?,tan,427求tan的值及角2.21.已知函数f?cos2xxcosx?1,x?R. 求证f的小正周期和最值;求这个函数的单调递增区间.《数学必修4》三角恒等变换测试题答案一、选择题二、填空题3?313、14、 ? 15、第四 16、42三、解答题3417.解:在?ABC中,cosA?,?sinA?555123又由sinB?,可得cosBsin2B??,?sinA??A?600若cosB??,?B?1200,这时A?B?1800不合题意舍去,故cosB?,13134123563sinCsinsinAcosBcosAsinB5135136519.解:?23?43?2454sin,cos135sin2sin[]sincoscossin3124556513513651?cos2x21?cos2x2sin2xcos2xsin4x?cos4x20.证明:左边222212cosxsinxsinxcosxsin2x41?cos4x222?2cos2x2右边1?cos4x1?cos4x1?cos4x23. 简单的三角恒等变换一、填空题1.若2.已知sinθ=-4.已知α为钝角、β为锐角且sinα=5.设5π<θ<6π,cos二、解答题6.化简7.求证:2sin²sin=cos2x.4Aa?cosB?b?a?b..在△ABC中,已知cosA=,求证:a?ba?b?cosBtan22tan210.求sin15°,cos15°,tan15°的值.11.设-3π<α<-12.求证:1+2cos2θ-cos2θ=2.cos5π,化简.213.求证:4sinθ²cos?=2sinθ+sin2θ.14.设25sin2x+sinx-24=0,x是第二象限角,求cos15.已知sinα=124?,sin=,α与β均为锐角,求cos. 135?x的值.参考答案一、填空题1. ?11?a7..-34..-522二、解答题6.解:原式=1?sin2??cos2? 1?sin2??cos2?1?2sin??cos1?2sin2??= 1?2sin??cos2cos? 2sin??cossin2?=2sin??cos??2cos?2sincos??sin??=cos??=tanθ.7.证明:左边=2sin²sin4ππ-x)²cos4π-2x) =cos2x=右边,原题得证.8.证明:左边=1?2sin??cos? cos2??sin2?cos2??sin2??2sin??cos?= ?2===cos??sin? cos??sin?1?tan? 1?tan?=右边,原题得证.9.证明:∵cosA=∴1-cosA=1+cosA=∴a?cosB?b,a?b?cosB?,a?b?cosB?. a?b?cosB1?cosA?. ?1?cosA?2sin2A1?cosA?tan2A, ?而1?cosA2cos2B221?cosBB?tan2, 1?cosB2Atan2AB?a?b.∴tan22?²tan22,即Ba?btan2210.解:因为15°是第一象限的角,所以cos30213223842,2444sin15°=cos15°=1?cos30??21?32?2?3?8?4??6?2,2444tan15°=?cos30?=2-3. 1?cos30?11.解:∵-3π<α<-5π3π?5π?,∴-<<-,cos<0.24??又由诱导公式得cos=-cosα,∴1?cos1?cos??=-cos. ?2??1?cos2?12.证明:左边=1+2cos2θ-cos2θ-cos2θ=2=右边.??2213.证明:左边=4sinθ²cos?=2sinθ²2cos?=2sinθ²=2sinθ+2sinθcosθ=2sinθ+sin2θ=右边.14.解:因为25sin2x+sinx-24=0,所以sinx=24或sinx=-1.5247,cosx=-.525又因为x是第二象限角,所以sinx=又x是第一或第三象限角,?cosxx??221?7=±3.5从而cos15.解:∵0<α<又∵0<α<π5,∴cosα=?sin2??. 132ππ,0<β<,2π,∴0<α+β<π.若0<α+β<∵sin<sinα,∴α+β<α不可能.故π3<α+β<π.∴cos=-.23541233??,1351365∴cosβ=cos[-α]=coscosα+sinsinα=-∵0<β<∴0<π,?π<.41?cos?765. ?265故cos。

三角函数的和差化积化和差与倍角公式与半角公式与积化和差练习题

三角函数的和差化积化和差与倍角公式与半角公式与积化和差练习题

三角函数的和差化积化和差与倍角公式与半角公式与积化和差练习题三角函数是数学中重要的概念之一,它在几何学、物理学、工程学等领域有着广泛的应用。

本文将介绍三角函数的和差化积化和差、倍角公式与半角公式以及积化和差的相关内容,并附带练习题供读者加深理解。

一、和差化积化和差在三角函数中,和差化积化和差是一种常用的运算技巧。

它可以将两个三角函数的和(或差)转化为一个三角函数的积(或商),或者将一个三角函数的积(或商)转化为两个三角函数的和(或差)。

以和差化积为例,设有两个角A和B,则有以下公式:1. 正弦函数的和差化积化和差公式:sin(A ± B) = sinA * cosB ± cosA * sinB2. 余弦函数的和差化积化和差公式:cos(A ± B) = cosA * cosB ∓ sinA * sinB3. 正切函数的和差化积化和差公式:tan(A ± B) = (tanA ± tanB) / (1 ∓ tanA * tanB)根据以上公式,我们可以灵活地将一个三角函数的和(或差)转化为一个三角函数的积(或商),从而简化运算。

二、倍角公式与半角公式倍角公式与半角公式是三角函数中常见的公式,它们用于计算一个角的两倍角或一半角的三角函数值。

1. 倍角公式:对于角A,有以下倍角公式:sin(2A) = 2 * sinA * cosAcos(2A) = cos²A - sin²A = 2 * cos²A - 1 = 1 - 2 * sin²Atan(2A) = (2 * tanA) / (1 - tan²A)倍角公式在求解三角函数的近似值、简化复杂运算等方面起到了重要的作用。

2. 半角公式:对于角A,有以下半角公式:sin(A/2) = ±√[(1 - cosA) / 2]cos(A/2) = ±√[(1 + cosA) / 2]tan(A/2) = sinA / (1 + cosA)半角公式常用于将复杂的三角函数运算转化为简单的形式。

高考数学一轮复习 3.3两角和与差及二倍角三角函数公式练习 理

高考数学一轮复习 3.3两角和与差及二倍角三角函数公式练习 理

第三节 两角和与差及二倍角三角函数公式1.计算1-2sin 222.5°的结果等于( ) A.12 B.22 C.33 D.32 解析:原式=cos 45°=22.故选B. 答案:B2.设tan (α+β)=25,tan ⎝ ⎛⎭⎪⎫β-π4=14,则tan ⎝ ⎛⎭⎪⎫α+π4的值是( )A.318 B.322 C.1318 D.1322解析:tan ⎝ ⎛⎭⎪⎫α+π4=tan ⎣⎢⎡⎦⎥⎤(α+β)-⎝ ⎛⎭⎪⎫β-π4=322. 答案:B3.求值:⎝ ⎛⎭⎪⎫cos π12-sin π12⎝ ⎛⎭⎪⎫cos π12+sin π12=( )A .-32 B .-12C.12D.32 答案:D 4.若tan θ+1tan θ=4,则sin 2θ=( ) A.15 B.14 C.13 D.12解析:由tan θ+1tan θ=4得,sin θcos θ+cos θsin θ=sin 2θ+cos 2θsin θcos θ=4,即112sin 2θ=4,∴sin 2θ=12.故选D.答案:D5.cos π9cos 2π9cos 4π9=( )A.13B.14C.16D.18 解析:cosπ9cos 2π9cos 4π9=12sinπ9·2sinπ9cos π9cos 2π9·cos 4π9=12sinπ9·sin2π9cos 2π9cos 4π9=14sin π9sin 4π9cos 4π9=18sin π9sin 8π9=18sinπ9sin π9=18.故选D.答案:D6. 若sin ⎝ ⎛⎭⎪⎫π6-α=13,则cos ⎝ ⎛⎭⎪⎫π3+α等于( ) A .-79 B .-13C.13D.79 答案:C7.若sin ⎝ ⎛⎭⎪⎫π6-θ=13,则cos ⎝ ⎛⎭⎪⎫2π3+2θ等于( ) A .-13 B.13C .-79 D.79解析:∵sin ⎝ ⎛⎭⎪⎫π6-θ=13,∴cos ⎣⎢⎡⎦⎥⎤2×⎝ ⎛⎭⎪⎫π6-θ=1-2sin 2⎝ ⎛⎭⎪⎫π6-θ=1-2×19=79.又cos ⎣⎢⎡⎦⎥⎤2×⎝ ⎛⎭⎪⎫π6-θ=cos ⎝ ⎛⎭⎪⎫π3-2θ=-cos[π-(π3-2θ)]=-cos ⎝ ⎛⎭⎪⎫2π3+2θ, ∴cos ⎝⎛⎭⎪⎫2π3+2θ=-79.故选C.答案:C8.函数y =sin 2x1+cos 2x的最小正周期为________.解析:y =sin 2x 1+cos 2x =2sin x cos x2cos 2x =tan x ,所以最小正周期T =π. 答案:π9.若角α的终边经过点P(1,-2),则tan 2α 的值为______. 解析:∵tan α=-21=-2,∴tan 2α=2tan α1-tan 2α=43. 答案:4310.已知tan α=2,则2sin 2α+1sin 2α=________.解析:2sin 2α+1sin 2α=3sin 2α+cos 2α2sin αcos α=3tan 2α+12tan α=3×22+12×2=134.答案:13411.若sin (π-α)=45,α∈⎝ ⎛⎭⎪⎫0,π2,则sin 2α-cos 2α2的值等于________.解析:∵sin(π-α)=45,∴sin α=45.又∵α∈⎝⎛⎭⎪⎫0,π2,∴cos α=35.∴sin 2α-cos 2α2=2 sin αcos α-1+cos α2=2×45×35-1+352=425.答案:42512.已知向量a =(cos 2x ,1),b =(1,sin 2x),x ∈R ,函数f(x)=a·b. (1)求函数f(x)的最小正周期;(2)若f ⎝ ⎛⎭⎪⎫α2+π8=325,求cos 2α的值.解析:(1)f (x )=a·b =cos 2x +sin 2x =2⎝⎛⎭⎪⎫22cos 2x +22sin 2x =2sin ⎝ ⎛⎭⎪⎫2x +π4所以,f (x )的最小正周期T =2π2=π.(2)由已知得f ⎝ ⎛⎭⎪⎫α2+π8=2sin ⎝ ⎛⎭⎪⎫α+π2 =2cos α=325 ,则cos α=35,所以cos 2α=2cos 2α-1=2×⎝ ⎛⎭⎪⎫352-1=-725.13.在△ABC 中,已知cos A =17,cos(A -B)=1314,且B <A.(1)求角B 和sin C 的值;(2)若△ABC 的边AB =5,求边AC 的长. 解析:(1)由cos A =17>0,cos(A -B )=1314>0,得0<A <π2且0<A -B <π2.可得sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫172=437,sin(A -B )=1-cos 2(A -B )=1-⎝ ⎛⎭⎪⎫13142=3314, ∴cos B =cos[A -(A -B )]=cos A cos (A -B )+sin A ·sin (A -B ) =17×1314+437×3314=12, ∵0<B <π,且B <A , ∴B =π3.∵在△ABC 中,C =π-(A +B ), ∴sin C =sin[π-(A +B )]=sin(A +B ) =sin A cos B +cos A sin B =437×12+17×32=5314. (2)在△ABC 中,由正弦定理得AB sin C =ACsin B ,∴AC =AB ·sin Bsin C =5×325314=7.。

三角函数 两角和与两角差 倍角公式

三角函数 两角和与两角差 倍角公式

三角函数训练-两角和与两角差1.若sin532=θ,542cos -=θ则θ在( ) A.第一象限 B.第二象限C.第三象限 D.第四象限 2.cos2125π+cos 212π+cos 125πcos 12π的值等于 ( ) A.26 B.23 C.45 D.1+433.已知π<α<23π,且sin (23π+α)=54,则tan 2α等于 ( ) A.3 B.2 C.-2 D.-34.若tan θ+cot θ=m,则sin2θ等于 ( ) A.m 1 B.m 2 C.2m D.21m5.下列关系式中不正确...的是 ( ) A.sin α+sin β=2sin2βα+cos2βα-B.sin α-sin β=2cos 2βα+cos 2βα-C.cos α+cos β=2cos 2βα+cos 2βα-D.cos α-cos β=2sin 2βα+sin 2αβ-6.如果tan 312=α,那么cos α的值是 ( )A.53B.54C.-53 D.-547.化简)4sin()4cos()4sin()4cos(x x x x ++++-+ππππ的值是 ( ) A.tan 2xB.tan2xC.-tan x D.cot x8.若sin α=135,α在第二象限,则tan 2α的值为 ( )A.5B.-5C.51 D.-51三角函数训练-两角和与两角差1.设5π<θ<6π,cos2θ=a ,则sin 4θ等于 ( ) A.-21a + B.-21a- C.-21a + D.-21a - 2.若tannmA =2,则mcos A -nsin A 等于 ( ) A.n B.-n C.-m D.m3.若tan α=-2且sin α<0,则cos α= .4.tan5π+tan 52π+tan 53π+tan 54π= .5.已知sin θ=-53,3π<θ<27π,则tan 2θ= .6.已知sin α=31,2π<α<3π,那么sin 2α+cos 2α= .7.cos 85πcos 8π= .8.sin (θ+75°)+cos (θ+45°)-3cos (θ+15°)= . 9.已知π<θ<23π,cos θ=-54,则cos 2θ= . 10.tan19°+tan26°+tan19°tan26°= . 11.若cos (α+β)=54,cos (α-β)=-54,且2π<α-β<π,23π<α+β<2π,则cos2α= ,cos2β= .12.求2sin160°-cos170°-tan160°sin170°的值.13.已知sin (x -43π)cos (x -4π)=-41,求cos4x 的值. 14.求证tan xx x x x 2cos cos sin 22tan 23+=- 15.若函数y=x 2-4px -2的图象过点(tan α,1),及点(tan β,1).求2cos2αcos2β+p sin2(α+β)+2sin 2(α-β)的值.三角函数训练- 两倍角公式1.如果,532cos =θ那么θθ44cos sin +的值是( ) A .251 B.1 C.2517 D.2517-2.若,135)4cos(=+A π求sin2A 的值. 3.求证:αααααsin cos 1cos 1sin 2tan -=+=.4.已知,31)sin()sin(=-+βαβα求证:αβα422cos sin 2sin 41++为定值.5.已知α、)2,0(πβ∈,且,02sin 22sin 3,1sin 2sin 322=-=+βαβα求证:,22πβα=+并求αsin 、βsin 、αcos 、βcos 的值.6.若,cos sin ,cos sin ,40b a =+=+<<<ββααπβα则( )A .a <b B.a >b C.ab <1 D.ab >27.已知θ是第三象限角,且95cos sin 44=+θθ,那么θ2sin 等于( ) A .322 B. 322- C. 32 D.32-三角函数训练(三)答案1、解:由sin532=θ>22,cos 2θ=-54<-22 得2θ为第二象限角. 即2kπ+43π<2θ<2kπ+π (k∈Z)∴4kπ+23π<θ<4kπ+2π (k∈Z)∴θ在第四象限. 答案:D 2、解:原式=sin 212π+cos 212π+sin 12πcos 12π=1+21sin 6π=45 答案:C3、解:由sin (23π+α)=-cos α=54,π<α<23π,得cos α=-54,2π<2α<43π∵cos α=1-2sin22α ∴sin 2α=10103 cos2α=-1010∴tan 2α=-3答案:D4、解:∵tan θ+cot θ=tan θ+θtan 1=m 即:m =+θθtan 1tan 2 又∵sin2θ=m2tan 1tan 22=+θθ答案:B5、解:因为sin α-sin β=2cos 2βα+sin2βα-.答案:B6、解:cos α=549119112tan 12tan 122=+-=+-αα.答案:B7、解:原式=x x x x x x x x 2cos 12sin )22sin(1)22cos()]4sin()4[cos()4(sin )4(cos 222+-=+++=++++-+ππππππ x x x tan cos 2cos sin 22-=-=α答案:C8、解:由sin α=135,α在第二象限得cos α=-1312. ∴tan2α=5cos 1sin =+αα答案:A三角函数训练(四)答案1、解:∵cos 2θ=1-2sin 24θ 5π<θ<6π 45π<4θ<23π ∴sin 24θ=21a - 即sin4θ=-21a -. 答案:D2、解:mcos A -nsin A =m·.2tan 12tan22tan 12tan 1222m AAn A A -=+⋅-+- 答案:C3、解:由⎪⎩⎪⎨⎧-==+2cos sin 1cos sin 22αααα得cos α=55.答案:55 4、解:原式=tan 5π+tan 52π+tan (π-52π)+tan (π-5π)=tan 5π+tan 52π-tan52π-tan 5π=0. 答案:05、解:∵3π<θ<27π ∴23π<2θ<47π又∵sin θ=532tan 12tan22-=+θθ∴tan2θ=-3. 答案:-36、解:∵2π<α<3π ∴π<2α<23π(sin2α+cos 2α)2=1+sin α=34∴sin2α+cos 2α=-332. 答案:-332 7、解:cos85πcos 8π=cos (2π+8π)cos 8π=-sin8πcos 8π=-21sin 4π=-42.答案:-428、解:设θ+15°=α原式=sin (α+60°)+cos (α+30°)-3cos α=sin αcos60°+cos αsin60°+cos αcos30°-sin αsin30°-3cos α=0. 答案:09、解:由π<θ<23π得2π<2θ<43π 又cos θ=2cos 22θ-1=-54∴cos2θ=-1010. 答案:-101010、解:原式=tan (19°+26°)(1-tan19°tan26°)+tan19°tan26°=1. 答案:111、解:∵2α=(α+β)+(α-β) ∴cos2α=cos [(α+β)+(α-β)]=-257∵2β=(α+β)-(α-β) ∴cos2β=cos [(α+β)-(α+β)]=- 1. 答案:-257-112、解:原式=2sin20°+cos10°+tan20°sin10°.360sin 220cos 20cos 60sin 220cos 80sin 40sin 20cos 10cos 40sin 20cos )10sin 20sin 20cos 10(cos 20cos 20sin 2=︒=︒︒︒=︒︒+︒=︒︒+︒=︒︒︒+︒︒+︒︒=13、解:由sin (x -43π)cos (x -4π)=-41 ⇒21[sin (2x -π)+sin (-2π)]=-41⇒sin2x =-21⇒cos4x =1-2sin 22x =21.14、证明:左边=2cos23cos 2sin23cos 2cos 23sin 2cos 2sin 23cos 23sin x x x x x x x x x x -=- x x x x x x x 2cos cos sin 2)cos 2(cos 21)223sin(+=+-=右边. 15、解:由条件知tan α、tan β是方程 x 2-4px -2=1的两根. ∴⎩⎨⎧-==+3tan tan 4tan tan βαβαp∴tan (α+β)=p p=--)3(14.∴原式=2cos2αcos2β+tan (α+β)sin2(α+β)+2sin 2(α-β)=cos2(α+β)+cos2(α-β)+2sin 2(α+β)+2sin 2(α-β)=cos2(α+β)+cos2(α-β)+[1-cos2(α+β)]+[1-cos2(α-β)]=2三角函数训练(五)答案1、分析:先化简θθ44cos sin +为(.cos sin 2)cos sin 22222θθθθ-+即为.)cos (sin 212θθ-然后用倍角公式:.22sin cos sin θθθ=⋅用532cos =θ可得2516)2(sin 2=θ ∴原式.251725421=⋅-= 答案:C2、分析:角2A 与A +4π不是倍角关系,但)4(222A A +=+ππ,故我们可以结合诱导公式与倍角公式来解决这个问题.解:169119)135(21]1)4(cos 2[)4(2cos )22cos(2sin 22=⨯-=-+-=+-=+-=A A A A πππ3、分析:因为α是2α的半角.所以可以将等式右边用倍角公式展开证得.证明:∵2tan 2cos2sin2cos 22cos2sin2cos 1sin 2αααααααα==⋅=+ 同理,2tan 2cos2sin2cos2sin22sin 2sin cos 12αααααααα===- 所以原式成立.4、分析:求证一个三角函数式为定值,就是证它等于一个常数.我们发现已知条件算式的左边是两个角的正弦函数相乘的形式,所以我们得用如下公式:).cos()cos(sin sin 2βαβαβα+--=证明:∵)]()cos[()]()cos[(βαβαβαβα--+--++)sin()sin()cos()cos(βαβαβαβα-+--+=)sin()sin()cos()cos(βαβαβαβα-+--+-)sin()sin(2βαβα-⋅+-=∴32312)sin()sin(22cos 2cos -=⨯-=-+-=-βαβαβα ∵αβα422cos sin 2sin 41++)(324121)32(21414121)2cos 2(cos 21)2cos 2(sin 412cos 412cos 21412cos 21212sin 41)]2cos 1(21[)2cos 1(212sin 41222222常数=++-⨯+=++-++=+++-+=++-+=βαααααβααβα ∴原命题成立.5、分析:本题前半部分实际上是一个给值求角类型题,因此在确定βα2+范围的前提下,利用两个已知条件,求得βα2+的某一三角函数值.而要求βα2+的三角函数值必须用到和角公式,且应找到β2sin 、β2cos 与角α的三角函数值之间的关系.解:由已知得:ααββαcos sin 32sin sin 21sin 322=-=即αβ2sin 32cos = ① ααβcos sin 32sin = ② ∴βαβαβα2sin sin 2cos cos )2cos(-=+ 0cos sin 3sin sin 3cos 2=⋅-⋅=ααααα∵α、)2,0(πβ∈, ∴)23,0(2πβα∈+ 于是有22πβα=+,原式成立.由①2+②2得:22222)cos sin 3()sin 3(2sin 2cos αααββ+=+1sin 9 sin 9)cos (sin sin 922222==+=ααααα即得∵)2,0(πα∈, ∴322sin 1cos 31sin 2=-==ααα 将91sin 2=α代入1sin 2sin 322=+βα得:1sin 2)31(322=+⨯β 即31sin 2=β ∵)2,0(πβ∈ ∴33sin =β 36cos =β 6、分析:此题可用倍角公式化简后再比较.把a =+ααcos sin 的两边平方,则有ααsin 2sin 2+αα2cos cos +22sin 1a =+=α,同理.2sin 12b =+β因,40πβα<<<所以,2220πβα<<<则,,2sin 2sin 22b a <<βα而a >0,b >0,则有a <b .答案:A7、分析:此题主要考查同角三角函数关系及倍角公式22244)cos (sin cos sin θθθθ+=+θθ22cos sin 2-,95)2(sin 2112=-=θ则,98)2(sin 2=θ因θ为第三象限角,则,0cos ,0sin <<θθ即.02sin cos sin 2>=⋅θθθ所以.3222sin =θ 答案:A。

三角函数的两角和差及倍角公式练习题

三角函数的两角和差及倍角公式练习题

三角函数的两角和差及倍角公式练习题一、选择题:1、若)tan(,21tan ),2(53sin βαβπαπα-=<<=则的值是 A .2 B .-2 C .211 D .-2112、如果sin cos ,sin cos x x x x =3那么·的值是A .16B .15C .29D .3103、如果的值是那么)4tan(,41)4tan(,52)tan(παπββα+=-=+ A .1318 B .322 C .1322 D .-13184、若f x x f (sin )cos ,=⎛⎝ ⎫⎭⎪232则等于 A .-12 B .-32 C .12 D .325、在∆ABC A B A B 中,··sin sin cos cos ,<则这个三角形的形状是A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形二、填空题:6、角αβαβ终边过点,角终边过点,则(,)(,)sin()4371--+= ;7、若αα23tan ,则=所在象限是 ; 8、已知=+-=⎪⎭⎫ ⎝⎛+θθθθθπsin 2cos cos sin 234cot ,则 ; 9、=︒︒-︒+︒70tan 65tan 70tan 65tan ·; 10、化简3232sin cos x x +=。

三、解答题:11、求的值。

·︒︒+︒100csc 240tan 100sec12、的值。

,求已知)tan 1)(tan 1(43βαπβα--=+13、已知求的值。

cos ,sin cos 23544θθθ=+14、已知)sin(2)(sin 053tan ,tan 22βαβαβα+++=-+的两个根,求是方程x x·cos()αβ+的值。

答案:一、1、B2、D 提示: tan x = 3, 所求122sin x , 用万能公式。

3、B 提示: ()απαββπ+=+--⎛⎝ ⎫⎭⎪444、A 提示: 把x =π3代入5、B 提示: ∵cos(A + B ) > 0 ∴角C 为钝角。

两角及与差及二倍角公式讲义,例题含含答案

两角及与差及二倍角公式讲义,例题含含答案

两角和与差及二倍角公式(答案)两角和与差及二倍角公式一.【复习要求】1. 掌握两角和与差的正弦、余弦、正切公式,认识它们的内在联.2. 掌握二倍角的正弦、余弦、正切公式.2. 可以利用两角和与差的公式、二倍角公式进行三角函数式的求值、化简和证明.二、【知识回首】1.两角和与差的三角函数sin( ) ; sin( ) ;cos( ) ; cos( ) ;tan( ) ; tan( ) ;2.二倍角公式:在sin( ),cos( ), tan( ) 中令,可得相应的二倍角公式。

sin2 ;cos2 = =tan 2 。

3.降幂公式sin 2 ;cos2 .注意:二倍角公式拥有“升幂缩角“作用,降幂公式拥有“降幂扩角”作用4.协助角公式y a sin x bcos x a2 b2 sin(x ) ,(此中a, b不可以同时为0)证明: y sin x cos x 2 2 ( a bcos x)a b sin xa2 b 2a2 b2a2 b2 (cos sin x sin cos x)a2 b2 sin( x )此中, cosa, sinb, tanb终边过点 ( a, b)2 2且角a2 2ab a b在使用时,不用死记结论,而重在这种缩短(合二为一)思想如: sin cos ; sin cos 。

5.公式的使用技巧( 1)连续应用:sin( ) sin[( ) ] sin( )coscos()sin( 2)“ 1”的代换:sin2 cos2 1, sin2 1,tan 14( 3)缩短代换: y sin x cos x a 2 b 2 sin( x) ,(此中 a, b 不可以同时为0)( 4)公式的变形:tan()tan tan tan( ) tantantan() tan tan1 tan tantan() tan tan tan( ) tantantan() tan tan1 tan tan如: tan95otan 35o3 tan 95o tan 35o。

8.两角和与差的三角函数及二倍角公式

8.两角和与差的三角函数及二倍角公式

三角函数——3.两角和与差的三角函数及二倍角公式【知识要点】1、两角和与差的正弦、余弦、正切公式及倍角公式:()sin sin cos cos sin sin 22sin cos 令αβαβαβαβααα=±=±−−−→=()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 21cos2sin 22tan tan 21tan 令 = = αβαβαβαβααααααβααβααβααααα=±=−−−→=-↓=-=-±±=⇒-↓=- 如(1)下列各式中,值为12的是 ( )A 、1515sin cosB 、221212cos sin ππ- C 、22251225tan .tan .- D; (2)命题P :0tan(A B )+=,命题Q :0tan A tan B +=,则P 是Q 的 ( )A 、充要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件;(3)已知35sin()cos cos()sin αβααβα---=,那么2cos β的值为____ ; (4)11080sin sin -的值是____ __; (5)已知0tan110a =,求0t an 50的值(用a 表示),乙求得的结果是212a a -,对甲、乙求得的结果的正确性你的判断是______ ;2. 三角函数的化简、计算、证明的恒等变形的基本思路是:看角度:已知与未知的角度是否有差异;看名称:所给与所求的函数名称是否有差异;看次数:条件与结论的次数是否统一;看结构:左边与右边的结构是否有差异;看常数:条件和结论的常数是否有差异.基本的技巧有:(1)角的分拆配凑(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,2αβαβ++=⋅,()()222αββααβ+=---等), 如(1)已知2tan()5αβ+=,1tan()44πβ-=,那么tan()4πα+的值是_____ ;(2)已知02πβαπ<<<<,且129cos()βα-=-,223sin()αβ-=,求cos()αβ+的值;(3)已知,αβ为锐角,sin ,cos x y αβ==,3cos()5αβ+=-,则y 与x 的函数关系为______ ;(2)三角函数名互化(切弦转化),如(1)求值sin50(13tan10)+; (2)已知sin cos 21,tan()1cos 23αααβα=-=--,求tan(2)βα-的值;(3)公式变形使用(tan tan αβ±()()tan 1tan tan αβαβ=±。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数的两角和差及倍角公式练习题
一、选择题:
1、若)tan(,21tan ),2(53sin βαβπαπα-=<<=
则的值是 A .2 B .-2 C .211 D .-211
2、如果sin cos ,sin cos x x x x =3那么·的值是
A .16
B .15
C .29
D .310
3、如果的值是那么)4tan(,41)4tan(,52)tan(παπββα+=-=
+ A .1318 B .322 C .1322 D .-1318
4、若f x x f (sin )cos ,=⎛⎝ ⎫⎭
⎪232则等于 A .-12 B .-32 C .12 D .32
5、在∆ABC A B A B 中,··sin sin cos cos ,<则这个三角形的形状是
A .锐角三角形
B .钝角三角形
C .直角三角形
D .等腰三角形
二、填空题:
6、角αβαβ终边过点,角终边过点,则(,)(,)sin()4371--+= ;
7、若αα23tan ,则=所在象限是

8、已知=+-=⎪⎭⎫ ⎝⎛+θθθθθπsin 2cos cos sin 234cot ,则 ;
9、=︒︒-︒+︒70tan 65tan 70tan 65tan · ; 10、化简3232sin cos x x +=。

三、解答题:
11、求的值。

·︒︒+︒100csc 240tan 100sec
12、的值。

,求已知)tan 1)(tan 1(43βαπβα--=+ 13、已知求的值。

cos ,sin cos 23544θθθ=+ 14、已知)sin(2)(sin 053tan ,tan 22βαβαβα+++=-+的两个根,求是方程x x ·cos()αβ+的值。

答案: 一、 1、B 2、D 提示: tan x = 3, 所求122sin x , 用万能公式。

3、B 提示: ()απαββπ+=+--⎛⎝ ⎫⎭⎪44 4、A 提示: 把x =π3代入 5、B 提示: ∵cos(A + B ) > 0 ∴角C 为钝角。

二、 6、-22 7、分别用万能公式算出sin cos 22αα及。

第二 8、-12 9、-1 10、2326sin()x +π 三、 11、-4 12、2 13、1725 14、-35。

相关文档
最新文档