两角和差倍角公式推导
三角函数公式和积化和差公式汇总

三角函数公式和积化和差公式汇总三角函数公式的积化和差是解决三角函数的重要方法,可以将不同角度的三角函数表示为同一角度的三角函数的和或差。
下面是一些常用的三角函数公式:两角和公式:sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-XXX)tan(A-B) = (tanA-tanB)/(1+XXX)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)倍角公式:tan2A = 2tanA/(1-tan2A)Sin2A=2SinA•CosACos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A 三倍角公式:sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tana·tan(π/3+a)·XXX(π/3-a)半角公式:sin(A/2) = √[(1-cosA)/2]cos(A/2) = √[(1+cosA)/2]tan(A/2) = √[(1-cosA)/(1+cosA)]cot(A/2) = √[(1+cosA)/(1-cosA)]和差化积:sina+sinb=2sin((a+b)/2)cos((a-b)/2)sina-sinb=2cos((a+b)/2)sin((a-b)/2)cosa+cosb = 2cos((a+b)/2)cos((a-b)/2) cosa-cosb = -2sin((a+b)/2)sin((a-b)/2) tana+tanb= (sin(a+b))/(cosacosb)积化和差:sinasinb = -(1/2)[cos(a+b)-cos(a-b)] cosacosb = (1/2)[cos(a+b)+cos(a-b)] sinacosb = (1/2)[sin(a+b)+sin(a-b)] cosasinb = (1/2)[sin(a+b)-sin(a-b)]诱导公式:sin(-a) = -sinacos(-a) = cosasin(π/2-a) = cosacos(π/2-a) = sinasin(π/2+a) = cosacos(π/2+a) = -sina三角函数公式的积化和差、和差化积以及诱导公式都是解决三角函数问题的重要方法,掌握这些公式可以更加方便地计算三角函数的值。
三角函数公式大全及推导

锐角三角函数公式 (2)倍角公式 (3)三倍角公式 (3)三倍角公式推导 (3)辅助角公式 (4)降幂公式 (4)推导公式 (4)半角公式 (7)三角和 (7)两角和差 (8)和差化积 (8)积化和差 (9)诱导公式 (9)诱导公式记背诀窍:奇变偶不变,符号看象限 (10)万能公式 (10)其它公式 (10)锐角三角函数公式sin α=∠α的对边/ 斜边cos α=∠α的邻边/ 斜边tan α=∠α的对边/ ∠α的邻边cot α=∠α的邻边/ ∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方sin2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a ·tan(π/3+a)·tan(π/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),(此括号内不是文章内容,来自学习方法网,阅读请跳过),tant=A/B降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin²a)+(1-2sin²a)sina =3sina-4sin³acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-sin²a)cosa =4cos³a-3cosasin3a=3sina-4sin³a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a)cos3a=4cos³a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)²]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))学习方法网[]三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sin β·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sin β·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tan β·tanγ-tanγ·tanα)cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)和差化积sinθ+sinφ= 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ= 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ= 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ= -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)sinαsinβ= [cos(α-β)-cos(α+β)] /2cosαcosβ= [cos(α+β)+cos(α-β)]/2sinαcosβ= [sin(α+β)+sin(α-β)]/2cosαsinβ= [sin(α+β)-sin(α-β)]/2 诱导公式sin(-α) = -sinαcos(-α) = cosαtan (—a)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+tan^(α/2)]cosα=[1-tan^(α/2)]/1+tan^(α/2)]tanα=2tan(α/2)/[1-tan^(α/2)]其它公式(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC(9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0。
两角和与差的三角函数-倍角公式-复习-教案

知识点两角和与差的正弦、余弦、正切公式:βαβαβαsin cos cos sin )sin(+=+ βαβαβαsin cos cos sin )sin(-=-βαβαβαsin sin cos cos )cos(-=+ βαβαβαsin sin cos cos )cos(+=-βαβαβαtan tan 1tan tan )tan(-+=+ βαβαβαtan tan 1tan tan )tan(+-=- 怎么由一个公式推导出来?一、已知βαsin ,sin 求cos ()αβ+1. 已知sin αβ==且,αβ为锐角,则αβ+为( )已知sin αβ==,则αβ+为( ) 已知αα,53sin =在第二象限,ββ,135cos -=在第三象限,求)tan(),cos(),sin(βαβαβα+-+注意角所在象限2、符号C B A cos ,135cos ,53sin 那么== 在△ABC 中,C B A cos ,135cos ,53sin 那么==的值是 .二、逆用公式cos79°cos34°+sin79°sin34°等于( )Sin14ºcos16º+sin76ºcos74º的值是 的值为 .求值:_____________.0000tan 20tan 4020tan 40+=变式 已知A+B=,则(1+tanA )(1+tanB )=( )三、常数代换与逆用公式1、化简x x sin cos 3-化简3232sin cos x x +=化简4sinx+3cosx=变式 函数y=sinx+cosx+2的最小值是 ( )2、求值 =______________变式 。
tan75-175tan 1+ .已知α、β均为锐角,且tanβ=,则tan (α+β)=四.先展开函数f (x )=sinx+cos (x+)的最大值为变式 已知sinα+cos (α﹣)=,则cos (α﹣)的值等于( )五、在三角形中求值15tan 115tan 1+-1、求值在△ABC 中,C B A cos ,135cos ,53sin 那么==的值是 .在△ABC 中,已知,,则cosC 的值为( )2、判断三角形形状在△ABC 中,已知2sinAcosB =sinC ,则△ABC 一定是( ) A .直角三角形 B .等腰三角形C .等腰直角三角形D .正三角形内角和公式 变式 .在△ABC 中,已知sinC=2sin (B+C )cosB ,那么△ABC 一定是( )A . 等腰直角三角形B . 等腰三角形C . 直角三角形D . 等边三角形判断△ABC 的内角满足sinA+cosA >0,tanA ﹣sinA <0,则A 的取值范围是( )A . (0,)B . (,)C . (,)D . (,π)变式 在△ABC 中,若1﹣tanAtanB <0,则△ABC 是( )A . 锐角三角形B . 钝角三角形C . 直角三角形D . 等腰三角形变式 已知向量,,若A ,B ,C 是锐角△ABC 的三个内角,,则与的夹角为( )锐角三角形,C<90,A+B>90钝角三角形,C>90,A+B<90六、角的代换若α是锐角,且满足cosα=31,则⎪⎭⎫ ⎝⎛-6sin πα的值为( )若α是锐角,且满足,则cosα的值为( )变式 若α是锐角,且满足,则⎪⎭⎫ ⎝⎛+6cos πα的值为( )变式 已知432παβπ<<<,1312)cos(=-βα,53)sin(-=+βα,求sin2α的值变形方式1、两边平方2、asinwx+bcoswx= 3.展开 4.角的转换5、齐次分式化为tan在△ABC 中,3sinA+4cosB=6,4sinB+3cosA=1,则C 等于( )A . 30°B . 150°C . 30°或150°D . 60°或120°设a=sin15°+cos15°,b=sin17°+cos17°,比较a,b 大小若sinθ+cosθ=,则tan (θ+)的值是( )已知22cos cos =+βα,求βαsin sin +的取值范围。
两角和与差的正弦、余弦、正切公式及倍角公式(高三一轮复习)

数学 N 必备知识 自主学习 关键能力 互动探究
2.若sinπ6-α=12,则cosπ3-2α=( A )
1 A.2
B.-12
3 C. 2
D.-
3 2
解析 因为sinπ6-α=12, 所以cos3π-2α=cos2π6-α =1-2sin2π6-α=1-2×122=12.
— 9—
数学 N 必备知识 自主学习 关键能力 互动探究
3.sin 72°cos 42°-cos 72°sin 42°=( A )
1 A.2
B.
3 2
C.-12
D.-
3 2
解析 sin 72°cos 42°-cos 72°sin 42°=sin(72°-42°)=sin 30°=12.
— 10 —
数学 N 必备知识 自主学习 关键能力 互动探究
— 11 —
3+ 3×
333=-223 3
3 =-
3 3.
数学 N 必备知识 自主学习 关键能力 互动探究
— 21 —
命题点2 三角函数公式的逆用和变形应用
例2 (1)计算:4cos 10°-csoins 1100°°= - 3 .
(2)(2022·江苏盐城模拟)tan
9π+tan
29π+
3tan
π 9tan
命题点3 三角函数公式的灵活应用
考向1 角的变换
例3 已知cos52π-α=2cos(2π+α),且tan(α+β)=13,则tan β的值为( D )
A.-7
B.7
C.1
D.-1
解析
因为cos 52π-α =2cos(2π+α),所以sin
α=2cos
α,所以tan
α=
第一课时 两角和、差及倍角公式

(1)使用两角和、差及倍角公式,首先要记住公式的结构特征和符号变化规
律.例如两角差的余弦公式可简记为:“同名相乘,符号反”;
(2)使用公式求值,应注意与同角三角函数基本关系、诱导公式的综合应用.
目录
公式的逆用及变形用
【例1】 (1)(2022·新高考Ⅱ卷)若sin(α+β)+cos(α+β)=
=-tan C.∴tan(A+B)= 3,tan A+tan B= 3(1-tan Atan B),又∵tan A
+tan
2 3
B= ,∴tan
3
Atan
1
B= .
3
答案 (2)B
目录
|解题技法|
三角函数公式的活用技巧
(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式;
(2)tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-
D.-5
)
解析:B tan 87°-tan 27°- 3tan 27°tan 87°=tan(87°-27°)(1+tan
27°tan 87°)- 3tan 27°tan 87°= 3(1+tan 27°tan 87°)- 3tan
27°tan 87°= 3.
目录
2.已知α,β,γ∈
=
π
0,
2
,sin α+sin γ=sin β,cos β+cos γ=cos α,则β-α
3
4
.
π
θ-cos sin
4
cos2
cos2 −sin2 (cos+sin)(cos−sin)
=
=
=cos
两角和、差及倍角公式课件-2025届高三数学一轮复习

.故选C.
2.已知 , , ∈
,
则下列式子成立的是(
A. − =
C. − =
−
−
, + = , + = ,
)
B. − =
D. − =
√
解析:选D.由题意知, = − , = − ,
− + − = ,所以 − = −.故选C.
)
(
2
(2) + ∘ + ∘ =___.
解析: + ∘ + ∘ = + ∘ + ∘ + ∘
=
× −
× =−
.
定要考虑引入特殊角,把“值”变“角”,以便构造出适合公式的形式.
∘ ∘
1.
− ∘
A.
=(
)
B.
√
∘ ∘
解析:选.
− ∘
=
∘ ∘
∘
C.
∘
=
∘
D.2
∘ + ∘ ,
所以原式=
∘
∘
= .
∘
=
∘
+
∘ =
考点二 三角公式的逆用与变形应用
例2(1) (2022·新高考Ⅱ卷)若
和差角公式与二倍角公式

和角差公式与二倍角公式1. 两角和与差的三角比公式(1)cos()cos cos sin sin αβαβαβ+=-,cos()cos cos sin sin αβαβαβ-=+(2)sin()sin cos cos sin αβαβαβ+=+,sin()sin cos cos sin αβαβαβ-=-(3)tan tan tan()1tan tan αβαβαβ++=-,tan tan tan()1tan tan αβαβαβ--=+ 【注】①公式成立的条件:公式(1)、(2)中,αβ为任意角,公式(3)中,αβ和αβ±的值都不能为,2k k Z ππ+∈②公式的正用、逆用与变形用:如公式(3)的变形:tan tan tan()(1tan tan )αβαβαβ+=+-tan tan tan()(1tan tan )αβαβαβ-=-+2 二倍角公式222sin 22sin cos ,cos 2cos sin 2cos 1ααααααα==-=-212sin α=-22tan tan 21tan ααα=-(其中,2αα均不为,2k k Z ππ+∈) 【注】(1)广义理解二倍角,如4α的二倍角是2α,2αβ+的二倍角为αβ+,42πα+的二倍角是2πα+(2)二倍角公式的正用、逆用和变形用,如余弦二倍角公式的变形 221cos 21cos 2cos,sin 22αααα+-==典型例题例1 利用两角和的余弦公式求cos105的值例2 若,(0,)2παβ∈,且44sin ,cos 55αβ==,求αβ+例3 已知31sin 2,tan 57αβ==-,其中,044ππαβπ-<<<< 求:(1)sin(2)αβ-的值 (2)2αβ-的值例4 已知tan θ与tan()4πθ-是方程20x px q ++=的两根,且有3tan 2tan()4πθθ=-,求p ,q 的值例5 在ABC ∆中,化简:tantan tan tan tan tan 222222A B B C C A •+•+•例6 已知sin x =sin 2()4x π-的值例7 若32ππθ<<例8已知tan θ=22cos sin 12sin()4θθπθ--+例9 已知21sin(),cos()2329αββα-=-=,且,022ππαπβ<<<<,求cos()αβ+例10 求证:8821cos sin cos 2(1sin 2)2θθθθ-=-。
两角和差倍角公式的应用

两角和差倍角公式的应用角和、差、倍角公式是高中数学中的重要内容,广泛应用于各类数学问题中。
下面以一些常见的例子来说明这些公式的应用。
例1:已知角A和角B的大小,求得角A和角B的和角为多少度?解:根据角和公式,角A和角B的和角C为C=A+B。
例2:角D是角A和角B的和角,且已知角A=35度,角B=55度,求角D的大小。
解:根据角和公式,角D=A+B=35+55=90度。
例3:已知角A和角B的大小,求得角A和角B的差角为多少度?解:根据角差公式,角A和角B的差角C为C=A-B。
例4:角D是角A和角B的差角,且已知角A=75度,角B=35度,求角D的大小。
解:根据角差公式,角D=A-B=75-35=40度。
例5:已知角A的大小,求得2倍角A的值。
解:根据倍角公式,2倍角A=2A。
例6:已知角D是角A的2倍角,且已知角A=25度,求角D的大小。
解:根据倍角公式,2倍角A=2A=2×25=50度。
综合应用:例7:已知sinx = 1/2,求cos2x的值。
解:根据倍角公式,cos2x = cos^2x - sin^2x。
其中,sinx = 1/2,可以找到对应的特殊角,即角x = 30度。
代入公式,cos2x = cos^2(30°) - sin^2(30°) = (3/2)^2 -(1/2)^2 = 9/4 - 1/4 = 8/4 = 2所以,cos2x的值为2例8:已知tanx = 2,求cot2x的值。
解:根据角和公式,角2x=x+x。
已知tanx = 2,可以推导出sinx/cosx = 2,即sinx = 2cosx。
代入角和公式,cot2x = cot(x + x) = cotx·cotx - 1/2sinx/sinx = 1/2 - 1/2 = 0。
所以,cot2x的值为0。
例9:已知角A和角B的差角为60度,且sinA = 4/5,sinB = 3/5,求cos(2A + B)的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两角差的余弦公式
cos( ) cos cos sin sin
1
两角和的余弦公式推导
cos( ) cos cos sin sin
将 替换为
cos( ) cos( ( ))
cos cos( ) sin sin( )
cos cos sin sin
10
②二倍角公式不仅限于2α是α的二倍的形式,其它如 4α是2α的两倍,α/2是α/4的两倍,3α是3α/2的两倍, α/3是α/6的两倍等,所有这些都可以应用二倍角公式。 因此,要理解“二倍角”的含义,即当α=2β时,α就 是β的二倍角。凡是符合二倍角关系的就可以应用二 倍角公式。
③二倍角公式是从两角和的三角函数公式中,取两角 相等时推导出来,记忆时可联想相应角公式。
R
倍
角 公
cos 2 cos2 sin 2 R
式:
对于 C2 能否有其它表示形式? cos 2 2cos2 1
cos 2 1 2sin2
公式中的角是否为任意角? 9
注意:
①二倍角公式的作用在于用单角的三角函数来表达二 倍角的三角函数,它适用于二倍角与单角的三角函数 之间的互化问题。
2
两角和的余弦公式
cos( ) cos cos sin sin 上述公式简记为C
公式中的α、β为任意角。
3
两角和与差的余弦公式:
cos( ) cos cos msin sin
4
两角和的正弦公式公式推导
sin
cos
2
cos
2
cos cos sin sin
简记:S( )
2、两角差的正弦公式
sin( ) sin cos cos sin
简记:S( )
7
两角和的正弦、余弦、正切公式:
sin sin cos cos sin
cos cos cos sin sin
若上述公式中 , 你能否对它进行变形?
8
二 sin 2 2sin cos
2
2
sin cos cos sin
5
两角差的正弦公式公式推导
用 代
sin( )
sin[ ( )]
sin cos( ) cos sin( )
sin( ) sin cos cos sin
6
两角和与差的正弦公式
1、两角和的正弦公式
sin( ) sin cos cos sin