量子力学第二章 - 复习与练习

合集下载

量子力学第2章习题

量子力学第2章习题

240
n6 6
,
n = 1, 2, 3L
n 为偶 n 为奇
能量平均值
E
a

dx
0
a c2 x(a
0
x)(
h2 2μ
)
d2 dx 2
x(a
x)dx
h2 30 a
5h2
x(a x)dx
μ a5 0
μa 2
能量平方的平均值
E 2
a

2
dx
0
a c2 x(a
0
x)(
h2 )2 2μ
a
2
讨论:显然 M 0, N 0,且N M > 0
令:
N M =n N nM
= n ,
a
En
2h2 2a2
n2 ,
n 1, 2,L
( x) = Asin( 1 n x + 1 n + M )
a
2
Asin n x + a
a2
(2.4)题
先归一化
1 a dx a A2 x2 ( x a)2 dx
(
z
)
=
0
2 3
2 μE3 h2
方程的解:
1( x) = A1sin(1 x) + B1cos(1 x) 2( y) = A2sin(2 y) + B2cos(2 y) 3(z) = A3sin(2z) + B3cos(3z)
( x, y, z) =1( x) 2( y) 3(z) = [ A1sin(1 x) + B1cos(1 x)] [ A2sin(2 y) + B2cos(2 y)] [ A3sin(2z) + B3cos(3z)]

量子力学讲义:第二章-例题讲解

量子力学讲义:第二章-例题讲解

1.耦合谐振子的Hamilton量为工;)+ AXjX2 H= y-(+ P;)+ ^fna>2(x: +其中- '四=_谕白,P,=_滴白(2)OX A- dx2X|、Pl和名、P2分属于不同的自由度,设/t<〃Z©2,试求这耦合谐振子的能级。

解:如没有耦合项石内,就成为二维各向同性谐振子,Hamilton量为H0 = H l+H2=^-pf + m(o2xf + 土°;+?"1况¥;⑶用分离变量法即可化成两个独立的-•维谐振子问题,能级和本征函数为E* 如=(弓+%+1)上。

(4)% (心易)=%,(而肱(工2)⑸%,仇=°,1,2, ........其中%(》)为一维谐振子的能量本征函数。

对于耦合振子,可以用坐标变换的办法将问题化成两个独立的一维谐振子问题。

令也=±°"")' "=去(凶一)‘2)(6)即"士(…)(&)蚌+云=弁+犬 工内=!(井一乂) a 2 a 2 a 2 伊 --- + --- = -- + ---dxf dx^ dyf dy}因此,Hamilton 量可以表示成容易证明当苴*生+_ 2m[dy ; + oy ; )+ :〃以2(),《+)';) + 务2一£)(8)其中+ }网将 +!,g ;y ;=^2 + —,CO ; = CD 1 -—tn」(9)式(8)正是两个独立谐振子(频率田,例)能量算符之和。

因此,能量本征值和本征函数为=(可+?力使膈2(10)on W N、形(凹,v2)=w*(乂)w/ y2)MM=0,l,2,…2. 利用Hermite 多项式的递推关系式和求导公式,证明d"!2-TV W 〃 (x) = %「(x) -(2〃 + \)甲〃(X)+ J(〃 + l)(〃 + 2)“ 心 2 (x)]ax^2 1-J" = 2〃…T (X )+j 号板,Md (X )xV ?J (x )= —!- 2aJn(n - l )w"_2(X )4- (2〃 + l)"〃(x) + yj(n +1)(/14- 2)^/J +2(x)]AdU )- J 旦(X )々*)=(—1)%尸") = !知“(x)= N“eYS 号H,0)=5* 加")+ 2电再)]=|N*FH Z (g) + (S)=g N n+l后罚…乩其)+ N“_\总次(£) =UP NZf (S) + 也N/S2H.T (§)=,捋(X)+ 由"妇(x)_____ ___________生Wn (X )=-切"(X )+ 乂 岑宾… d& d&=- (X )+ J 号X H(X )+ N,K"nHi (&)=_(*)+(X )] + N“_i y^~e ' 2 2〃H,,_i (S ) =(x )+(X )] + 2*乂(§)必)=5(如牛g 〃(§)d 号皿(,)一 2g, (§) + 2儿%t (Q = OH 〃(号)=(一1)腿必d<S n_I3.求在一维常数虚势一iV(V«E)中运动的粒子的波函数。

《量子力学教程》作业题及答案--2017-2018第一学期

《量子力学教程》作业题及答案--2017-2018第一学期
第二章波函数和薛定谔方程
1、 求 一 维 线 性 谐 振 子 处 在 第 一 激 发 态 时 概 率 最 大 的 位 置 。
解:ψ 1(x ) =(

π
)αxe − α
2
x2 /2
w(x ) = ψ 1(x ) =
2
2α 3
π
x 2e − α
2
x2
2 2 2 2 ∂w(x ) = 0 得 2xe − α x − 2α 2xx 2e − α x = 0 ∂x
E n x n y = E n x + E n y = (n x + 2n y + )ω
3) 对于基态, n x ,n y = 0 , E 00 =
3 ω 是非简并的; 2
对于第一激发态,
5 n x = 1 , E 10 = ω 是非简并的; 2 n y = 0 7 n x = 0 n x = 2 , , E 01 = E 20 = ω 能级是二重简并的; 2 = 1 = 0 n n y y 9 n x = 3 nx = 1 , ,E E = = ω 是二重简并的。 30 11 n = 1 2 = 0 n y y
x < 0 0 ≤ x ≤ a 中, x > a
V0
4
的本征态,试确定此势阱的宽度 a 。
解:对于 E = −
V0
4
< 0 的情况,三个区域中的波函数分别为
ψ 1 ( x ) = 0 ψ 2 ( x ) = A sin kx ψ ( x ) = B exp(− αx ) 3
其中,
k=
n
则只有量子数 n = 1,3,5, 时, H n (0) = 0 ( n = 1,3,5, ) 则能级为 E n = ( n + 1 2 )ω

量子力学习题及答案

量子力学习题及答案
?2k ( 7 )
(7)代入(6)
csin2kk22a?dcos2k2a??kccos2k2a?
k21
kdsin2k2a
1
利用(4)、(5),得
k1k2kasin2k2a?acos2k2a??acos2k2a?2kdsin2k2a
1
a[(
k1k2k?2k)sin2k2a?2cos2k2a]?0
1?a?0
?
2
2?
??4
??0?e?4(b?x)对于区域Ⅰ,u(x)??,粒子不可能到达此区域,故?1(x)?0
而. ????2? (u0?e)
2
0?
2
?2?①
??2? (u1?e)
3
???
2
?3?0 ②
??2?e4
???
2
?
4
?0
对于束缚态来说,有?u?e?0
∴ ????k21?2?0 k22? (u0?e)
因此k1x
??1?ae ?
3
?fe
?k
1x
由波函数的连续性,有
?1(0)??2(0),?a?d(4)
?1?(0)???2
(0),?k1a?k2c (5)??(2a)??1a
3?(2a),?k2ccos2k2a?k2dsin2k2a??k?2k2
1fe(6)
?1a
2(2a)??3(2a),?csin2k2a?dcos2k2a?fe
1???k1?1?1?2?(u0?e)?????2??k22?2?0 (2) k22?2?e?2
束缚态0<e<u0 ??
??3??k2
1?3?0 (3)?1x
1?ae
?k?be
?k1x

量子力学——第二章作业参考答案

量子力学——第二章作业参考答案

+
⎛ ⎜ ⎝
∂ψ ∂t
*

+
∂ψ ∂t

*
⎞ ⎟


(2)
ψ 、ψ * 满足薛定谔方程
i
∂ψ ∂t
=
⎛ ⎜ ⎝

2
2m
∇2
+V
⎞⎟ψ ⎠

−i
∂ψ * ∂t
=
⎛ ⎜


2
∇2 2m
+V
⎞⎟ψ * , ⎠
(3) (4)
用 ∂ψ * 乘以(3)式加上用 ∂ψ 乘以(4)式得
∂t
∂t
∂ψ ∂t
Vψ *
dt
s
通常 < 2V2 >≠ 0 ,也就是说在整个区域找到粒子的概率随时间发生变化,概率守恒破缺;
即使 < 2V2 >= 0 ,由(8)式知概率守恒也存在局域破缺除非V2 (r ) = 0
(b)证明如下: 由(a)得
d dt
∫∫∫ d 3rψ τ

=
−∫∫ dsi s
j
+
∫∫∫ d 3rψ τ
*
2V2 ψ
第二章作业参考答案
(曾谨言著《量子力学教程》(第二版) 习题 1 P24-P26)
∫ 1.1 证明:(a)能量的平均值 < E >= d 3rψ *Hˆψ ,
哈密顿量 Hˆ = Pˆ 2 2m +V (r ) ,波函数ψ =ψ (r ,t ) ,(1)式变为
(1)
∫ < E >=
d 3r
⎛ ⎜ψ
*
Pˆ 2
+
∂ψ ∂t

量子力学第二章习题 答案

量子力学第二章习题 答案

第二章习题解答p.522.1.证明在定态中,几率流与时间无关。

证:对于定态,可令)]r ()r ()r ()r ([m 2i ]e )r (e )r (e )r (e )r ([m2i )(m 2i J e)r ( )t (f )r ()t r (**Et iEt i **Et i Et i **Etiψψψψψψψψψψψψψψψ∇-∇=∇-∇=∇-∇===-----)()(,可见t J 与无关。

2.2 由下列定态波函数计算几率流密度:ikr ikr e re r -==1)2( 1)1(21ψψ从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点) 传播的球面波。

解:分量只有和r J J 21在球坐标中 ϕθθϕθ∂∂+∂∂+∂∂=∇sin r 1e r 1e r r 0r mrk r mr k r r ik r r r ik r r m i r e rr e r e r r e r m i mi J ikr ikr ikr ikr30202201*1*111 )]11(1)11(1[2 )]1(1)1(1[2 )(2 )1(==+----=∂∂-∂∂=∇-∇=--ψψψψ r J 1与同向。

表示向外传播的球面波。

rmrk r mr k r )]r 1ik r 1(r 1)r 1ik r 1(r 1[m 2i r )]e r 1(r e r 1)e r 1(r e r 1[m 2i )(m2i J )2(3020220ik r ik r ik r ik r *2*222-=-=---+-=∂∂-∂∂=∇-∇=--ψψψψ可见,r J与2反向。

表示向内(即向原点) 传播的球面波。

补充:设ikx e x =)(ψ,粒子的位置几率分布如何?这个波函数能否归一化?∞==⎰⎰∞∞dx dx ψψ*∴波函数不能按1)(2=⎰∞dx x ψ方式归一化。

其相对位置几率分布函数为 12==ψω表示粒子在空间各处出现的几率相同。

周世勋量子力学第二章知识题

周世勋量子力学第二章知识题

第二章 波函数和薛定谔方程2.1. 证明在定态中,几率流密度与时间无关. 解: 几率流密度公式为()**2J iψψψψμ=∇-∇ 而定态波函数的一般形式为()(),iEtt eψψ-=r r将上式代入前式中得:()()()()**2J r r r r i ψψψψμ⎡⎤=∇-∇⎣⎦ 显然是这个J 与时间无关.2.2. 由下列两定态波函数计算几率流密度;(1) ,e r ikr 11=ψ (2) ikr e r-=12ψ 从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点)传播的球面波.解: 在球坐标中,梯度算符为1ψ和2ψ只是r 的函数,与ϕθ,无关,所以,()**11211e e e ikr r r r e r ik ik r r r r ψψψ-∂⎛⎫⎛⎫∇==-+=-+ ⎪ ⎪∂⎝⎭⎝⎭()*222111e e e ikr r r r e r ik ik r r r r ψψψψ-∂⎛⎫⎛⎫∇==-+=-+=∇ ⎪ ⎪∂⎝⎭⎝⎭()()**221111ikr r r r e r ik ik r r r r r ψψψψ∂⎛⎫⎛⎫∇==-=-=∇ ⎪ ⎪∂⎝⎭⎝⎭e e e将以上四式代入 ()()()()**2J r r r r i ψψψψμ⎡⎤=∇-∇⎣⎦ (1) 对于ikre r11=ψ12222111122r r r i k p ik r r r r μμμμ⎡⎤=-===⎢⎥⎣⎦p J e e e (2) 对于ikre r-=12ψ212222111122r r r i k p ik r r r r μμμμ⎡⎤==-=-=-=-⎢⎥⎣⎦p J e e e J 计算的结果已经很清楚ikre r11=ψ这样的球面波,是沿r e 方向传播的波, 121p J e rr μ=.而球面 波ikre r-=12ψ传播方向与1ψ相反,即21J J =- 2.3. 一粒子在一维势场()⎪⎩⎪⎨⎧>∞≤≤<∞=ax a x x x U 00中运动,求粒子的能级和对应的波函数.解: 从定态薛定谔方程 02222=+ψμψE dx d 即 02=+''ψψk ()20k E =>可知,其解为ikx ikx Be Ae -+=ψ在0≤x 和a x ≥处,波函数为 0)(=x ψ,在a x ≤≤0处, 波函数为 ikxikx Be Ae -+=ψ 从()00=ψ得 0=+B A 即 B A -=因此有 ()2sin sin ikx ikx A e e iA kx C kx ψ-=-== 从()0=a ψ得 sin 0ka = 即要求 321,,n n ka ==π所以 sin1,2,3n n C x n aπψ==22222an E n μπ = 归一化条件1*=⎰dx ψψ可得aC 2=()()222211sin 1cos 2,cos 1cos 222αααα⎡⎤=-=+⎢⎥⎣⎦ 所以 1,2,30n nx n x a aπψ==≤≤ 综合得: 000n n x x a ax x aπψ≤≤=<>⎩或2.4. 证明()sin20n n A x a x a ax aπψ⎧'+<⎪=⎨⎪≥⎩式中的归一化常数是a A 1='解: 这是宽度为a 2,将坐标原点选在势阱中心而表示的一维无限深势阱的波函数,利用归一化条件得()222220222201sin sin 2222sin 2a aa n n n A x a dx A ydya a a a n A zdz A A a n n ππππππ+-''=+='''==⋅⋅=⎰⎰⎰所以 aeA i 1δ=' 取 0=δ 得2.5. 求一维谐振子处在第一激发态时几率最大的位置. 解: 一维谐振子第一激发态的波函数为 ()()x xex *x 1212112222ψαπαψα=⋅=- 其中几率密度()()22223323222210x x dw x x e x x e dx ααααππ--=-=-= 极值点有 00,,x x =±±∞ 使:()2223224421520x d w x x e dx αααπ-=-+< 只有μω±=±=0x x两个值,所以和μω-=x 处第一激发态粒子出现的几率最大.2.6. 在一维势场中运动的粒子,势能对原点对称:()()x U x U =-,证明粒子定态的波函数具有确定的宇称.解: 定态的波函数满足的薛定谔方程为()()()x E x x H ˆψψ=哈密顿算符 ()()x U dxd x H ˆ+-=222μ 于是当x x -→时,而拉普拉斯算符 ()222222222222dxd x d d dx d μμμ -=--→- 题2.5图 图中取1μω=即在坐标反射下,哈密顿算符不变,即()()x H ˆx Hˆ=- 写出坐标反射后的薛定谔方程()()()x E x x H ˆ-=--ψψ考虑到()()x H ˆx Hˆ=-有 ()()()x E x x H ˆ-=-ψψ 比较 ()()()()()()ˆˆH x x E x H x x E x ψψψψ⎧=⎪⎨-=-⎪⎩ 如果属于能量E 的本征值是非简併的,反射变换前后,状态函数有如下关系()()x x λψψ=-,()()()x x x ψλλψψ2=-=,1±=λ.即()()x x ψψ±=-可见,粒子的定态波函数具有确定的宇称,奇宇称或偶宇称. 当()()x x ψψ-=时,称该波函数为偶宇称. 当时,称该波函数为奇宇称.但是如果属于能量E 的本征值是简併的,特别是()()x x ψλψ-≠这时可以构造两个与之相关的波函数()()()()()(),.f x x xg x x x ψψψψ-=+--=--据此,可知()(),f x f x -=因而具有偶宇称;()().g x g x -=-因而具有奇宇称.以上结果本质上是根据哈密顿的对称性去推知它的本征函数的对称性.一般地,如果属于某一能量的本征态是非简併的, 那么, 能量本征态会携带哈密顿算符的对称性.但是, 如果属于某一能量的本征态是简併的,那么并不是其中的每一个本征态都会携带哈密顿算符的对称性.但总可以通过它们的某种组合使之携带哈密顿算符的对称性.2.7. 一粒子在一维势阱()⎩⎨⎧<>>=ax ax U x U 000 中运动,求束缚态()00U E <<的能级所满足的方程.解: 粒子所满足的方程()()222222d x E x a x a dx ψψμ-=-<<()()()a x x E x U x dxd >=+-33032222ψψψμ令 22 Eμα= ()202 E U -=μβ方程变为()()()()()()⎪⎩⎪⎨⎧>=-''<<-=+''-<=-''ax x x a x a x x ax x x 000323222121ψβψψαψψβψ它们的解分别是:()112212312sin cos sin x xx xA e A e x aB x B x B x a x aC e C e x aββββψψαααδψ--=+<-=+=+-<<=+> 由波函数的有限性条件限制,必须要求120A C ==()12231sin xxA e x aB x a x aC e x aββψψαδψ-=<-=+-<<=> (1)根据波函数在边界上连续及导数连续的条件, 确定常数.(1) 波函数ψ连续1232x a x ax a x a x a x a ψψψψ=-=-==⎧=-=⎪⎨==⎪⎩得 ()()21sin sin aaA eB aC eB a ββαδαδ--⎧=-+⎪⎨=+⎪⎩ (2) (2) 波函数导数ψ'连续[][][][]⎩⎨⎧'='='='-===-=-=a x a x a x a x a x a x 22332211ψψψψψψψψ 得 ()()ctg ctg a a βααδβααδ=-+⎧⎪⎨-=+⎪⎩ (3) 由此明显看出:由(2)可以用消去两个待定系数2A 和1C ;由(3)可以确定δ和能量E .由(3)得 ()()()ctg ctg ctg a a a αδαδαδ+=--+=-所以 ()();0,1,2a k a k αδπαδ+=+-=±±,由此得πδk 21=,由于余切以π为周期, 故只有两个独立解:20πδ,=,把0=δ和2π分别代入(3)式得到确定能量的方程为:0ctg 2tg a a δααβδπααβ==-==将上面的式子同乘以势垒宽度a0ctg 2tg a a aa a aδααβδπααβ==-==再考虑到:()20202222()U E U a a a a μμβα-==-令 22022U a n μ=z a α=22ctg z z n z =--令 221()ctg f z z z n z =+- 同理由第二组解得: 222()tg f z z z n z =--当1,2,3,4n =, 由1()f z 和2()f z 做出图2.7-1, 图2.7-2, 图2.7-3, 图2.7-4.由图2.7-1可以看出:当1n =时()01z <<只有一虚线通过横轴,也就说只存在一个解.对应的是第二组的解.由数值计算可知,此时0.7391z =,由此可算出对应的能级. 由图2.7-2可以看出:当2n =时()02z <<存在两个解.分别对应的是第一组和第二组的解.由数值计算可知,此时对应第一组的解为 1.8955z =,对应第二组的解为,由此可算出对应的能级. 由图2.7-3可以看出:当3n =时()03z <<存在两个解.分别对应的是第一组和第二组的解.由数值计算可知,此时对应第一组的解为 2.2789z =,对应第二组的解为 1.1701z =,由此可算出对应的能级. 由图2.7-4可以看出:当4n =(实际上只要 3.5n >即存在三个解)时()04z <<存在三个解.其中第一组一个解和第二组的两个解.由数值计算可知,此时对应第一组的解为,对应第二组的两个解为别为1.2524,3.5953z =,由此可算出对应的能级.第一组解0δ=由()()21sin sin aaA eB aC e B a ββαδαδ--⎧=-+⎪⎨=+⎪⎩得:()()()123sin sin sin a x a xe B a e x a B x a x a e B a e x aββββψαψαψα-=-<-=-<<=>图2.7-1 图2.7-2图2.7-3 图2.7-4由归一化条件得1sin a xe a e a x ββαψ=-<2sin x a x a αψ=-<<3sin a xe a e x a ββαψ-=>对于第一组解的第一个能级,有:1.8955a α=,20.626019a aβ===取1a =得 1.8955α=,0.626019β=0.6260190.626019120.6260190.6260193sin 1.8955sin 1.8955sin 1.8955x xe e x ax a x a e e ψψψ-=<-=-<<=x a>由上述波函数可绘出图2.7-5第二组解2πδ=由21sin 2sin 2a a A e B a C e B a ββπαπα--⎧⎛⎫=-+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪=+ ⎪⎪⎝⎭⎩得()()()123cos cos cos a x a xe B a e a x B x a x a e B a e x aββββψαψαψα-=-<=-<<=> 由归一化条件得()()()()()(){}()22211122222222222221cos sin cos cos sin cos cos sin 22aaaaaa a x a x aaaaaxax aadx dx dxe B a e dx B x dx e B a e dxBea edx x dx ea e dxa a B a ββββββββψψψααααααααβα∞-∞-∞--∞-∞--∞-=++=++=++⎧⎫⎪⎪=+-⎨⎬⎪⎪⎩⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰123cos cos cos a xa xe a e a xx a x a e a e x aββββαψαψαψ-=-<=-<<=>对于第二组解的第一个能级,有:0.7391a α=20.673596a a β===令1a =得0.7391α=,0.673596β=0.6735960.673596120.6735960.6735963cos 0.7391cos 0.7391cos 0.7391x x e e x ax a x a e e ψψψ-=<-=-<<=x a>由上述波函数可绘出图2.7-6. 照此方法可绘出其它能级对应的波函数.2.8. 分子间的范德瓦尔斯力所产生的势能可以近似地表示为()⎪⎩⎪⎨⎧>≤≤-<≤<∞=bx bx a U ax Ux x U 00010求束缚态的能级所满足的方程.解: 束缚态,即要求01<<-E U .分区域写出薛定谔方程:()()()()()()()()1220222231332244200222x d x U x E x x a dx d x U x E x a x bdxd x E x x bdx ψψψψμψψψμψψμ=<-+=≤≤--=≤≤-=>其中()0222U E k μ-= 则 ()()22220x k x ψψ''-= 其中()1322E U k μ+= 则 ()()23330x k x ψψ''+=其中 422Ek μ-= 则 ()()24440x k x ψψ''-=以上三方程的解分别为:()()()()22442334sin k x kxkxk xx Ae A e x B k x x Ce C e ψψδψ--'=+=+'=+在0x =处, ()200ψ=,得0A A '+=.令A A '=-;对于()4x ψ,当∞→x 应有限,故0C '=, 则波函数可写为图2.7-6图2.7-5()()()()()2242334sin k x kxkxx A e e x B k x x Ce ψψδψ--=-=+= 由波函数导数的连续性得[][]()()[][]()322333223334434tan th tan x a x a x b x b k x a k a k a k k x b k b k ψψψψδψψψψδ====⎧''==+=⎪⎪⎨⎪''==+=-⎪⎩即()113332324tan th ,tan k k k a k a k b k k δδ--⎡⎤⎛⎫+=+=- ⎪⎢⎥⎣⎦⎝⎭由上两式消去δ,得()()11333224tan th tan k k k a b k a k k --⎡⎤⎛⎫-=-- ⎪⎢⎥⎣⎦⎝⎭用到公式111tan tan tan 1x yx y xy---±±= 上式成为 ()()()()()332342232433324332242th th tan th 1th k k k a k k k a k k k k k a b k k k k k k k a k a k k ++-==⎡⎤⎣⎦--。

量子力学导论第2章答案

量子力学导论第2章答案

第二章 波函数与Schrödinger 方程2.1设质量为m 的粒子在势场)(r V中运动。

(a )证明粒子的能量平均值为 ω⋅=⎰r d E 3,ψψψψωV m**22+∇=(能量密度)(b )证明能量守恒公式 0=⋅∇+∂∂s tw⎪⎪⎭⎫⎝⎛∇∂∂+∇∂∂-=**22ψψψψt t m s (能流密度) 证:(a )粒子的能量平均值为(设ψ已归一化)V T r d V mE +=⎪⎪⎭⎫⎝⎛+∇-=⎰322*2ψψ (1) ⎰=ψψV r d V *3 (势能平均值) (2)()()()[]⎰⎰∇⋅∇-∇⋅∇-=⎪⎪⎭⎫ ⎝⎛∇-=ψψψψψψ**3222*32)(2动能平均值r d mm r d T其中T 的第一项可化为面积分,而在无穷远处归一化的波函数必然为0。

因此ψψ∇⋅∇=⎰*322r d mT(3)结合式(1)、(2)和(3),可知能量密度,2**2ψψψψωV m+∇⋅∇=(4)且能量平均值 ⎰⋅=ωr dE 3。

(b )由(4)式,得...2**.....2*22**..2222*2222V Vt m t t t tV V m t t t t t t s V V t mt m s E ωψψψψψψψψψψψψψψψψψψψψψψψψ⎡⎤∂∂*∂∂*∂⎢⎥=∇⋅∇+∇⋅∇++∂⎢∂∂⎥∂∂⎣⎦⎡⎤⎛⎫⎛⎫∂*∂∂*∂∂*∂⎢⎥ ⎪ ⎪=∇⋅∇+∇-∇+∇++⎢⎥ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎣⎦⎛⎫⎛⎫∂*∂=-∇⋅+-∇++-∇+ ⎪ ⎪∂∂⎝⎭⎝⎭=-∇⋅+..*t t ψψψψ⎛⎫∂*∂ ⎪+ ⎪∂∂⎝⎭ρt E s ∂∂+⋅-∇=(ρ :几率密度)s⋅-∇= (定态波函数,几率密度ρ不随时间改变)所以0=⋅∇+∂∂s tw。

2.2考虑单粒子的Schrödinger 方程()()()()[]()t r r iV r V t r mt r t i ,,2,2122ψψψ++∇-=∂∂(1) 1V 与2V 为实函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

波函数
2.通过对实验的分析,理解态叠加原理。
3.掌握微观粒子运动的动力学方程
波函
数随时间演化的规律
SchrÖdinger方程。
4.掌握定态及其性质。
5.通过对三个实例的讨论,掌握定态SchrÖdinger 方程的求解。
3
第二章 小结
Chapter 2. The wave function and Schrödinger Equation
6.三个典型实例的研究。 掌握一维定态薛定谔方程求解。 对于求解一维薛定谔方程,应掌握边界条件的确定 和处理方法。关于一维定态问题要求如下: a.掌握一维无限深势阱的求解方法及其物理讨论; b.掌握一维谐振子的能谱及其定态波函数的一般 特点:
束缚态问题的常见特征: ① 分立能级 ② 零点能 ③ 波函数节点 ④ 势场对称性=>波函数对称性(宇称)
0.2
-0.2
-0.1
0.1
0.2
0.1
-0.45
-0.4
-0.35
-0.3
-0.25
B:=1
0.4 0.3 0.2 0.1
0.4
0.5
0.6
0.7
9
Chapter 2. The wave function and Schrödinger Equation
U0不同时基态(必定存在)结果和束缚态数不同:
Current density of particles and conservation laws
➢ 2.5 定态薛定谔方程
45
Time-independent Schrödinger equation
➢ 2.6 一维无限深势阱
55
One-dimensional infinite potential well
k
2 2
2 E
2
(k
2 2
k12 ) sin
2k 2 a
2k1 k 2
cos 2k2a
0
Me=0.5MeV,a=0.5nm,U0=20eV
8
波函数(未归一化):
Chapter 2. The wave function and Schrödinger Equation
1 2
Bek1x C sin
动量算符 Pˆ i 的引入
4.定态Schrödinger方程及定态的特征。 2 ★ 能量算符 Hˆ 2 U 的引入。 2m ★ Hamilton(能量)算符及本征值方程。
★ 能量算符的本征值与本征波函数。 ★ 定态的判断。
5.几率流密度与守恒律。
5
Chapter 2. The wave function and Schrödinger Equation
➢ 2.7 线性谐振子
67
Linear harmonic oscillator
➢ 2.8 势垒贯穿
85
Barrier penetration
2
学习要求
Chapter 2. The wave function and Schrödinger Equation
1.理解微观粒子运动状态的描述 及其统计解释。
c.了解势垒贯穿的讨论方法及其对隧道效应的解释。
6
作业
周世勋《量子力学教程》
Chapter 2. The wave function and Schrödinger Equation
2.2, 2.3(设已知t=0时刻波函数如下,求 (x,t) )
2.5,
(
x,
0)
1 sin x aa
1 sin 2 x, aa
-0.005 -0.01
-0.015 -0.02
200
0.005
0.01
0.015
0.02
100
-100 -200
50
100
150
200
U0=0.02eV
U0=200eV
10
补充:
Chapter 2. The wave function and Schrödinger Equation
1、设势函数 U (r )的最小值为 Umin ,对于能量 E 的 所有本征值,有


Chapter 2. The wave function and Schrödinger Equation

波பைடு நூலகம்数与薛定谔方程
Wave Function and Schrödinger Equation
1
学习内容
Chapter 2. The wave function and Schrödinger Equation
(r ,
t)
互为Fourer变换与逆变换
C ( P, t )
(3) 波函数的归一化问题
4
第二章 小结
Chapter 2. The wave function and Schrödinger Equation
2.态迭加原理及其实验基础 几率幅(波函数)而非几率
3.Schrödinger方程及其建立的基本思路
0xa
0,
x 0, x a
2.6(注意,自己思考,流行的参考答案不正确),
2.7(提示:边界上波函数及导数是连续的。取 电子质量,势阱深20eV,a=0.5nm,给出基态能级 的数值结果并作出波函数和概率密度的图)
7
习题2.7 本征能量满足的方程:
k12
2(U0 E)
2
Chapter 2. The wave function and Schrödinger Equation
➢ 2.1 波函数的统计解释
4
Wave function and its statistical explanation
➢ 2.2 态叠加原理
23
Superposition principle
➢ 2.3 薛定谔方程
32
Schrödinger equation
➢ 2.4 粒子流密度和粒子数守恒定律
40
1.波函数及其统计解释
(1)波函数又称为几率幅,它的模方给出粒子的几率。 几率幅无直接可测的意义,其模方才有直接可测的意义。
(2)坐标表象中的波函数: (r t)
| (r t) |2 给出t 时刻粒子处在位置
r处的几率
动量表象中的波函数:C(P, t)
C
P, t
2
给出t
时刻粒子动量为 P的几率
En Umin
2、一维束缚态无简并,第(n+1)能级波函数有n个节 点。
11
3、分离变量法解二维谐振子问题
Hˆ 2(x, y) Hˆ1(x) Hˆ1( y)
k2
x
D
cos
k2
x
3 Fek1x
x a a x a
xa
C B(k2 sin k2a k1 cos k2a)ek1a / k2
D Bek1a C sin k2a / (cos k2a)
F (C sin k2a D cos k2a) ek1a
0.6
0.5
0.4
0.4
0.3
0.3
相关文档
最新文档