量子力学第2章习题

合集下载

量子力学第一,第二章作业

量子力学第一,第二章作业

1、 束缚于某一维势阱中的粒子,其波函数由下列诸式所描述:()()()023cos2202ikx L x x x L L x Ae x L L x x ψπψψ=<-=-<<=> (a )、求归一化常数A,(b )、在x=0及x=L/4之间找到粒子的概率为何?2、证明在定态中,概率流密度与时间无关。

3、由下列两定态波函数计算概率流密度:(1)、11i k r e r ψ=(2)、21i k r e rψ-= 4、波长为1.0*10-12m 的X 射线投射到一个静止电子上,问在与入射光成60o 角的方向上,探测到散射光的波光为多少?5、(a )、若已知电子、氢原子和铀原子的动能都等于100 eV , 试计算这些粒子的德布罗意波长。

(b )、若电子和中子的德布罗意波长都等于1A, 试求它们的速度和动能。

6、一维运动的粒子处于状态(),00,0x Axe x x x λψ-⎧≥=⎨<⎩ 之中,其中0λ>,A 为待求的归一化常数,求粒子坐标的概率分布函数。

7、粒子在一维无限深势阱中运动,势能函数V(x)为:()202a x V x a x ⎧∞>⎪⎪=⎨⎪≤⎪⎩求该粒子的定态波函数和能量允许值。

8、推导下式: [][][][])()2)(1()()12()()1()()()()()()2)(1()()12()()1()()()()(22212112222121211212222x n n x n x n n x x x x x n n x n x n n x x x x x x n n n n dx d n n n n n dxdn n n n n n n n n +-++-+-++-++++--=-=+++++-=+=ψψψψψψαψψψψψψψψααα9、设12ψψ,是S-方程的两个解,证明*12d ψψ+∞-∞Ω⎰与时间无关。

10、计算线性谐振子的第一激发态出现在经典禁区之外的概率。

一二三习题答案

一二三习题答案
(A)1(B)2(C)4(D)5
B18.原子轨道指的是下列的哪一种说法?
(A)原子的运动轨迹(B)原子的单电子波函数(C)原子的振动态(D)原子状态
C19.钠原子光谱D线是双重线,其原因是下列的哪一个:
(A)电子的轨道角动量(B)外磁场;(C)自旋轨道耦合(D)3p能级高
C20.对于原子中电子的总能量,下列的哪一个说法是正确的?
D15.如果氢原子的电离能是13.6 eV,则Li2+的电离能是下列的哪一个?
(A)13.6eV,(B)27.2 eV;(C)54.4 eV;(D)122.4 eV
A16.在氢原子中,对于电子的能量,下列的哪一种说法正确?
(A)只与n有关;(B)只与l有关;(C)只与m有关;(D)与n和l有关
B17.测量3d态氢原子的轨道角动量的z轴分量,可得到几个数值?
(C)动量一定有确定值;(D)几个力学量可同时有确定值;
7.试将指数函数e±ix表示成三角函数的形式cosex±isinex
8.微观粒子的任何一个状态都可以用波函数来描述;ψψ*表示粒子出现的概率密度。
D9.Planck常数h的值为下列的哪一个?D
(A)1.38×10-30J/s(B)1.38×10-16J/s(C)6.02×10-27J·s(D)6.62×10-34J·s
(A)CA=0.90,CB=0.10;(B)CA=0.95,CB=0.32;
(C)CA=CB;(D)CA=0.10,CB=0.90;
B7.下列分子的基态中哪个是三重态?
(A)F2(B)O2(C)N2(D)H2+
B8.对分子的三重态,下列哪种说法正确?
(A)分子有一个未成对的电子(B)分子有两个自旋平行的电子
(A)Zeeman(B)Gouy(C)Stark(D)Stern-Gerlach

量子力学习题及答案

量子力学习题及答案
?2k ( 7 )
(7)代入(6)
csin2kk22a?dcos2k2a??kccos2k2a?
k21
kdsin2k2a
1
利用(4)、(5),得
k1k2kasin2k2a?acos2k2a??acos2k2a?2kdsin2k2a
1
a[(
k1k2k?2k)sin2k2a?2cos2k2a]?0
1?a?0
?
2
2?
??4
??0?e?4(b?x)对于区域Ⅰ,u(x)??,粒子不可能到达此区域,故?1(x)?0
而. ????2? (u0?e)
2
0?
2
?2?①
??2? (u1?e)
3
???
2
?3?0 ②
??2?e4
???
2
?
4
?0
对于束缚态来说,有?u?e?0
∴ ????k21?2?0 k22? (u0?e)
因此k1x
??1?ae ?
3
?fe
?k
1x
由波函数的连续性,有
?1(0)??2(0),?a?d(4)
?1?(0)???2
(0),?k1a?k2c (5)??(2a)??1a
3?(2a),?k2ccos2k2a?k2dsin2k2a??k?2k2
1fe(6)
?1a
2(2a)??3(2a),?csin2k2a?dcos2k2a?fe
1???k1?1?1?2?(u0?e)?????2??k22?2?0 (2) k22?2?e?2
束缚态0<e<u0 ??
??3??k2
1?3?0 (3)?1x
1?ae
?k?be
?k1x

量子力学(第二版)答案 苏汝铿 第二章课后答案2.13-2#08

量子力学(第二版)答案 苏汝铿 第二章课后答案2.13-2#08

选择 i ,在渐进区域 x 我们有 (1 y)
代表从左边入射的平面波,而第二项代表在金属表面反射的平面波,因此

AI eikx AR eikx
( x )
于是反射系数是
R
AR (2 )( )( 1) ……(13) AI (2 )( )( 1)
2 2 如果 V0 E 0 , 则有 , 于是 是实数。 当 x 时 y
F 1 e x / a 0 ,
而 们有
y
e x / a 。于是,如果选择 0 ,则解(9)当 x 时为零。如果 E 0 ,我
2 2 , 因 而 是 纯 虚 数 , 比 如 说 i 。 于 是 当 x 是 ,
n 2 2 2 8ma 2
F
En a
2


n 2 2 8m

2 a3
2 En a 2 ∴ F E a
dr



0
r 2 e
r i r a
dr

r i r x a 1 4 原式 3 ( 2 ) a3


0
x2 ex
1 (a
i
dx )
3

1 8 a3 3 3 ( 2 )3 a3 ( i a)
批注 [JL1]: 即去掉一个 overal 相位 因子, 但好像仍有差别。
2r r2 e y dy 3 0 a 2 4 a0 4 y 3 ( ) 6e 0 a 2 3 ( a a0 ) a 2
2
2) e / r r sin (
2 2 V

量子力学(第二版)答案 苏汝铿 第二章课后答案2.13-2#13

量子力学(第二版)答案 苏汝铿 第二章课后答案2.13-2#13
2.13 求势场 U ( x)
U 0 e 1
x a
,入射粒子能量 E 0 时的反射系数。
解:该势场的薛定谔方程为:
U d 2 2m 2 ( E x 0 ) 0 2 dx ea 1
令 y (1 e a ) 1 ,则有 y ( y 1)
x
d 2 d 2 2 (1 2 y) ( ) 0 2 dx dy y (1 y ) y
1
1 2m 2 2m( E V0 ) 2 其中 K 2 E , k 2 a
1 r / a0
1
2.14 设氢原子处在 (i) r 的平均值;
a
3
e
, a0 为第一波尔半径,求:
(ii)势能 e / r 的平均值;
2
(iii)能量概率的分布函数。 解: (1)首先判断题中所给波函数的归一化情况:
十三组成员 :李俊华 200431020040
扈俊 200431020122
余功硕 200431020039
4
1
令 i ,当 x ,我们有
(1 y)
e
i x / a
eikx ,这时 1 式中 的第一项代表
代表延 x 轴正向传播的平面波,第二代表反射的平面波 因此
AI eikx AReikx , x ,因此
2
A R R AI
(v 1)(v )(2 ) ,当 E 0 时, 和 v 均为纯虚数,即 (v ) 2 (v 1)

(2)
e 2 4 e2 4e2 1 e2 2 r / a0 2 re dr r a3 a 211 a0 0

量子力学导论第2章答案

量子力学导论第2章答案

第二章 波函数与Schrödinger 方程2.1设质量为m 的粒子在势场)(r V中运动。

(a )证明粒子的能量平均值为 ω⋅=⎰r d E 3,ψψψψωV m**22+∇=(能量密度)(b )证明能量守恒公式 0=⋅∇+∂∂s tw⎪⎪⎭⎫⎝⎛∇∂∂+∇∂∂-=**22ψψψψt t m s (能流密度) 证:(a )粒子的能量平均值为(设ψ已归一化)V T r d V mE +=⎪⎪⎭⎫⎝⎛+∇-=⎰322*2ψψ (1) ⎰=ψψV r d V *3 (势能平均值) (2)()()()[]⎰⎰∇⋅∇-∇⋅∇-=⎪⎪⎭⎫ ⎝⎛∇-=ψψψψψψ**3222*32)(2动能平均值r d mm r d T其中T 的第一项可化为面积分,而在无穷远处归一化的波函数必然为0。

因此ψψ∇⋅∇=⎰*322r d mT(3)结合式(1)、(2)和(3),可知能量密度,2**2ψψψψωV m+∇⋅∇=(4)且能量平均值 ⎰⋅=ωr dE 3。

(b )由(4)式,得...2**.....2*22**..2222*2222V Vt m t t t tV V m t t t t t t s V V t mt m s E ωψψψψψψψψψψψψψψψψψψψψψψψψ⎡⎤∂∂*∂∂*∂⎢⎥=∇⋅∇+∇⋅∇++∂⎢∂∂⎥∂∂⎣⎦⎡⎤⎛⎫⎛⎫∂*∂∂*∂∂*∂⎢⎥ ⎪ ⎪=∇⋅∇+∇-∇+∇++⎢⎥ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎣⎦⎛⎫⎛⎫∂*∂=-∇⋅+-∇++-∇+ ⎪ ⎪∂∂⎝⎭⎝⎭=-∇⋅+..*t t ψψψψ⎛⎫∂*∂ ⎪+ ⎪∂∂⎝⎭ρt E s ∂∂+⋅-∇=(ρ :几率密度)s⋅-∇= (定态波函数,几率密度ρ不随时间改变)所以0=⋅∇+∂∂s tw。

2.2考虑单粒子的Schrödinger 方程()()()()[]()t r r iV r V t r mt r t i ,,2,2122ψψψ++∇-=∂∂(1) 1V 与2V 为实函数。

量子力学教程(二版)习题答案

量子力学教程(二版)习题答案

第一章 绪论1.1.由黑体辐射公式导出维恩位移定律:C m b bTm3109.2 ,×´==-l 。

证明:由普朗克黑体辐射公式:由普朗克黑体辐射公式:n n p nr n nd ec hd kTh 11833-=, 及ln c=、l ln d c d 2-=得1185-=kThcehc l l l p r ,令kT hc x l =,再由0=l r l d d ,得l .所满足的超越方程为所满足的超越方程为15-=x x e xe用图解法求得97.4=x ,即得97.4=kT hc m l ,将数据代入求得C m 109.2 ,03×´==-b b T ml 1.2.在0K 附近,钠的价电子能量约为3eV ,求de Broglie 波长. 解:010A 7.09m 1009.72=´»==-mEh p h l # 1.3. 氦原子的动能为kT E 23=,求K T 1=时氦原子的de Broglie 波长。

波长。

解:010A 63.12m 1063.1232=´»===-mkT h mE h p h l其中kg 1066.1003.427-´´=m ,123K J 1038.1--×´=k # 1.4利用玻尔—索末菲量子化条件,求:利用玻尔—索末菲量子化条件,求: (1)一维谐振子的能量。

)一维谐振子的能量。

(2)在均匀磁场中作圆周运动的电子的轨道半径。

)在均匀磁场中作圆周运动的电子的轨道半径。

已知外磁场T 10=B ,玻尔磁子123T J 10923.0--×´=B m ,求动能的量子化间隔E D ,并与K 4=T 及K 100=T 的热运动能量相比较。

的热运动能量相比较。

解:(1)方法1:谐振子的能量222212q p E mw m +=可以化为()12222222=÷÷øöççèæ+mw m E q Ep的平面运动,轨道为椭圆,两半轴分别为22,2mw m Eb E a ==,相空间面积为,相空间面积为,2,1,0,2=====òn nh EE ab pdq nw pp 所以,能量 ,2,1,0,==n nh E n方法2:一维谐振子的运动方程为02=+¢¢q q w ,其解为,其解为()j w +=t A q sin速度为速度为 ()j w w +=¢t A q c o s ,动量为()j w mw m +=¢=t A q p cos ,则相积分为,则相积分为 ()()nh T A dt t A dt t A pdq T T ==++=+=òòò2)cos 1(2cos 220220222mw j w mw j w mw , ,2,1,0=n nmw nh T nh A E ===222, ,2,1,0=n (2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。

量子力学 第四版 卷一(曾谨言 著) 答案----第2章

量子力学 第四版 卷一(曾谨言 著) 答案----第2章

当时间足够长后(所谓 t → ∞ ) ,上式被积函数中的指数函数具有 δ 函数的性质,取
mx α = t 2m , u = k − , t
参照本题的解题提示,即得
(2)
ψ ( x, t ) ≈
1 imx 2 2 t e ⋅ 2π
2π m − iπ e t
+∞ /4
−∞
∫ ϕ ( k )δ k −
2.2 设一维自由粒子的初态ψ ( x,0) = δ ( x ) ,求 ψ ( x, t ) 。
2 +∞
提示:利用积分公式
−∞ +∞
∫ cos(ξ )dξ
2
=
+∞
−∞
∫ sin (ξ )dξ
2
=
π 2

−∞
∫ exp[iξ ]dξ
2
=
π exp[ iπ 4] 。
1 ϕ ( p ) eipx dp , ∫ 2π − ∞ 1 2π
(1)
V1 与 V2 为实函数。
(a)证明粒子的几率(粒子数)不守恒。
(b)证明粒子在空间体积 τ 内的几率随时间的变化为
d dt
∫∫∫
τ
d 3 rψ *ψ = −
ψ *∇ ψ − ψ ∇ ψ ∫ ∫ 2im S
(
*
) ⋅ dS +
2V2
∫∫∫ d
τ
3
rψ *ψ
证:(a)式(1)取复共轭, 得
−∞
∫ ψ ( x,0) e
− ikx
dx 是ψ ( x,0) 的 Fourier 变换。提示:利用 lim
α → ∞
α iπ / 4 − iα x 2 e e = δ ( x) 。 π
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

240
n6 6
,
n = 1, 2, 3L
n 为偶 n 为奇
能量平均值
E
a

dx
0
a c2 x(a
0
x)(
h2 2μ
)
d2 dx 2
x(a
x)dx
h2 30 a
5h2
x(a x)dx
μ a5 0
μa 2
能量平方的平均值
E 2
a

2
dx
0
a c2 x(a
0
x)(
h2 )2 2μ
a
2
讨论:显然 M 0, N 0,且N M > 0
令:
N M =n N nM
= n ,
a
En
2h2 2a2
n2 ,
n 1, 2,L
( x) = Asin( 1 n x + 1 n + M )
a
2
Asin n x + a
a2
(2.4)题
先归一化
1 a dx a A2 x2 ( x a)2 dx
(
z
)
=
0
2 3
2 μE3 h2
方程的解:
1( x) = A1sin(1 x) + B1cos(1 x) 2( y) = A2sin(2 y) + B2cos(2 y) 3(z) = A3sin(2z) + B3cos(3z)
( x, y, z) =1( x) 2( y) 3(z) = [ A1sin(1 x) + B1cos(1 x)] [ A2sin(2 y) + B2cos(2 y)] [ A3sin(2z) + B3cos(3z)]
边条件: Asin( a + ) = 0 , x a
2
2
Asin( a + ) = 0 , x a
2
2
a + = M (1) a + = N (2)
2
2
2 = (M + N = 1 ( N + M
2
a = ( N M = 1 ( N M
a
解为:
( x) = Asin[1 (N M x + 1 (N + M ]
dx
ih 1 d u2 ( x)dx (ih)ik 2 dx
2 dx
ih
1 2
u2
(
x)
(ih)ik
2 dx]
0 (ih)ik hk
(3-20)题
已知 Kˆn nn, [LˆMˆ Mˆ Lˆ] = 1 定义 n = Lˆn, n = Mˆ n
Kˆn = LˆMˆ Lˆ n = Lˆ(Mˆ Lˆ 1) n = Lˆ(Kˆ 1) n = Lˆ(n 1) n = (n 1)Lˆ n = (n 1)n
(1)
2
2
2
Asin( a ) + Bcos( a ) = 0 , x a (2)
2
2
2
改写:
sin(
a )
2
sin(
a 2
)
cos( cos(
a 2 a 2
) )
A B
0
系数A,B不全为0: 所以:
sin( a ) cos( a )
2
2 0
sin( a ) cos( a )
2
2
e2
d dx
0(
x)
2
=
(2 2 x)e2x2 = 0 x = 0
0 (0) 2 =
h
作业:已知一维谐振子第一激发态
1(x) =
1 2 x2
2 xe 2 =
2
2 3
1 2 x2
xe 2
计算概率密度最大的位置, 及最大的概率密度取值。
(3-6)题
基态 0(x) =
12x2
e2
动量分布函数
dz2
)
E2
得到:
h2 2μ
1 2(
y)
d
2 2(
dy2
y)
E2
和:
h2 2μ
1 3(z
)
d
2 3(z)
dz2
E
E1
E2
令: 得到:
2 2
2 μE2 h2
E3 E E1 E2
2 3
2 μE3 h2
d
2 2
dy
(
2
y
)
+
22
2
(
y
)
=
0
2 2
2 μE2 h2
和:
d
2 3 (
dz 2
z
)
+
32
3
习题(2.1):求三维无限深势阱中粒 子的能量本征值和本征函数
0, V (x, y,z) =
0 < x < a,0 < y < b,0 < z < c, 其它
如a=b=c,讨论能及的简并度。
解:
[
h2
2
V
r (r
)]
r (r
)
=
E
r (r
)

在势阱外
(rr) = 0
在势阱内
V (r) = 0
2a 2 a
4a 2a
n 为偶时
cn
1 2 2a
[ 4a
(n+
2)
cos
4a
(n +
2) x
aa
+
4a (n
2)
cos
4a
(n
2)
x
aa
]
=
0
n

cn
1 a
1 a cos xcos n xdx
2a a 2a
4a
奇 时
1
a
n
cos( x + x)dx
2 2a a
4a 2a
1 a cos( n x x)dx
2 2a a
4a 2a
2
4a
2a
[
n
1 +
2
sin
4a
(n
+
2)
x
aa
+
n
1
2
sin
4a
(n
2)
x
aa
]
计算出
cn
16
2
n
n
(n2 4) cos 4
能量的可能测值 n 为奇数
E
I n
=
n2 2h2 8 (2a )2
=
n2 2h2 32 a 2
对基态 n=1 取值概率
c1
8
3
c1
2
(
8
3
)2
p2
2 2h2
动量分布函数
( p)
2 h
e e dx
1
2
2
(
x
+
i
2
h
)2
1
2 2
h2
p2
1 p2
e 2 2h2
2
1
1 p2
e 2 2h2
2 h
h
1
1 p2
e 2h ,
h
h
动能平 均值
T 1 p2 1
1
1 p2
p2e h dx
2
2 h
动量平 均值
1 1
3
(h ) 2
归一化系数:
2
2
2
波函数:
A1 = a , A2 = b , A3 = c
n1n2n3 ( x, y, z) =
= 2 2 sin( n1 x)sin( n2 y)sin( n2 z)
abc a
b
c
能级:
En1n2n3
=
E1
+
E2
+
E3
h2
2
(12
2 2
2 3
)
h2 2 2
(
n12 a2
n22 b2
计算出
c0 2
2 12 1 + 2
2(
k
)
1 4
(
2k
1
)4
k + 2k
5
(2) 4 1+ 2
(3-10)题
p
(ih d ) dx
dx
(ih)
u( x)eikx d [u( x)eikx ]dx
dx
(ih)[
u( x)eikxeikx d [u( x)]dx
dx
u( x)u( x)eikx d eikxdx]
h2 2μ
2 ( x 2
2 y2
2 z2
( x,
y, z)
=
E
( x,
y, z)
分离变量 ( x, y, z) = 1( x) 2 ( y) 3(z)
代入方程:
h2 2μ
[
2
(
y)
3
(
z
)
d
2 1(
dx2
x)
1
(
x
)
3
(
z
)
d
2 2
dy
(
2
y
)
1(
x)
2
(
y)
d
2 3(z)
dz2
=
E1(x) Nhomakorabea2
同理
Kˆn = LˆMˆ Mˆ n = (1 Mˆ Lˆ )Mˆ n = (Mˆ Mˆ Kˆ ) n = (1 n )Mˆ n = (n 1)n
相关文档
最新文档