3.2量子力学初步.doc

合集下载

量子力学基础

量子力学基础

量子力学基础
量子力学是描述微观粒子行为的物理学理论。

它基于几个重要的基
本概念:
1. 粒子的波粒二象性:根据量子力学,微观粒子(如电子、光子等)既具有波动特性也具有粒子特性。

这意味着粒子的运动和行为可以通
过波动的方式来描述。

2. 不确定性原理:由于波粒二象性,确定粒子的位置和动量同时存
在的精确值是不可能的。

不确定性原理表明,我们无法同时准确测量
粒子的位置和动量,只能得到它们的概率分布。

3. 波函数:波函数是描述量子系统状态的数学函数。

它包含了粒子
的所有可能位置和动量的信息。

根据波函数,可以得出粒子的概率分布。

4. 算符和观测量:在量子力学中,物理量(如位置、动量、能量等)被表示为算符,而不是直接的数值。

物理系统的状态和性质可以通过
算符的作用来描述和测量。

5. 薛定谔方程:薛定谔方程是量子力学的基本方程,描述了量子系
统的时间演化。

它通过波函数的时间导数和能量算符之间的关系来表示。

量子力学的基础原理提供了一种独特而全面的方式来理解微观世界
的行为。

它已经在许多领域获得了成功应用,如原子物理、核物理、
量子化学和量子计算等。

原子物理――量子力学初步精品PPT课件

原子物理――量子力学初步精品PPT课件
• 因此可认为,光学是经典物理学向近代物理学(包 括量子论和相对论)过渡和发展的纽带和桥梁。
海森伯不确定关系的讨论
• 经典粒子:可以同时有确定的位置、 速度、动量、能量…… 其运动是可以用轨迹来描述的。
• 经典波:有确定的波长,但总是在空 间扩展,没有确定的位置
• 波粒二象性:不可能同时具有确定的 位置和动量。如何来确定它们位置、 动量等物理量?
• 粒子在其中以驻波的形式存在 • 匣子壁是驻波的波节 • 匣子的长度是半波长的整数倍
匣子 长度
Ln
2
p h
p nh 22m
n2h2 8mL2
束缚粒子的能 量是量子化的
如果将匣子等效为核的库仑势场
• 其中的粒子就是核外电子,电子沿轨道运动一周后回到起点
• 轨道的周长为匣子长度的2倍
资料仅供参考约恩逊clausjnsson实验1961年50kv005a缝间距基本数据89年日立公司的电子双棱镜实验单电子干涉实验20029物理世界最美丽的十大物理实验让电子通过特制的金属狭缝资料仅供参考1989年日立公司的akiratonomura等人作了更精确的实实际测量证明每秒钟只有少于1000个电子入射到双棱镜中所以不可能有两个或两个以上的电子同时到达接收装置上因而不存在干涉是两个电子相互作用的结果20029物理世界最美丽的十大物理实验资料仅供参考如果让入射电子数减弱每次仅有一个电子射出经过一段时间后仍能得到稳定的双缝干涉花样
1926 年玻恩提出 德布罗意波是概率波 .
统计解释:在某处德布罗意波的强度是与粒子在该 处邻近出现的概率成正比的 .
概率概念的哲学意义:在已知给定条件下,不可能 精确地预知结果,只能预言某些可能的结果的概率 .
三、量子态—波粒二象性的必然结果

量子力学基础入门

量子力学基础入门
CHENLI
形式二:
t E
2
若粒子在能量状态E 只能停留时间Δt ,那么这段时间内 粒子的能量状态不能完全确定,只有当粒子的停留时间为无 限长时(定态),它的能量状态才是完全确定的(ΔE = 0)。
由于粒子的波动性,它在客观上不能同时具有确定的坐 标位置位置和相应的动量。
CHENLI
2012年的两位物理学奖获得者能够映射到当外 界环境参与时量子猫的状态。他们设计了创新 实验,详细说明观测这一行为实际上如何导致 量子状态的崩溃并失去其叠加特性的。阿罗什 和 维因兰德并没有用猫,而是将势阱中的离子
放入薛定谔假设的叠加态中。这些量子物体尽 管宏观上没有猫那样的形状,但相对于量子尺 度仍然足够大。
利用相似的方法,阿罗什和他的团队可以数空腔内的光子。光子不容易数,任何和外 界接触就会破坏。借助这个方法,阿罗什和他的团队设计后期方案一步一步实现单个量子 状态的测量。
CHENLI
CHENLI
量子力学悖论
量子力学描绘了一个肉眼无 法观测的微观世界,很多与我们 的期望和在经典物理中的经验相 反。
量子世界本身具有不确定性。 例如叠加态,一个量子可以有多 重形态。我们通常不会认为一块 大理石同时是“这样”也是“那 样”,除非是一块量子大理石。 叠加态的大理石只能确切地告诉 我们大理石是每一种形态的概率。
1929年,德布罗意获 诺贝尔物理学奖.
1924年11月,德布罗意在其博士论文里首次提出所有物 质粒子具有波粒二象性的假设。
质量为m 的粒子,以速度 v 匀速运动时,一方面可以用 能量E 和动量P 对它作粒子的描述,另一方面也可以用频 率ν,波长λ作波的描述,其关系为:
E h
p
h
/
h h

量子力学第三章

量子力学第三章
第三章 定态方程的初步应用
3.1求一维无限深势阱中的粒子处于第一激发态时概率密度最大值 的位置。
解 一维无限深势阱中粒子的波函数是 对第一激发态,,故 令 得五个极值可疑点:
和4 又因为 将代入上式得,故概率密度最大值位于和处。
3.2若粒子的波函数形式为,求粒子的概率分布,问粒子所处的状 态是否定态?
解 (1)
(2)
3.5在一维势场中运动的粒子,势能对原点对称:,证明粒子的定态
波函数具有确定的宇称。
解 一维运动的薛定谔方程为
(1)
式中
(2)
依题意,在坐标反射变换时
再注意到当时是不变量,因此 (3)
即在坐标反射变换下,哈密顿算符具有不变性。 设坐标反射变换而得的态用表示,这时薛定谔方程为 (4)
有一个交点,故只有一个束缚态。 当 ,即
时两曲线有两交交点和,故有两个束缚态。
(5)式中常数由归一化条件求得:
最后得到波函数为
3.9设粒子处于半壁无限高的势场中 中运动,设粒子能量,求束缚态能量所满足的方程及至少存在一个束缚 态的条件。
解(1) 一维定态薛定谔方程为 将所给势能代入上式得 即 令 它们皆为实数,于是得到
它们的解分别为 但,否则时,不满足波函数有限性的要求,于是
因此在势阱中粒子满足如下薛定谔方程


(1)
其中
(2)
假设粒子处于态,与无关,因而

于是(1式变成
它的解为
代入(3)式得
(4)
为满足有限性要求,,否则处无限大,于是
(5)
又在处,这是因为边界是理想反射壁,粒子不能透出势阱外,于是

即 注意到(2)式,便得到球形势阱中粒子的能级 可见能级是量子化的,与一维无限深势阱的结果相似。

第一章 量子力学初步

第一章   量子力学初步

一电压称为遏制电压。遏制电压与入射光的强度无关。
3)遏制频率(又称红限):遏制电压与入射光频率有关。
频率越高,遏制电压越大。还与被辐照材料有关。
爱因斯坦光量子理论: 光的波动理论难以解释光电效应规律。 光量子理论:光在空间传播时,不仅具有波动性,还具 有粒子性,每一光子的能量是ε=hν,不同频率的光子具有 不同的能量。
任何波长都低于黑体。通常用发射率来表示物体的辐射性能接
近黑体的程度。发射率也称辐射率或黑度,其定义为在相同条 件下,物体的辐出度与黑体的辐出度之比,用ε(T)表示: ε(T)=M(T)/M0(T)
M(T)和M0(T)分别为实际物体和同种物质的绝对黑体在温度T时的辐出度。
实际物体的发射率总是小于1,称为灰体。ε值表征该物体接 近于黑体的程度。
果在长波段才与实验结果相符。高频区域(短波段) 被称为“紫外灾难”。 3)普朗克公式和能量子:普朗克用内插法将维恩公式 和瑞利-金斯公式衔接起来,得到了普朗克公式。
M 0 (T ) 2hc
2
5
1 e
hc kT
1
这里:h是普朗克常数,c是光速,T绝对温度,k是玻
耳兹曼常数。
将该公式分别在短波段和长波段做近似,分别可得到 维恩线和瑞利-金斯线。 将该公式依波长从0~∞积分,则能得到辐射能与温度 的关系式( 斯蒂芬—玻尔兹曼公式)。
单色辐出度:在单位时间内,从物体表面单位面
积上所发射的波长在λ到λ+dλ范围的辐射能dMλ,与波 长间隔dλ成正比。比值dMλ/dλ称为单色辐出度,用Mλ 表示。 Mλ = dMλ/dλ 辐出度:单位时间内从物体表面单位面积上所发
射的各种波长的总辐射能,称为该物体的辐出度,用
M(T)表示。

量子力学基础教程

量子力学基础教程

量子力学基础教程量子力学是一门研究微观世界的物理学科,它描述了微观粒子的行为和性质。

本文将为读者介绍量子力学的基础知识,帮助大家对这一领域有一个初步的了解。

第一章:量子力学的起源量子力学起源于20世纪初,当时科学家们发现传统物理学无法解释一些实验现象,例如黑体辐射和光电效应。

为了解决这些难题,一些科学家开始重新思考物质和能量的本质。

这些思考最终导致了量子力学的诞生。

第二章:波粒二象性量子力学的核心概念之一是波粒二象性。

在经典物理学中,我们认为光可以被看作是一种波动现象。

然而,量子力学揭示了光既可以表现出波动性,又可以表现出粒子性。

这种奇妙的特性不仅出现在光中,也出现在其他微观粒子(如电子和中子)中。

第三章:不确定性原理不确定性原理是量子力学的另一个重要概念。

它指出,在测量某个粒子的位置和动量时,我们无法同时获得精确的结果。

这意味着,我们无法完全预测微观粒子的行为。

不确定性原理的提出颠覆了经典物理学中确定性的观念,揭示了微观世界的混沌和难以捉摸的一面。

第四章:量子态和波函数量子态是描述微观粒子状态的数学概念。

它可以用波函数来表示,波函数是一个复数函数,描述了粒子的概率分布。

通过对波函数的测量,我们可以获得粒子的位置、动量等信息。

波函数的演化由薛定谔方程描述,它是量子力学的基本方程之一。

第五章:量子力学的应用量子力学在物理学和工程学的许多领域都有广泛的应用。

例如,它在原子物理学中用于解释原子的结构和性质;在材料科学中用于研究材料的电子结构和导电性;在量子计算中用于开发新型的计算机技术等等。

量子力学的应用正在不断拓展,为人类的科技发展带来了巨大的潜力。

结语:量子力学是一门复杂而奇妙的学科,它颠覆了传统物理学的观念,揭示了微观世界的独特规律。

本文介绍了量子力学的起源、波粒二象性、不确定性原理、量子态和波函数以及量子力学的应用。

希望通过这篇文章,读者对量子力学有了初步的了解,并能进一步探索这一神秘的学科。

原子物理学课后习题详解第3章(褚圣麟)

原子物理学课后习题详解第3章(褚圣麟)

第三章 量子力学初步3.1 波长为οA 1的X 光光子的动量和能量各为多少? 解:根据德布罗意关系式,得:动量为:12410341063.6101063.6----∙∙⨯=⨯==秒米千克λhp 能量为:λ/hc hv E==焦耳151083410986.110/1031063.6---⨯=⨯⨯⨯=。

3.2 经过10000伏特电势差加速的电子束的德布罗意波长?=λ 用上述电压加速的质子束的德布罗意波长是多少?解:德布罗意波长与加速电压之间有如下关系:meV h 2/=λ 对于电子:库仑公斤,19311060.11011.9--⨯=⨯=e m把上述二量及h 的值代入波长的表示式,可得:οοολA A A V 1225.01000025.1225.12===对于质子,库仑公斤,19271060.11067.1--⨯=⨯=e m ,代入波长的表示式,得:ολA 319273410862.2100001060.11067.1210626.6----⨯=⨯⨯⨯⨯⨯⨯=3.3 电子被加速后的速度很大,必须考虑相对论修正。

因而原来ολA V25.12=的电子德布罗意波长与加速电压的关系式应改为:ολA V V)10489.01(25.126-⨯-=其中V 是以伏特为单位的电子加速电压。

试证明之。

证明:德布罗意波长:p h /=λ对高速粒子在考虑相对论效应时,其动能K 与其动量p 之间有如下关系:222022c p c Km K =+而被电压V 加速的电子的动能为:eV K =2200222/)(22)(c eV eV m p eV m ceV p +=+=∴因此有:2002112/c m eV eVm h p h +⋅==λ一般情况下,等式右边根式中202/c m eV 一项的值都是很小的。

所以,可以将上式的根式作泰勒展开。

只取前两项,得:)10489.01(2)41(260200V eVm h c m eV eVm h -⨯-=-=λ 由于上式中οA VeV m h 25.122/0≈,其中V 以伏特为单位,代回原式得: ολA V V)10489.01(25.126-⨯-=由此可见,随着加速电压逐渐升高,电子的速度增大,由于相对论效应引起的德布罗意波长变短。

2 量子力学初步

2 量子力学初步
入射光子能量
0
功函数:电子逸出表面吸收的最小能量
5
2.1量子力学基本原理

能量量子化

光子:电磁能量的粒子形式 (爱因斯坦 光电效应) 量子:热辐射的粒子形式 (普朗克 能量量子化)
6
2.1量子力学基本原理

2.1.2波粒二相性
1924年 德布罗意提出物质波假说
波具有粒子性,粒子也具有波动性——波粒二相性原理。 光子动量: 粒子的波长:
其中,Ψ (x,t)为波函数,V(x)为与时间无关的势函 数,m为粒子的质量,j为虚常数。 分离变量: x, t x t
2 2
2.7
2.9
11
1 x 1 t V x j 则有: 2 2m x x t t 常数 常数

2.1.1能量量子化原理
光电效应理论与实验的矛盾
4
2.1量子力学基本原理

能量量子化
光电效应理论与实验的矛盾 1900年普郎克提出热辐射量子化的概念
E=hv (普郎克常数h=6.625x10-34J-s)

1905年爱因斯坦提出光量子概念(光子)解释了光 电效应
1 2 Tmax mv h h 0 光电子的最大动能: 2
第2章 量子力学初步
1
第2章 量子力学初步



2.1量子力学的基本原理 2.2薛定谔波动方程 2.3薛定谔波动方程的应用 *2.4原子波动理论的延伸 2.5小结
2
2.1量子力学的基本原理

三个基本原理
能量量子化原理 波粒二相性原理 不确定原理(测不准原理)

3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3、2 量子力学初步3.2.1、 物质的二象性①光的二象性:众所周知,光在许多情况下(干涉、偏振、衍射等)表现为波动性,但在有些情况下(如光电效应、黑体辐射等)又表现为粒子字。

因而对光完整的认识应是光具有波粒二象性。

一个光子的能量: E=hv v 是光的频率,h 是普朗克常数光子质量: 22c hv c E m == 秒焦•⨯=-341063.6h光子动量:c hvmc P == ②德布罗意波 德布罗意把光的波粒二象性推广到实物粒子。

他认为,波粒二象性是一切微观粒子共有的特性。

第一个实物粒子在自由运动时所具有的能量为E 、动量为p ,这样的自由粒子必定对应一个振动频率为v 、波长为λ的平面简谐波。

这两组特征量之间的关系仍是λhp hv E =⋅=自由的实物粒子所对应的平面简谐波常称为物质波或德布罗意波,它的客观真实性已为许多实验所证实。

物质波的物理意义究竟是什么?波是振动状态在空间传播形成的,波在空间某处振动状态的强弱可用该处振幅的平方米来表征。

对于光波,若某处振幅平方较大,则该处的光较强,光子数较多,这也意味着光子在该处出现的可能性较大,物质波也是如此。

物质波若在某处振幅的平方较大,则实物粒子在该处出现的可能性较大,可能性的大小可定量地用数学上的概率大来表述,物质波各处振幅的平方便与粒子在该处出现的概率联系起来,这就是物质波的物理意义。

例1、试估算热中子的德布罗意波长。

(中子的质量kg m n 271067.1-⨯=)热中子是指在室温下(T=300K )与周围处于热平衡的中子,它的平均动能eVJ kT 038.01021.63001038.123232123=⨯=⨯⨯⨯==--ερ 它的方均根速率s m m v n 32721107.21067.11021.622⨯≈⨯⨯⨯==--ε,相应的德布罗意波长 nm v m h n 15.027001067.11063.62734=⨯⨯⨯==--λ这一波长与X 射线的波长同数量级,与晶体的晶面距离也有相同的数量级,所以也可以产生中子衍射。

3.2.2、海森伯测不准原理设一束自由粒子朝z 轴方向运动,每一个粒子的质量为m ,速度为v ,沿z 轴方向的动量P=mv 。

这一束自由粒子对应一个平面简谐波,在与z 轴垂直的波阵面上沿任何一个方向(记为x 方向)的动量取0=x p 精确值。

波阵面上各处振幅相同,每一个粒子在各处出现的概率相同,这意味着粒子的x 位置坐标可取任意值,或者说粒子的x 位置坐标不确定范围为∞→∆x 。

为了在波阵面的某个x 位置“抓”到一个粒子,设想用镊子去夹粒子。

实验上可等效地这样去做:在波阵面的前方平行地放置一块挡板,板上开一条与x 轴垂直的狭缝,狭缝相当于一个并合不够严实的镊子。

如果狭缝的宽度为△x ,那么对于通过狭缝的粒子可以判定它的x 位置不确定范围为△x 。

△x 越小,通过狭缝粒子以x 位置就越是确定。

然而问题在于物质波与光波一样。

通过狭缝即会发生衍射,出射波会在缝的上、下两侧散开,或者说通过狭缝的粒子既有可能继续沿x 轴方向运动,也有可能朝x 轴正方向或负方向偏转地向前运动。

偏向的粒子必对应地取得x 方向的非零动量,即有0≠x p ,这表明出射粒子在x 方向的动量不再一致地为0=x p ,因此x 方向动量有不确定性,不确定范围可记为x p ∆。

缝越窄,△x 越小,粒子的x 位置越接近准确,但衍射效应越强,x p ∆越大,粒子的x 方向动量值越不准确。

反之,缝越宽,△x 越大,粒子的x 位置越不准确,但衍射效应越弱,x p ∆越小,粒子的x 方向动量值越准确。

总之,由于波动性,使粒子的x 位置和x 方向动量x p 不可能同时精确测量,这就是测不准原理。

由近代量子理论可导出△x 与x p ∆之间的定量关系,这一关系经常可近似地表述为:≥∆⋅∆x p x h对y 和z 方向,相应地有:h p y x ≥∆⋅∆, h p z x ≥∆∆有时作为估算,常将上述三式再近似取为:h p z h p y h p x z y x =∆∆=∆∆=∆⋅∆,,在经典力学中,运动粒子任意时刻的位置和动量或者说速度都可以精确测定,粒子的运动轨道也就可以确定。

在量子理论中,运动粒子在任意时刻的位置和动量或者说速度不能同时精确测定,粒子的运动轨道也就无法确定。

微观世界中,粒子的运动轨道既然不可测,也就失去了存在的意义。

如在经典力学中,可以说氢原子中的电子绕核作圆轨道或椭圆轨道运动。

在量子力学中,只能说粒子在核周围运动,某时刻电子的位置可能在这里,也可能在那里。

描述这种可能性的概率有一个确定的分布。

即使在这一时刻于某一位置“捕捉”到了该电子,也不能预言下一时刻该电子会出现在什么位置,因为电子的运动没有可供预言的轨道。

经典力学中一个粒子可静止在某一确定的位置,量子力学则否定了这种可能性。

据测不准原理,如果一个粒子在x 、y 、z 坐标完全确定,即△x=△y=△z=0,那么它的x 、y 、z 方向动量均不可为零,否则0=∆=∆=∆z y x p p p ,与上面给出的关系式显然会发生矛盾。

例2、实验测定原子核线度的数量级为m 1410-。

试应用测不准原理估算电子如被束缚在原子核中时的动能。

从而判断原子核由质子和电子组成是否可能。

取电子在原子核中位置的不确定量m r 1410-≈∆,由测不准原理得s m kg r h p ⋅⨯=⨯=≥∆---2014341063.6101063.62π由于动量的数值不可能小于它的不确定量,故电子动量kg p 201063.6-⨯≥考虑到电子在此动量下有极高的速度,由相对论的能量动量公式402222c m c p E +=故 J c m c p E 114202102-⨯≈+=电子在原子核中的动能MeV j c m E E K 1251021120=⨯≈-=-。

理论证明,电子具有这么大的动能足以把原子核击碎,所以,把电子禁锢在原子核内是不可能的,这就否定了原子核是由质子和电子组成的假设。

3.2.3 量子力学的基本规律——薛定谔方程波函数是描写微观粒子的基本物理量,波函数所遵从的规律,就是量子力学的基本规律,它将决定粒子函数的特征,从而决定粒子的运动状态。

正像在经典力学学里,粒子的位置和动量描写粒子的运动状态,牛顿运动定律决定了粒子的位置和动量如何变化,因而牛顿运动定律是经典力学的基本规律。

奥地利物理学家薛定谔(1887~1961)在1926年找到了ψ遵从的规律,称为薛定谔方程。

在应用数学形式描述电子的波粒二象性上,他从麦克斯韦电磁理论得到启发,认为电子的德布罗意波也可以应用类似于光波的方式加以描述。

这个方程既描述了电子的波动行为,又蕴涵着粒子性特征。

写出并求解薛定谔方程,超出本书的范围。

不过,我们可以讨论一下有关结论。

波函数ψ必须满足一些物理条件:作为描写粒子运动状态的应ψ是时空坐标的单值函数,变化应是连续的,不能变为无限大,即应有界。

这样,薛定谔方程的解,不但成功地解释了玻尔原子理论所能解释的现象,而且能够解释大量玻尔理论所不能解释的现象。

玻尔的基本假设,在量子力学里是从理论上推导出来的必然结果。

原来,在薛定谔方程中,只有原子中电子具有某些不连续的能量值时,方程的解才满足上述物理条件。

由薛定谔方程解中得出的氢原子中电子能量的可能值,正好就是玻尔原子理论给出的值。

3.2.4概率密度与电子云我们将以原子的稳定态为例,讨论一下由波函数所决定的电子在原子中的概率密度,这波函数就是由薛定谔方程求解出来的。

因为是稳定态,所以和时间无关,说明在任何时候,电子出现在任一处的概率密度都相同。

例如,氢原子处在基态时,电子经常出现的概率最大的地方,是以原子核为中心的一个球壳,这个球壳的半径为101053.0-⨯米,这个数值与玻尔原子理论计算出来的基态轨道半径相同,可见,玻尔的原子轨道只不过电子出现概率最大的地方。

电子核外的运动情况,通常用电子云来形象地描述。

用小黑点的稠密与稀疏,来代表电子核外各处单位体积中出现的概率(即概率密度)的大小,这样就可以画出原子的电子云图。

图11-8是氢原子基态的电子云。

看一下以核为中心的一层层很薄的球壳中电子出现的概率,在靠近原子核的地方,虽然云雾浓度较大,小黑点稠密,但是靠近原子核的一个薄球壳中包含的小黑点的总数不会很多,即电子出现在这个球壳中的概率不会很大,因为这个球壳的体积较小。

在远离原子核的地方,球壳的体积虽然较大,但是小黑点稀疏,因而出现在这个球壳中的概率不会很大。

经过计算知道,在半径为1011053.0-⨯=r 米的一薄的球壳中电子出现的概率最大,1r 就是玻尔理论中氢原子基态的轨道半径。

3.2.5 量子学的应用和发展量子力学建立后,应用它计算氢原子的光谱,获得巨大成功,其理论计算与实验结果完全符合。

量子力学不仅可以正确地解释氢原子光谱,而且,还可以说明复杂原子的构造,解释复杂原子的光谱。

这确实表明,量子力学是微观粒子所遵从的规律。

在量子力学发展的早期,就认识到它的应用不限于电子,对其它粒子也一样适用。

1927年,美国物理学家康登应用量子力学解释了α衰变现象。

这又称为隧道效应。

在α粒子放射体中α粒子被约束在原子核内,其能量小于核对它的结束能量——势垒,按照经典理论,α粒子是不可能穿出原子核的。

但是,按照量子力学,α粒子有穿过势垒的概率。

这个概率即使很小,但不为零。

对大量的原子核来说,总会有一小部分原子核的α粒子,穿透势垒而发射出来。

理论计算为实验数据所证实。

量子力学在建立之初,就用于研究分子的结构。

美国物理学家和化学家泡利阐明了化学键的本性,就是以量子力学为依据的。

比如,对22,H N ,CO 等分子,原子之间的相互作用是量子力学效应。

当两个氢原子互相靠近时,它们能量的减小在于相互吸引作用,而这是由于两个原子共享两个电子造成的。

和电子波函数的对称性密切相关。

量子力学可以算出2H 分子的平衡距离为110104.7-⨯=r 米,两个氢原子结合成氢分子时释放的能量为4.52电子伏。

同样,量子力学也解释了共价键以外的结合键。

这里不作具体介绍。

凝聚态物理,如液体和固体的构造理论,其导电与导热性能的解释,也是建立在量子力学基础之上的。

比如研究电子在晶体中的运动,因为晶体点阵的周期性结构。

电子受的力也具有空间的周期性,量子力学能揭示电子在晶体中的运动状态,就像一个原子中的电子可以处在不同的能级上,在固体中,电子可以在不同的能带上,能带有一定的宽度,代表一个能量范围。

这就是能带理论。

应用能带理论,可以成功地解释金属和半导体的导电特性。

在近代,其实际应用几乎随处可见。

薛定谔方程是非相对论的,不能应用于高速的微观粒子。

1928年,狄拉克建立了相对论的量子力学方程,称为狄拉克方程。

相关文档
最新文档