八年级数学导学案:学案(二) 反比例函数的意义

合集下载

反比例函数全章导学案

反比例函数全章导学案

鸡西市第十九中学学案鸡西市第十九中学学案鸡西市第十九中学学案(2)、猜想:过双曲线上的任意一点做坐标轴的垂线,连接原点,所得三角形的面积为__________(3)、将反比例函数的图象绕原点旋转垂直 A y《反比例函数与一次函数图象》专题班级 姓名智慧、勤劳和天才,高于显贵和富有。

——贝多芬1、若矩形的面积为12cm 2,则它的长y cm 与宽x cm 的函数关系用图象表示大致( )2、函数y=-x 与y=1x在同一直角坐标系中的图象是( )3、若0<ab ,则函数ax y =与xby =在同一平面直角坐标系的图象大致是( )。

4、若0<ab ,则函数ax y =与xby -=在同一平面直角坐标系的图象大致是( )。

5、函数y kx k =-与(0)ky k x=≠在同一坐标系中的大致图象是( )6、如图,关于x 的函数y=k(x-1)和y=-kx(k ≠0), 它们在同一坐标系内的图象大致是( )7、请在下边的坐标系中同时画出21y x =-+与y x=-的大致图象。

8、如右图所示是,一次函数函数11y x =-和反比例函数26y x=的图象, (1)求方程组16y x y x =-⎧⎪⎨=⎪⎩的解; (2)观察图象,当x 在什么范围时,1y <2y ?9、如图所示,一次函数1y kx b =+的图象与反比例函数2my x=的图象相交于A 、B 两点,(1)利用图中条件,求该反比例函数和一次函数的解析式; (2)(观察图象,当x 在什么范围时,1y <2y ?A B C D《反比例函数k 的几何意义》专题班级 姓名想不付出任何代价而得到幸福,那是神话。

—— 徐特立1.如图,A 、B 是函数2y x=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则( ) A . 2S = B . 4S = C .24S << D .4S >2.如图,直线y=mx 与双曲线y =xk交于A 、B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM,若ABM S ∆=2,则k 的值是( )A .2B 、m-2C 、mD 、43.如图,双曲线)0(>k xky =经过矩形QABC 的边BC 的中点E ,交AB 于点D 。

初二数学学科精讲精练——反比例函数的几何意义

初二数学学科精讲精练——反比例函数的几何意义
( )
A.S1=S2
B.S1>S2
C.S1<S2
D.无法判断
3.如图,在平面直角坐标系中,点 P(1,5) ,Q(m,n)在反比例函数的图象上,过点 P 分别作 x 轴、 y 轴的垂线,垂足为点 A,B;点 Q 为图象上的动点,过点 Q 分别作 x 轴、 y 轴的垂线,垂足分别为点 C、D,两垂线相交于点 E,随着 m 的增大,四边形 OCQD 与四边 形 OAPB 不重合的面积变化为( )
1 1 1 1 1 ∴ (a 2a) b a b 7 2a b 2 2 2 2 2
∴ ab
28 3 28 3
∴ k ab 故选:A.
第 4 页,共 5 页
5. 解:∵AB⊥ x 轴,
1 ∴S△ABC = AB•OB=5, 2
∴AB•OB=10, 设 A( x , y ) ,则 AB= y ,OB=﹣ x , ∴﹣ xy =10, ∴m= xy =﹣10, 故选:A.
1 k. 2
结论 1:过双曲线上任意一点 A ( x, y) 做 x 轴与 y 轴的垂线, 所得矩形的面积为定值 k 结论 2:对于直角三角形 AOM , SAOM
1 k, (如图 1) 2
结论 3:对于直角三角形 ABC , S 2 k ,如右图 结论 4:对于直角三角形 PBC , S k ,如右图 另外,还会结合特殊点求组成图形的面积,需要从数形结合的角度去灵活解决。
【典型例题】 例.如图,点 A 是反比例函数 y
k 的图象上的一点,过 A 点作 AB ⊥ x 轴,垂足为 B .点 C x
为 y 轴上的一点,连接 AC , BC .若△ ABC 的面积为 4,则 k 的值是_________.
【分析】连结 OA ,如图,利用三角形面积公式得到 S△OAB=S△ABC=4,再根据反比例函数的 比例系数 k 的几何意义得

反比例函数的意义(第2课时)

反比例函数的意义(第2课时)

徐闻县和安中学数学教研组◆八年级数学导学案◆◆我们的约定:我的课堂我作主!执笔:林朝清第周星期第节本学期学案累计: 21 课时姓名:________课题:17.1.1反比例函数的意义(第2课时)学习目标我的目标我实现1.会利用待定系数法求反比例函数的解析式.2.培养学生综合运用知识解决问题的能力.学习过程我的学习我作主导学活动1:知识回顾1.填空:(1)形如y= 的函数叫做正比例函数,其中k为常数,k≠0;(2)形如y= 的函数叫做一次函数,其中k、b为常数,k≠0;(3)形如y= 的函数叫做反比例函数,其中k为常数,k≠0.2.填空:(1)反比例函数6yx=的k= ; (2)反比例函数6yx=-的k= ;(3)反比例函数3y4x=的k= ; (4)反比例函数3y4x=-的k= .导学活动2:知识引入1.什么是反比例函数?2.例已知y是x的反比例函数,当x=2时,y=6.(1)写出y与x之间的函数解析式;(2)求当x=4时y的值.3.针对性训练填空:已知y是x的反比例函数,当x=-3时,y=2,则这个反比例函数的解析式是y=导学活动3:知识转化1.例2 已知y=y1+y2,y1与x成正比例,y2与x成反比例,并且x=1时y=4,x=2时y=5.求y与x 之间的函数关系.2.针对性训练:填空3.完成下面的解题过程:已知y=y 1+y 2,y 1与x 成正比例,y 2与x 2成反比例,且x=2与x=3时,y 的值都等于19.求y 与x 之间的函数关系.解:因为y 1与x 成正比例,所以可设y 1= . 又因为y 2与x 2成反比例,所以可设y 2= .所以y= .因为x=2时y=19,所以有 .因为x=3时y=19,所以有 .解方程组________________,________________.⎧⎪⎪⎨⎪⎪⎩ 得12k ________,k ________.⎧=⎪⎨=⎪⎩因此y 与x 之间的函数关系式是y= .学习评价 我的评价 我自信当堂检测(限时:5分钟 )我自信 我进取1.已知y 是x 的正比例函数,当x=-3时,y =2,则这个正比例函数的解析式是y= .2.已知y 与x-1成反比例,并且当x=2时y=3.(1)写出y 与x 之间的函数解析式;(2)求当x=1.5时y 的值.自我小结:1.什么是反比例函数?2.求反比例函数解析式的方法:。

八年级下数学导学案(全学期5章)

八年级下数学导学案(全学期5章)

y
探索活动 1:画出反比例函数
6 6 y x 的图象. x与
讨论、观察画出的图象,思考以下问题: (1)列表取值时,自变量 x 不能取什么值?在取自变量 x 的值时还应注意什么? (2)为使画出的图象更精确,自变量 x 取值的个数应该注意什么? (3)连线时应该按怎样的顺序连接?是否可以画成折线? (4)反比例函数的图象会不会与 x 轴或者 y 轴相交?
y
(3)函数
k x 的图像在哪些象限由什么因素决定?
(4)在每一个象限内,y 随 x 的变化如何变化? 归纳:
二、知识链接:比较正比例函数和反比例函数的性质 正比例函数 解析式 图像(形状) 位置(经过象限) k>0,______象限; k<0,_______象限 k>0,_______象限 k<0,_______象限 k>0,在每个象限内 y 随 x 的增大而______ k<0,在每个象限内 y 随 x 的增大而______ 反比例函数
x>-2 时;y 的取值范围是____. 四、拓展提高 例:已知反比例函数 y (m 1) x 限内 y 随 x 的变化情况?
m2 3
D
的图象在第二、四象限,求 m 值,并指出在每个象
6
23.1.2
反比例函数的图象和性质(第 2 课时)
主备人: 刘秀平 刘杰 备课组长:刘秀平 教学主任: 张凯 【学习目标】1.进一步理解和掌握反比例函数的图象与性质; 2.能灵活运用函数图象和性质解决一些较综合的问题; 3.深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法 【学法指导】1、体会函数三种表示方法的相互转换,对函数进行认识上的整合; 2、运用分类讨论思想、数形结合思想. 【重点】理解并掌握反比例函数的图象和性质,并能利用它们解决一些综合问题 【难点】学会从图象上分析、解决问题,理解反比例函数的性质。 【温故知新】1.作反比例函数图象的基本步骤是⑪ ;⑫ ;⑬

人教版初二数学八年级下册教案导学案

人教版初二数学八年级下册教案导学案

第十七章反比例函数课题 17.1.1 反比例函数的意义课时:一课时【学习目标】1.理解并掌握反比例函数的概念。

2.会判断一个给定函数是否为反比例函数。

3.会根据已知条件用待定系数法求反比例函数的解析式。

【重点难点】重点:理解反比例函数的意义,确定反比例函数的表达式。

难点:反比例函数的意义。

【导学指导】复习旧知:1.什么是常量?什么是变量?函数是如何定义的?2.我们学过哪几种函数?每一种函数形式怎样?3.写出下列问题中的函数关系式并说明是什么函数.(1)梯形的上底长是2,下底长是4,一腰长是6,则梯形的周长y与另一腰长x之间的函数关系式。

(2)某种文具单价为3元,当购买m个这种文具时,共花了y元,则y与m的关系式。

学习新知:阅读教材P39-P40相关内容,思考,讨论,合作交流完成下列问题。

1.什么是反比例函数?反比例函数的自变量可以取一切实数吗?为什么?2.仔细观察反比例函数的解析式y=k/x,我们还可以把它写成什么形式?3.回忆我们学过的一次函数和正比例函数,我们是用什么方法求它们的解析式的?以此类推,我们也可以采用同样的方法来求反比例函数的解析式。

【课堂练习】1.下列等式中y是x的反比例函数的是()①y=4x ②y/x=3 ③y=6x-1 ④xy=12 ⑤y=5/x+2 ⑥y=x/2 ⑦y=-√2/x⑧y=-3/2x2.已知y是x的反比例函数,当x=3时,y=7,【要点归纳】通过今天的学习,你有哪些收获?与同伴交流一下。

【拓展训练】1.函数y=(m-4)x3-|m|是反比例函数,则m的值是多少?2.若反比例函数y=k/x与一次函数y=2x-4的图象都过点A(m,2)(1)求A点的坐标;(2)求反比例函数的解析式。

课题:17.1.2 反比例函数的图象和性质课时:二课时第一课时反比例函数的图象和性质的认识【学习目标】1.体会并了解反比例函数图象的意义。

2.能用描点的方法画出反比例函数的图象。

3.通过对反比例函数的图象的分析,探索并掌握反比例函数的图象的性质。

17.1.1反比例函数的意义导学案

17.1.1反比例函数的意义导学案

反比例函数的意义学案班级 姓名 小组 自我评价一、课前准备:1.写出我们所学过的存在正比例关系的实例2.车以每分钟60米的速度匀速运行,它所走过的路程s 与时间t 之间的函数关系为 你认为这里应该注意什么呢?3. 一般地,形如 (k 是常数,且k ≠0)的函数,称为正比例函数.4.已知正比例函数经过点(2,3),求该函数的解析式. 当x=4时,y 是多少?以上这种求函数解析式的方法叫: 它的步骤是二、预习新知1.写出你所搜集的反比例关系2.(1).京沪线铁路全长1 463km ,某次列车的平均速度vkm/h•随此次列车的全程运行问题th 的变化而变化,其关系可用函数式表示为:(2).某住宅小区要种植一个面积为1 000m 2矩形草坪,草坪的长ym 随宽xm•的变化而变化,可用函数式表示为(3).已知北京市的总面积为1.68×104km 2,人均占有的土地面积Skm 2/人,随全市总人口n 人的变化而变化,其关系可用函数式表示为 .共同点:3.一般地,形如 的函数称为反比例函数。

4.已知反比例函数经过点(2,3),求该函数的解析式。

当x=4时,y 是多少?三、小组合作1. 将)0(≠=k k xk y 为常数,变形:2. m= 时,关于x 的函数22)1(-+=m x m y 是反比例函数?预习评价:通过我的预习我学会了,我觉得我自己这次预习表现最棒的是而我还需要再进步的地方是 ,我觉得薛老师这次学案的编写四、预习检测1.千克x 元,花10元钱可买y 千克的苹果,则y 与x 之间的函数关系式为2.21+-=x y 中自变量x 的取值范围是 3.数中,y 是x 的反比例函数的是( )A 、15-=x yB 、73+=x y C 、5=xy D 、22xy = E, x k y 3= 4.知y 是x 的反比例函数,当x=2时,y=6. (1)写出y 与x 的函数关系式;(2)求当x=4时y 的值五、展示提升 1.y=11n x -是y 关于x 的反比例函数关系式,则n 是2已知3)2(-+=m x m y 是反比例函数,则m 是什么?六;作业;教材40页2题 选作题3题七、课后反思这节课,我回答问题 ,对于其他同学的观点阐述以及老师的讲解,我倾听的 ,我在问题思考方面表现,我在小组讨论的时候表现的 ,我觉得我们小组这节课表现的 。

17.1.1 反比例函数的意义--导学案

17.1.1  反比例函数的意义--导学案

17.1.1 反比例函数的意义一、教学目标:(1)了解反比例函数的概念 (2)理解反比例函数的三种表达形式 (3)会求反比例函数的解析式二、自主合作学习1.阅读与思考:P 39 2.自主演练:(1)一般地,形如 (k 为常数,且 )的函数称为反比例函数,自变量的取值范围是 。

(2)下列表达式中,表示y 是x 的反比例函数的是( ) A 、y =2x B 、y =-6x +3 C 、3x y m=(m 是常数,m ≠0)D 、2y x =(3)下列函数中哪些是反比例函数? ①3xy =-;②36y x =-;③2s t-=;④12y x -=;⑤6y x=;⑥3y x =(4)根据3题,归纳反比例函数的形式有哪几种?三、课堂互动要点(一)反比例函数的概念剖析:判断某一函数是否是反比例函数,要严格依据反比例函数三种形式来判断,尤其是1y kx -=中x 的指数是-1,且系数k ≠0。

例1:当k 是何值时,函数2(1)k y k x -=-是反比例函数?针对训练:1.下列各式中,表示y 是x 的反比例函数是( ) A 、21y x=B 、2xy =C 、1x y x =- D 、3xy =-2.若函数28(3)m y m x -=+是反比例函数,求m 的值。

要点(二):确定反比例函数的解析式 剖析:因为反比例函数的关系式(0)k y k x=≠中,只有一个待定系数k ,因而只需给出一组x 、y 的对应值即可确定反比例函数的关系式。

例2:已知y 是x 的反比例函数,当x =3时,y =6。

(1)写出y 与x 的函数关系式。

(2)当x =-2时,求y 的值。

(3)若y = 4 ,求x 的值。

针对训练:已知y 与1x -成反比例,且3x =时12y =(1)写出y 与x 的函数关系式; (2)当5x =时,求y 的值。

四、拓展延伸(1)若变量y与x成正比例,变量x与z成反比例,则()A、y与z成反比例B、y与z成正比例C、y与z2成正比例D、y与z2成反比例(2)已知反比例函数k中,当x的值由4增加到6时,y的yx值减少3,求这个反比例函数的解析式。

人教课标版八年级数学下册教案反比例函数的意义

人教课标版八年级数学下册教案反比例函数的意义

人教课标版八年级数学下册教案反比例函数的意义第一篇:人教课标版八年级数学下册教案反比例函数的意义一、知识与技能1.从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解.2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.二、过程与方法1.经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点.2.经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识.三、情感态度与价值观1.经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣.2.通过分组讨论,培养学生合作交流意识和探索精神.教学重点:理解和领会反比例函数的概念.教学难点:领悟反比例的概念.教学过程:一、创设情境,导入新课活动1问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;(2)某住宅小区要种植一个面积为1000m的矩形草坪,草坪的长为y随宽x的变化;(3)已知北京市的总面积为1.68×10平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.师生行为:先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式.教师组织学生讨论,提问学生,师生互动.在此活动中老师应重点关注学生:①能否积极主动地合作交流.②能否用语言说明两个变量间的关系.③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象.42分析及解答:(1);(2);(3)其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;上面的函数关系式,都具有二、联系生活,丰富联想活动2 的形式,其中k是常数.下列问题中,变量间的对应关系可用这样的函数式表示?(1)一个游泳池的容积为2000m,注满游泳池所用的时间随注水速度u的变化而变化;(2)某立方体的体积为1000cm,立方体的高h随底面积S的变化而变化;(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化.师生行为学生先独立思考,在进行全班交流.教师操作课件,提出问题,关注学生思考的过程,在此活动中,教师应重点关注学生:(1)能否从现实情境中抽象出两个变量的函数关系;(2)能否积极主动地参与小组活动;(3)能否比较深刻地领会函数、反比例函数的概念.3分析及解答:(1);(2);(3)概念:如果两个变量x,y之间的关系可以表示成反比例函数的自变量x不能为零.的形式,那么y是x的反比例函数,活动3 做一做:一个矩形的面积为20cm,相邻的两条边长为xcm和ycm.那么变量y是变量x的函数吗?是反比例函数吗?为什么?师生行为:2学生先进行独立思考,再进行全班交流.教师提出问题,关注学生思考.此活动中教师应重点关注:①生能否理解反比例函数的意义,理解反比例函数的概念;②学生能否顺利抽象反比例函数的模型;③学生能否积极主动地合作、交流;活动4问题1:下列哪个等式中的y是x的反比例函数?,,问题2:已知y是x的反比例函数,当x=2时,y=6(1)写出y与x的函数关系式:(2)求当x=4时,y的值.师生行为:学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并给予及时引导.在此活动中教师应重点关注:①学生能否领会反比例函数的意义,理解反比例函数的概念;②学生能否积极主动地参与小组活动.分析及解答:1.只有xy=123是反比例函数.2.分析:因为y是x的反比例函数,所以k的值.,再把x=2和y=6代入上式就可求出常数解:(1)设解得k=12,因为x=2时,y=6,所以有因此(2)把x=4代入三、巩固提高活动5,得1.已知y是x的反比例函数,并且当x=3时,y= −8.(1)写出y与x之间的函数关系式.(2)求y=2时x的值.2.y是x的反比例函数,下表给出了x与y的一些值:(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表.学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”.四、课时小结反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.第二篇:人教课标版八年级物理下册教案电阻一、设计理念1.从现实生活入手,创设与日常生活比较接近的教学环境,让学生身临其境,使课程成为学生生命历程的重要组成部分,体现“从生活走向物理,从物理走向社会”新课程理念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题§17、1、1 反比例函数的意义一、【学习目标】:(一)知识与技能:1、从现实情境和已有的知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。

2、结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式。

(二)过程与方法:经历抽象反比例函数的概念的过程,领会反比例函数的意义,理解反比函数的概念。

(三)情感态度与价值观:结合实例引导学生了解所讨论的函数的表达式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维。

重点:理解反比例函数的概念,能根据已知条件写出函数解析式难点:理解反比例函数的概念二、【课前预习】:1、写出函数关系式,找出共同点,(1)长方形的面积为122cm,设一边为xcm,邻边为ycm,则x与y的函数关系式为:y= .(2)京沪线铁路全长为1463,乘坐某次列车所用的时间t与该次列车平均速度v的函数关系为: .(3)已知工程队承包一项工程,写出工程效率v与完成时间之间t的函数关系式为: .上述三个函数是一次函数吗?2、反比例函数的概念:一般地,如果两个变量x,y之间的关系可以表示成y=kx(k≠0)的形式,那么我们称y是x的反比例函数。

反比例函数的几种等价说法:① y 是x 的反比例函数; ② ky x=(k ≠0); ③y=kx (k ≠0);④ xy=k 3、下列函数中,哪些是反比例函数,其k 值为多少? ①5y x =②33y x =- ③ 25y x -= ④1y x=-⑤132y =⨯ ⑥12y -=- ⑦12y x -= ⑧14xy = ⑨ y=5-x ⑩ 33y x-= 三、【学海导航】 例1 已知()2212mm y m m x +-=+⑴当m 为何值时,y 是x 的正比例函数?⑵当m 为何值时,y 是x 的反比例函数?例2已知y 是x 的反比例函数,当x=3时,y=4求:当x=1时,y 的值.四、【演练反馈】1、选择:下列函数关系中,是反比例函数的是( ) A 、圆的面积s 与单位r 的函数关系B 、三角形的面积为固定值时(即为常数)底边a 为与这边上的高的函数关系C 、人的年龄与身高关系D 、小明从家到学校,剩下的路程s 与速度v 的函数关系 2、若()2311m m y m x ++=+是反比例函数,求m 的值.并写出这个反比例函数的解析式。

3、已知y 与x 成反比例,当x=3时,y=7,求当y=2时,x 的值.4、已知函数ky x=(k ≠0)过点()1,3-,求函数解析式17.1.2反比例函数的图象与性质(一)【学习目标】 (一)、知识与技能:1.进一步熟悉画函数图象的主要步骤,会画反比例函数的图象。

2.体会函数三种表示方法的相互转换,对函数进行认识上的整合。

3.逐步提高从函数图象中获取信息的能力,探索并掌握反比例函数的主要性质。

(二)、过程与方法:1.经历反比例函数主要性质的发现过程。

2.体会分类讨论思想、数形结合思想的运用。

(三)、情感态度与价值观:1.积极参与探索活动,多和同伴交流看法。

2.在动手画图的过程中,体会做中学的乐趣,养成勤于动手,乐于探究的好习惯。

重点:掌握反比例函数的画图。

难点:反比例函数三种表示方法的相互转换 二、【课前预习】1、画出一次函数y=2x+1的图像,解:(1)列表: (2)描点、连线2、画函数图像的步骤是: , , 。

3、画出反比例函数y=x 6与y=-x6的图象 (1)列表x 0 yx... -6 -3 -2 -1 1 2 3 6 … y=x 6 y=-x6(2)描点、(3)连线三、【学海导航】 1、请同学们观察y=x 6和y=-x6的图象,回答问题: (1)你能发现它们的共同特点吗?(2)每个函数的图象分别位于哪几个象限?(3)在每个象限内,y 随x 的变化如何变化?说说你的理由。

如果把“在每个象限内”这几个字去掉,你同意吗?为什么? (4)每个函数的双曲线会与坐标轴相交吗?为什么?(5)比例函数y=x 6与y=-x6的图象有什么关系?你是如何得出的?2、反比例函数y=xk(k 为常数且k ≠0)图象与性质: (1)反比例函数y=xk的图像是 ; (2)反比例函数y=xk(k 为常数且k ≠0)性质: k>0时,双曲线的两支分别位于第_________象限,在每个象限内______________________________________________.k<0时,双曲线的两支分别位于第_________象限,在每个象限内_____________________________________________. 四、【演练反馈】1、反比例函数y= -x5的图象大致是( )2、下列函数中,其图象位于第二、四象限的有 , 在其图象所在的象限内,y 随x 的增大而减小有 。

3、.设x 为一切实数,在下列函数中,当x 减小时,y 的值总是增大的函数是( )(A ) y = -5x -1 ( B)y =x20(C )y =-2x +2; (D )y =4x . 4、函数y=kx-k 与 y=xk在同一条直角坐标系中的 图象可能是5、已知k<0,则函数 y 1=kx,y 2=xk在同一坐标系中的图象大致是 (画出草图)。

7、点P (3,m+2)在反比例函数y=x6上,求m 的值8、已知点A(-3,a),B(-2,b),C(4, c)在反比例函数xy 1= 上,比较a ,b ,c 的大小.(A) (B) (C) (D)A :x yoBxyoDxy oCxyo3(1)2y x =-1(2)2y x =7(3)4y x =1(4)800y x =-17.1.2反比例函数的图象和性质(2) 一、【学习目标】 (一)、知识与技能1.使学生进一步理解和掌握反比例函数及其图象与性质 2.能灵活运用函数图象和性质解决一些较综合的问题3.深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法 (二)、过程与方法经历观察、分析,交流的过程,逐步提高从函数图象中感受其规律的能力。

(三)、情感态度与价值观提高学生的观察、分析的能力和对图形的感知水平,使学生从整体上领悟研究函数的一般要求。

重点:理解并掌握反比例函数的图象和性质,能利用它们解决一些综合问题难点:学会从图象上分析、解决问题,理解反比例函数的性质。

二、【课前预习】1、对于函数y =21-x,当x>0时,函数这部分图象在第___几象限。

2、若点(—2,—1)在反比例函数x ky =的图象上,则当x>0时,y值随x 值的增大而___________ 3、反比例函数x ky =的图象经过(2,-1),则k 的值为 ; 4、反比例函数xky =的图象经过点(2,5),若点(1,n )在反比例函数图象上,则n 等于__________________5、在反比例函数y=x1的图象上有三点(x 1,y 1)、(x 2,y 2)、(x 3,y 3),若x 1>x 2>0>x 3,则下列各式中正确的是( )A 、y 3> y 1> y 2B 、y 3> y 2> y 1C 、y 1> y 2> y 3D 、y 1> y 3> y 2 6、已知反比例函数的图象经过点(2,6)。

求:(1)这个函数的图象分布在哪几个象限?y 随x 的增大如何变化?(2)点B (3,4)、C (—2.5,—4.8)和D (2,5)是否在这个函数的图象上?7.如图,一次函数y =kx +b 的图象与反比例函数xmy =的图象交于A (-2,1)、B (1,n )两点;求:(1)求反比例函数和一次函数的解析式(2)根据图象写出一次函数的值大于反比例函数的值的x 的取值范围三、【学海导航】1、点(1,3)在反比例函数xky =的图象上,则K=________,在图象的每一支上,y 随x 的增大而____________ 2、已知反比例函数的图象经过点(3,—4).求:(1)这个函数的图象分布在哪几个象限?在图象的每一支上y随x 的增大如何变化?(2)点B (—3,4)、点C (—2,6)和点D (3,4)是否在这个函数的图象上?四、【演练反馈】1.若直线y =kx +b 经过第一、二、四象限,则函数xkby =的图象在( ) (A )第一、三象限 (B )第二、四象限 (C )第三、四象限 (D )第一、二象限2.已知点(-1,y 1)、(2,y 2)、(π,y 3)在双曲线xk y 12+-=上,则下列关系式正确的是( )(A )y 1>y 2>y 3 (B )y 1>y 3>y 2 (C )y 2>y 1>y 3 (D )y 3>y 1>y 2 3、已知反比例函数xk y 12+=的图象在每个象限内函数值y 随自变量x 的增大而减小,且k 的值还满足)12(29--k ≥2k -1,若k 为整数,求反比例函数的解析式4.已知一次函数b kx y +=的图像与反比例函数xy 8-=的图像交于A 、B两点,且点A 的横坐标和点B 的纵坐标都是-2.求:(1)一次函数的解析式; (2)△AOB 的面积17.2 实际问题与反比例函数一、【学习目标】(一)、知识与技能:能灵活运用反比例函数的知识解决实际问题。

(二)、过程与方法:经历观察、分析讨论法,交流的过程,建立反比例函数模型的过程,认识反比例函数性质的应用方法。

(三)、情感态度与价值观:体验反比例函数是有效地描述现实世界的重要手段,体验数学的实用性,提高学数学的兴趣。

重点:运用反比例函数的意义和性质解决实际问题。

难点:从实际问题中寻找变量之间的关系,建立数学模型,教学时注意分析过程,渗透转化的数学思想。

二、【课前预习】1、市煤气公司要在地下修建一个容积为104 m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系? (圆柱的体积=底面积×高)(2)公司决定把储存室的底面积S定为500 m2,施工队施工时应该向下掘进多深?(3)当施工队按(2)中的计划掘进到地下15m时,碰上了坚硬的岩石.为了节约建设资金,储存室的底面积应改为多少才能满足需要(保留两位小数)?2、码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间. (工作总量=工作速度×工作时间)(1)轮船到达目的地后开始卸货,卸货速度v(单位:吨/天)与卸货时间t(单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5日内卸载完毕,那么平均每天至少要卸多少吨货物?3、某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (千帕)是气体体积V(立方米)的反比例函数,其图像如图所示(千帕是一种压强单位)(1)写出这个函数的解析式;(2)当气球的体积是0.8立方米时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?三、【学海导航】1、.几位同学玩撬石头的游戏,已知阻力和阻力臂不变,分别是1200牛顿和0.5米,设动力为F,动力臂为L.回答下列问题:(1)动力F 与动力臂L有怎样的函数关(2)小刚、小强、小健、小明分别选取了动力臂为1米、1.5米、2米、3米的撬棍,你能得出他们各自撬动石头至少需要多大的力吗?(3)假定地球重量的近似值为6×1025牛顿即为阻力),假设阿基米德有500牛顿的力量,阻力臂为2000千米,请你帮助阿基米德设计该用多长动力臂的杠杆才能把地球撬动.2、一个用电器的电阻是可调节的,其范围为 110~220欧姆,已知电压为220 伏,这个用电器的电路图如与电阻R 有怎样的函数关系?(1)输出功率P 与电阻R 有怎样的函数关系?(2)用电器输出功率的范围多大?四、【演练反馈】1、已知甲、乙两地相s(千米),汽车从甲地匀速行驶到达乙地,如果汽车每小时耗油量为a(升),那么从甲地到乙地汽车的总耗油量y(升)与汽车的行驶速度v(千米/时)的函数图象大致是()2.一定质量的氧气,它的密度ρ(kg/m3)是它的体积V(m3)的反比例函数,当V=10时,ρ=1.43,(1)求ρ与V的函数关系式;(2)求当V=2时氧气的密度ρ3.小林家离工作单位的距离为3600米,他每天骑自行车上班时的速度为v(米/分),所需时间为t(分)(1)则速度v与时间t之间有怎样的函数关系?(2)若小林到单位用15分钟,那么他骑车的平均速度是多少?(3)如果小林骑车的速度最快为300米/分,那他至少需要几分钟到达单位?U5、一场暴雨过后,一洼地存雨水20米3,如果将雨水全部排完需t分钟,排水量为a米3/分,且排水时间为5~10分钟(1)试写出t与a的函数关系式,并指出a的取值范围;(2)请画出函数图象(3)根据图象回答:当排水量为3米3/分时,排水的时间需要多长?。

相关文档
最新文档