运算定律简便计算
第二课时 运算定律及简便运算

125÷(50÷8)
=3.25÷(2.5×4) =125÷50×8
350÷(35×2) =350÷35÷2
=3.25÷10
=2.5×8
=10÷2
=0.325
=20
=5
差错类型及归纳
类型1 添括号后运算符号的错误使用。 【例1】计算:493-255-145 错解:493-255-145 =493-(255-145) =493-110 =383
104×0.25 =(100+4)×0.25 =100×0.25+4×0.25
=25+1
=26
125÷(50÷8) =125÷50×8
=125×8÷50
=1000÷50
=20
72×101-72 =72×(101-1) =72×100 =7200
69×32+67×69+69 =69×(32+67+1) =69×100 =6900
3. 在○填上“>”“<”或“=”。
(87-87)÷3○= (105-105)÷3
50+<4×5○(50+4)×
750÷15-10○< 750÷(15-10) 69+65÷5○> 69-65÷5
4. 一套校服,上衣每件35元,裤子每条25元,某班订
购了40套校服,需要( 2400 )元。
5.学校新采购了50套课桌椅(1张课桌和1把椅子是1套),
凡 事都 是多棱 镜, 不同 的角 度会
凡 事都是 多棱 镜, 不同 的角度 会看 到不 同的 结果 。若 能把一 些事 看淡 了, 就会 有个好 心境 ,若 把很 多事 看开 了 ,就会 有个 好心 情。 让聚散 离合 犹如 月缺 月圆那 样寻 常, 让得失 利弊 犹如花 开花 谢那 样自然 ,不 计较, 也不 刻意执 着;让 生命 中各 种的喜 怒哀 乐,就 像风 儿一 样,来 了, 不管是 清风 拂面 ,还是 寒风 凛冽, 都报 以自 然 的微笑 ,坦然 的接 受命 运的馈 赠, 把是非 曲折 ,都 当作是 人生 的
四则混合运算及简便计算

四则混合运算及简便计算四则混合运算的顺序和简便计算我们如何进行整数、小数、分数的四则混合运算呢?以下是运算定律:1、加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a。
2、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c)。
例如:75+124+225=124+75+225=4243、乘法交换律:两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
4、乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c)。
例如:25×37×466=37×25×466=5、乘法分配律:两个数的和(差)与一个数相乘,可以把两个加(减)数分别与这个数相乘再把两个积相加(减),即(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】。
例如:(40+4)×25=40×25+4×25=10006、减法的性质:一个数里连续减去两(几)个数,等于这个数连续减去这两(几)个数的和,即a-b-c=a-(b+c)。
【a-b-c-……-n=a-(b+c+……+n)】例如:875-324-376=875-(324+376)=1757、除法性质基本性质:一个数连续除以几个数,可以除以后几个数的积,也可以先除以第一个除数,再除以第二个除数。
a÷b÷c=a÷(b×c)=a÷c÷b。
例如:2500÷4÷256=2500÷(4×256)=2.xxxxxxxx综合练:2×6.6+2.5×611-6-14.6+3+6+5.43×(-÷) = 2583.xxxxxxxx4以上为四则混合运算的顺序和简便计算。
运算定律与简便计算

= 255
= 100 + 200
= 300
6. 新风商场第一季度电器销售情况。 单位: 台 产品名称 彩 电 合计 1 337 848 1 118 一月 385 二月 415 三月 537
冰 箱
洗衣机
248
347
309
418
291
353
7.
王阿姨一共要寄多少钱? 225 + 328 + 175 = 225 + 175 + 328 = 400 + 328 = 728 (元) 答: 王阿姨一共要寄 728 元。
2. 根据乘法运算定律,在
里填上适当的数。
15 × 16 = 16 × 15 25 × 7 × 4 = 25 ×
(60 × 25) × 8 4 ×7
= 60 × ( 25 × 8) ) × 14
125 × (8 × 14 ) = (125 × 8
3 × 4 × 8 × 5 = ( 3 × 4) × ( 8 ×
用字母怎样表示?
a ×___ c + ___ b ×___ c (a + b)×c = ___
a ×___ b + ___ a ×___ c 。 想一想: a×(b + c) = ___
下面哪个算式是正确的?正确的画 “ 的画 “ ”。
”,错误
56×(19 + 28) = 56×19 + 28
(
)
同学们,你们听过数学家高斯小时候的故事吗?
1+2+· · · + 99 + 100 的和是多少? 5 050。
你知道高斯是怎样计算的吗? 你还能想出其 他简便的方法吗?
简便计算

( 25× 1)1×4=11×(25× )4
(25+11)×4=25 ×4 + 11×4 (25-11)×4= 25×4 – 11× 4
乘法结合律、交换律和乘法分配律: 区别:
乘法结合律和交换律都是乘法;乘法分配律是加或减与 联系: 乘混合
没有
乘法分配律
(a + b)×c =a×c+b×c
15×(8+4);
加法交换律和乘法交换律: 区别:
加法交换律是加数交换,乘法交换律是乘数交换。 联系:
它们都是数字位置改变,但运算顺序不变。
(32+68)+17=32+(68+17)
(32×68)×17=32×(68×17)
加法结合律和乘法结合律: 区别:
加法结合律是加数结合,乘法结合律是乘数结合。 联系:
它们都是数字位置不变,但运算顺序改变。
练一练:
特殊1: 99 × 256 + 256 = 99 × 256 + 256 × 1 = 256 × (99 +1) = 256 × 100 = 25600 特殊3: 99×26 = (100-1) ×26 = 100×26-1×26 = 2600-26 = 2574
②个位:1与9,2与8,3与7,4与6,5 与5,结合。
③十位:0与9,1与8,2与7,3与6,4 与5,结合。
50+98+50
488+40+60
165+93+3565+来自8+35+72
连减的简便计算方法:
①连续减去几个数就等于减去这几个数 的和。
如:106-26-74
(完整版)人教版小学数学四年级下册【运算定律与简便计算】知识篇

加、减法的速算与巧算( 基础篇 )1、加法运算定律(2个):☆加法交换律:两个数相加,交换加数的位置,和不变。
即:a + b = b + a☆加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。
即:(a+b)+c = a+(b+c)(提醒:运用加法结合律时,要注意把结合的两个数用括号括起来。
)连加的简便计算方法:①使用加法交换律、结合律凑整(把和是整十、整百、整千的数先交换再结合在一起。
)②个位:1与9,2与8,3与7,4与6,5与5,结合。
③十位:0与9,1与8,2与7,3与6,4与5,结合。
连加的简便计算例题:50+98+50 488+40+60 165+93+35 65+28+35+72=50+50+98 =488+(40+60)=93+165+35 =(65+35)+(28+72)=100+98 =488+100 =93+(165+35) = 100+100=198 =588 =293 = 2002、连减的性质:☆一个数连续减去几个数等于这个数减去这几个数的和。
即:a – b – c = a – (b + c)注:连减的性质逆用:a – (b + c) = a – b – c = a – c – b☆一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
即:a-b-c=a-c-b连减的简便计算方法:①连续减去几个数就等于减去这几个数的和。
如:106-26-74 = 106-(26+74)②连续减去两个数可以先减去后一个数再减去前一个数。
如:226-58-26=226-26-58③减去几个数的和就等于连续减去这几个数。
如:106-(26+74) = 106-26-74连减的简便计算例题:528—65—35 528—89—128 528—(150+128)=528—(65+35) =528—128—89 =528—128—150=528—100 =400—89 =400—150=428 =311 =2503、加、减法混合运算的性质:在计算没有括号的加、减混合运算时,计算时可以带着运算符号“搬家”。
小学四年级:运算定律与简便计算公式整理(附练习题)

小学四年级:运算定律与简便计算公式整理(附练习题)小学四年级:运算定律与简便计算一、运算定律必须弄清加法交换律 a b = b a例:25 37=37 25加法结合律 a b c=a (b c)例:25 37 63=25 (37 63)(扩展) a-b-c=a-(b c)例:125-37-63=25-(37 63)a-b c=a-(b-c)例:300-159 59=300-(159-59)乘法交换律a×b×c=a×c×b例:25×9×4=25×4×9乘法结合律a×b×c=(a×c) ×b例:128×3×8=(125×8) ×3乘法分配律a×(b c)=a×b a×c例:8×(125 25)=8×125 8×25(扩展)a÷b÷c=a÷(c×b)例:100÷5÷2=100÷(5×2)a÷(c×b)= a÷b÷c例:100÷(5×2)=100÷5÷2二、必须背下来的几个算式2×5=102×50=1004×25=1008×25=20012×5=608×125=100037×3=111333=111×3999=333×3=111×9三、加法简便计算训练1、凑整法简便计算:例:(28 36) 64=28 (36 64)=28 100=128182 18 276 24=(182 18)(276 24)=200 300=500小结:多数相加,看尾数是否能凑成整数,将凑成整数的配对先加。
人教四下数学【运算定律与简便计算】知识篇

人教版四年级下册数学加、减法的速算与巧算( 基础篇 )1、加法运算定律(2个):☆加法交换律:两个数相加,交换加数的位置,和不变。
即:a + b = b + a☆加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。
即:(a + b) + c = a + (b + c)(提醒:运用加法结合律时,要注意把结合的两个数用括号括起来。
)连加的简便计算方法:①使用加法交换律、结合律凑整(把和是整十、整百、整千的数先交换再结合在一起。
)②个位:1与9,2与8,3与7,4与6,5与5,结合。
③十位:0与9,1与8,2与7,3与6,4与5,结合。
连加的简便计算例题:50+98+50 488+40+60 165+93+35 65+28+35+72=50+50+98 =488+(40+60)=93+165+35=(65+35)+(28+72)=100+98 =488+100 =93+(165+35)= 100+100=198 =588 =293 = 2002、连减的性质:☆一个数连续减去几个数等于这个数减去这几个数的和。
即:a – b – c = a – (b + c)注:连减的性质逆用:a – (b + c) = a – b – c = a – c – b☆一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
即:a-b-c=a—c-b连减的简便计算方法:①连续减去几个数就等于减去这几个数的和。
如:106-26-74 = 106-(26+74)②连续减去两个数可以先减去后一个数再减去前一个数。
如:226-58-26=226-26-58③减去几个数的和就等于连续减去这几个数。
如:106-(26+74) = 106-26-74连减的简便计算例题:528—65—35 528—89—128 528—(150+128)=528—(65+35) =528—128—89 =528—128—150=528—100 =400—89 =400—150=428 =311 =2503、加、减法混合运算的性质:在计算没有括号的加、减混合运算时,计算时可以带着运算符号“搬家”。
运算定律和简便运算

定律与简便计算(一)加减法运算定律1、加法交换律定义:两个加数交换位置,与不变字母表示:例如:16+23=23+16 546+78=78+5462、加法结合律定义:先把前两个数相加,或者先把后两个数相加,与不变.字母表示:注意:加法结合律有着广泛得应用,如果其中有两个加数得与刚好就是整十、整百、整千得话,那么就可以利用加法交换律将原式中得加数进行调换位置,再将这两个加数结合起来先运算。
例1、用简便方法计算下式:(1)63+16+84(2)76+15+24 (3)140+639+860 3、减法交换律、结合律注:减法交换律、结合律就是由加法交换律与结合律衍生出来得。
减法交换律:如果一个数连续减去两个数,那么后面两个减数得位置可以互换。
字母表示:例2、简便计算:198-75-98减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数得与。
字母表示:例3、简便计算:(1)369-45—155 (2)896—580-1204、拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些得时候,我们可以把这个数拆分成整百、整千与一个较小数得与,然后利用加减法得交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…例4、计算下式,能简便得进行简便计算:(1)89+106(2)56+98 (3)658+997随堂练习:计算下式,怎么简便怎么计算(1)730+895+170(2)820-456+280 (3)900-456-244(4)89+997 (5)103-60 (6)458+996(7)63+71+37+29 (8)85-17+15—33 (9)34+72-43-57+28 (二)乘除法运算定律1、乘法交换律定义:交换两个因数得位置,积不变。
字母表示:例如:85×18=18×85 23×88=88×232、乘法结合律定义:先乘前两个数,或者先乘后两个数,积不变.字母表示:乘法结合律得应用基于要熟练掌握一些相乘后积为整十、整百、整千得数。