角的平分线性质及应用

合集下载

八年级数学角平分线的性质知识点总结

八年级数学角平分线的性质知识点总结

角平分线的性质是八年级数学中的重要内容之一,它是指从一个角的顶点出发,将这个角分成两个相等角的线段。

下面是关于角平分线的性质的总结,包括定义、性质和应用:一、定义:角平分线是指从一个角的顶点出发,将这个角分成两个相等角的线段。

角平分线是角的重要构造之一二、性质:1.角平分线将角分成两个相等的角。

即如果一条线段是一个角的平分线,则它将这个角分成两个度数相等的角。

2.角平分线与角的两边相交于一个点。

即角平分线与角的两边交于角的顶点。

3.角平分线与角的两边垂直相交于角平分线的中点。

即角平分线与角的两边垂直相交于角平分线上的一个点,该点同时也是角平分线的中点。

4.角平分线上的点到角的两边的距离相等。

即角平分线上的任意一点到角的两边的距离相等。

5.两条平行线与角的顶点与顶边所在的线段构成的两个相似三角形,它们的角平分线平行。

即如果一条线段是一个角的平分线,另一条与之平行的线段也是这个角的平分线。

三、应用:1.判断角平分线。

当我们需要判断一个线段是否为一个角的平分线时,可以使用角平分线的定义和性质进行判断,即判断这个线段能否将角分成两个相等的角。

2.利用角平分线的性质解决问题。

当我们遇到需要将角分成两个相等的角的问题时,可以使用角平分线的性质进行解决。

例如,在解决相似三角形的问题中,可以利用角平分线的性质进行角的划分。

3.构造角平分线。

当我们需要构造角的平分线时,可以利用直尺和圆规进行构造。

常见的构造方法有尺规作图法和五线谱法等。

四、例题:1.已知角ABC,其中角平分线AD交角的两边于E、F两点,证明:AE=AF。

证明:根据角平分线的性质4,角平分线上的点到角的两边的距离相等,即DE=DF,又因为AD为角ABC的平分线,所以∠DAE=∠DAF。

再根据等腰三角形的性质,得知AE=AF。

2.已知直角三角形ABC中,角A=90°,角B的平分线BD与AC相交于点D,求证:∠ADB=45°。

证明:由直角三角形的性质,角B=90°-角A=90°-90°=0°,即角B为零角。

角平分线性质判定的分析与应用

角平分线性质判定的分析与应用

DOE BCAP 图2角平分线性质判定的分析与应用角平分线的性质定理与判定定理,学生往往由于理解不透,因而在具体应用时不会应用或应用不灵活. 下面就这两个定理作一简要分析并归纳其在数学中的应用,以期对同学们有所帮助.角平分线性质判定定理的分析:一、角平分线性质定理:角平分线上的点到这个角两边的距离相等. 【要点】条件:1. 点在角平分线上,2. 点到两边的距离,结论:3. 距离相等.【符号语言】如图1∵点P 在∠AOB 的平分线上,① PD ⊥OA 于D ,PE ⊥OB 于E ,② ∴PD=PE. ③ 【作用】证线段相等.【辅助线添加提示】存在角平分线上的点, 作此点到角两边的垂线段.【错误警示】1. 学生在具体应用角平分线性质时,在做题步骤中往往出现类似漏写②,即没有点明PD 、PE 是点P 到角两边的距离,而只由①便得③的错误.2. 对定理的图形语言认识不足. 角平分线上的点到角两边的距离是指这个 点到角两边的垂线段的长度,而不是过此 点与角平分线垂直(或仅仅相交)的直线 与角两边相交所得的线段的长度.学生往往出现如下错误:如图2 ∵点P 在∠AOB 的平分线上, ∴PD=PE.二、角平分线判定定理:在一个角的内部,并且到角的两边距离相等的点,在这个角的平分线上.OE PCBDA图1【要点】条件:1. 点在角的内部,2. 点到角两边的距离相等,结论:3. 点在角的平分线上.【解释】到角两边距离相等的点所在的射线有4条,如图3,图中的虚线即是,所以要点1不可缺少.【符号语言】如图1,∵PD ⊥OA 于D ,PE ⊥OB ∴PD=PE ,∴点P 在∠AOB 的平分线上.【作用】:证点在角平分线上,证角相等. 角平分线性质判定定理的应用: 一、性质、判定定理往往同时应用.例1 已知,如图4,ΔABC 的外角∠CBD 和∠BCE 的平分线相交于点F. 求证:点F 在∠DAE 的平分线上.分析:要证点F 在∠DAE 的平分线上, 只要证出点F 到∠DAE 所以添加辅助线,过点F 作FM ⊥AD 于FN ⊥AE 于N ,证出FM=FN 即可. 而已知条件中存在两条角的平分线, 所以作其上的点到角两边的垂线段,过点F 作FH ⊥BC 于点H ,得到FM=FH ,FH=FN ,得FM=FN ,所以点F 在∠DAE 的平分线上.引申:由以上分析可以看出,ΔABC 的一个内角∠A 的平分线与另两个外角的平分线交于一点,此点到三角形三边的距离相等,这样的点在边AC 外和边AB 外还各有一个,一共有三个. 又因为三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等,所以到三角形三边距离相等的点共有四个.二、与等腰三角形、线段垂直平分线的性质判定同时应用.例2 已知,如图5,P 是∠AOB 的平分线上的一点,PC ⊥OA ,PD ⊥OB ,垂足分别为点C 、D.求证:(1)OC=OD ;(2)OP 是CD 的垂直平分线.证明:(1) ∵P 是∠AOB 的平分线上的一点,PC ⊥OA ,PD ⊥OB , ∴PC=PD.∴∠PCD=∠PDC , ∵∠PCO=∠PDO=900, ∴∠OCD=∠OD, ∴OC=OD. (2) ∵PC=PD ,∴点P 在CD 的垂直平分线上, 同理点O 在CD 的垂直平分线上∴OP 是CD 的垂直平分线.点评:此题也可通过三角形全等证明,或通过三线合一证明. 三、 在作图中的应用.例3 如图6,直线距离相等,可供选择的 地址有几处哪一处到 三条公路的距离最近 求作此点.分析:由例1知,可供选择的地址有四处,其中三角形的三条角平分线的交点离三条公路最近. 在作图时,只要作出ΔABC的两条角平分线,它们的交点即为所求.。

几何形的角平分线认识角平分线的性质与应用

几何形的角平分线认识角平分线的性质与应用

几何形的角平分线认识角平分线的性质与应用几何形的角平分线几何学中,角平分线是指将一个角分成两个相等角的线段。

本文将探讨角平分线的性质和应用。

一、角平分线的定义定义:角AOB的一条射线OC被称为角AOB的一条平分线,当且仅当OC把角AOB分成两个相等的角。

二、角平分线的性质1. 角平分线的两个性质(1)在一定平面内,如果一条线段OC是一角AOB的平分线,那么它必定只有一条。

(2)如果在一条角的内部取一点C,那么OC是AB的平分线,当且仅当∠AOC=∠BOC。

2. 角平分线定理角平分线定理是指:一个点在角的平分线上,当且仅当它到两条角的边距离相等。

(1)a在OC上,则AO=BO;(2)d在OE上,则OD=OE。

3. 角平分线的应用(1)内角平分线的应用在三角形ABC中,D为边BC上一点,AD是∠BAC的平分线,AE是∠CAD的平分线,如图所示。

[图]根据角平分线定理:AD是∠BAC的平分线,则AB/AC=BD/CD;AE是∠CAD的平分线,则AC/AB=CE/BE。

故有 BD/CD=CE/BE,两边同乘BC,可得 BD·BC=CE·BC,即BD·DC=CE·BE,这就是角平分线定理的应用。

(2)角平分线定理的推论在三角形ABC中,AD是∠BAC的平分线,DE ⊥ AB,DF ⊥AC,则BD/CD=BF/CE。

因为三角形ADE与三角形BDF和三角形CDE都相似,所以BD/CD=BF/CE。

(3)外角平分线的应用在三角形ABC中,D和E分别为BC和AC的延长线上的点,AF是∠A的外角平分线,如图所示。

[图]连接DE并延长到与AF相交于点G,根据梅涅劳斯定理可得:BD/CD·AE/CE·AF/BF=1又根据角平分线定理可得:BD/CD=AB/ACAE/CE=AB/BCAF/BF=AB/BC带入可得:AB/AC·AB/BC·AB/BC=1,整理可得: AB²=AC·BC,这就是外角平分线应用的定理。

第3节 角平分线的性质及应用

第3节  角平分线的性质及应用

第三节角平分线的性质及应用一、课标导航二、核心纲要1.角平分线的性质定理角的平分线上的点到角的两边的距离相等.如下左图所示:∵OC平分∠AOB,CD⊥OA,CE⊥OB,∴CD=CE.注:考查点到线的距离相等时,可以考虑角平分线的性质.2.角平分线的判定定理到角的两边距离相等的点在角的平分线上.如下中图所示:∵CD⊥OA,CE⊥OB,CD=CE,∴OC平分∠AO B.注:用来证明一条线是一个角的平分线.3.角平分线的画法如下右图所示,已知:∠AO B.作法;(1)以O为圆心,适当长为半径作弧,交OA于点M,交OB于点N.(2)分别以M、N为圆心,大于12MN的长为半径作弧,两弧在∠AOB的内部交于点C.(3)作射线O C.∴射线OC即为所求.4.三角形的角平分线三角形的三个内角的角平分线交于一点,且到三边的距离相等.5.与角平分线有关的辅助线模型(1)在角的平分线上取一点向角的两边作垂线.(点垂线,垂两边,线等全等都出现)如下左图所示,过点C作CD⊥OA,CE⊥OB,则CD=CE,△OCD≌△OCE.(2)在角两边截取相等的线段,构造全等三角形.(角分线,分两边,对称全等要记全)如下图所示:在OA、OB上分别截取OD=OE,连接CD、CE,则△OCD≌△OCE.(3)角平分线+垂线,全等必出现.如下右图所示:延长DC交OB于点E,则△OCD≌△OCE.本节重点讲解:两个定理,两个作法(角平分线的作法和与角平分线有关的辅助线).三、全能突破基础演练1.如图12-3-1所示,OA是∠BAC的平分线,OM⊥AC于点M,ON⊥AB于点N,若ON=8cm,则OM长为().A.4cm B.5cm C.6cm D.8cm2.如图12-3-2所示,OP平分∠AOB,P A⊥OA,PB⊥OB,垂足分别为A、B.下列结论中不一定成立的是()A.P A=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP 3.如图12-3-3所示,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为().A.3:2 B.9:4 C.2:3 D.4:94.如图12-3-4所示,在Rt△ABC中,∠C=90°,BD是∠ABC的平分线,交AC于点D,若CD=n,AB=m,则△ABD的面积是.5.如图12-3-5所示,BD是∠ABC的平分线,AB=CB,点P在BD的延长线上,PM⊥AD,PN ⊥CD,垂足分别是点M、N,求证:PM=PN.6.如图12-3-6所示,在四边形ABCD中,BC>AB,AD=DC,DF⊥BC,BD平分∠AB C.(1)求证:∠BAD+∠BCD=180°.(2)若DF=3,BF=6,求四边形ABCD的面积.7.如图12-3-7所示,D、E、F分别是△ABC的三边上的点,CE=BF,△DCE和△DBF的面积相等,求证:AD平分∠BA C.能力提升8.如图12-3-8所示,∠AOB和一条定长线段a,在∠AOB内找一点P,使点P到OA、OB的距离都等于a,作法如下:(1)作OB的垂线NH,使NH=a,点H为垂足;(2)过点N作NM∥OB;(3)作∠AOB的平分线OP,与NM交于点P;(4)点P即为所求.其中(3)的依据是().A.平行线之间的距离处处相等B.到角的两边距离相等的点在角的平分线上C.角的平分线上的点到角的两边的距离相等D.到线段的两个端点距离相等的点在线段的垂直平分线上9.如图12-3-9所示,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S.若AQ=PQ,PR=PS,QD⊥AP,下列结论:①AS=AR;②AP平分∠BAC;③△BRP≌△CSP;④PQ∥AR.其中正确的是().A.①③B.②③C.①②④D.①②③④10.如图12-3-10所示,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()处.A.1 B.2 C.3D.411.如图12-3-11所示,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,BE⊥AD交AC 的延长线于F,E为垂足.则结论:①AD=BF;②CF=CD;③AC+CD=AB;④BE=CF;⑤BF=2BE,其中正确结论的个数是().A.1 B.2 C.3 D.412.如图12-3-12所示,已知AB平行CD,∠CAB,∠ACD的平分线交于点O,OE⊥AC,且OE=2,则两平行线AB、CD之间的距离等于.13.(1)如图12-3-13所示,△ABC的三边AB、BC、CA长分别是20、30、40,三条角平分线将△ABC分成三个三角形,则S△ABO:S△BCO:S△CAO等于.(2)如图12-3-14所示,已知△ABC的周长是18cm,OB、OC分别平分∠ABC和∠ACB,OD ⊥BC于点D,若△ABC的面积为54cm2,则OD= .14.如图12-3-15所示,∠B=∠C=90°,M是BC中点,AM平分∠DAB,求证:DM平分∠AD C.15.如图12-3-16所示,在河中有座水文观测台O,它到河岸以及河上大桥AB的距离相等,一水文数据记录员站在台上,发现桥上有辆漂亮的彩车,从桥头A走到桥头B,问记录员的视线转过多大角度?16.如图12-3-17所示,在△ABC中,PB、PC分别是△ABC的外角的平分线,求证:∠1=∠2.17.已知,如图12-3-18所示,在△ABC和△DCE中,BC=AC,DC=EC,∠ACB=∠DCE,B、C、E三点在一条直线上,A、B、C、D、E、F、G、O为“公交停靠点”,甲公共汽车从A站出发,按照A、F、G、E、C、F的顺序达到F站,乙公共汽车从B哦出发,按照BOFDGDF的顺序达到F站,(1)如果甲乙两公共汽车分别从AB站出发,在各站耽误的时间相同,两车的速度也相同,试问哪一辆公共汽车先达到指定站点?为什么?(2)求证:①∠AFB=∠CDE;②CF平分∠BFE.18.如图12-3-19所示,在△ABC中,BD是∠ABC的平分线,AD⊥BD,垂足为点D,(1)求证:∠2=∠1+∠C;(2)若ED∥BC,∠ABD=28°,求∠ADE的度数.19.如图12-3-20所示,在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点.求证:AB-AC>PB-P C.20.如图12-3-21所示,在△ABC中,AD是∠BAC的外角平分线,P是AD上异于点A的任意一点,试比较PB+PC与AB+AC的大小,并说明理由.中考链接21.(2011·浙江衢州)如图12-3-22所示,OP平分∠MON,P A⊥ON于点A,点Q是射线OM 上的一个动点,若P A=2,则PQ的最小值为().A.1 B.2 C.3 D.422.(2010·青海西宁)八(1)班同学上数学活动课,利用角尺平分一个角(如图12-3-23所示)设计了如下方案:(I)∠AOB是一个任意角,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.(II)∠AOB是一个任意角,在边OA、OB上分别取OM=ON,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P 的射线OP就是∠AOB的平分线.(1)方案(I)、方案(II)是否可行?若可行,请证明;若不可行,请说明理由.(2)在方案(I)PM=PN的情况下,继续移动角尺,同时使PM⊥OA,PN⊥O B.此方案是否可行?请说明理由.巅峰突破23.如图12-3-24所示,在Rt△ABC中,∠ACB=90°,∠CAB=60°,∠ACB的平分线与∠ABC 的外角平分线交于点E,则∠AEB=().A.50° B.45° C.40°D.35°24.如图12-3-25所示,在△ABC中,AC=BC,∠ACB=90°,D是AC上一点,且AE垂直BD的延长线于E,AE=12BD,求证:BD是∠ABC的平分线.。

角平分线基本性质及简单应用

角平分线基本性质及简单应用

角平分线基本性质及简单应用角平分线的定义:一条射线,把一个角分成两个相等的角,这条射线叫做这个角的角平分线. 角平分线的性质定理:角平分线上的点到角的两边的举距离相等.(“3-1-4”定理)逆定理:到角两边距离相等的点在角的角平分线上.三角形角平分线性质:三角形三条角平分线交于三角形内部一点,并且交点到三边距离相等. 方法总结:(1)有角平分线时,常国角平分线上的点向角两边作垂线段,利用角平分线上的点到角两边距离相等. (2)有角平分线时,通常在角的两边截取相等的线段,构造全等三角形.(利用角平分线翻折)一、基本性质及简单应用例1. 如图,MP ⊥NP ,MQ 为ΔNMP 的角平分线,MT=MP ,连接TQ ,则下列结论中,不正确的是( )A. TQ=PQB. ∠MQT=∠MQPC.∠QTN=900D. ∠NQT=∠MQT例2.已知:如图,BD 是ABC ∠的平分线,BC AB =,P 在BD 上,AD PM ⊥,CD PN ⊥.求证:PN PM =.例3.如图,已知:在ABC ∆中,外角CBD ∠和BCE ∠的平分线BF ,CF 相交于点F . 求证:点F 在DAE ∠的平分线上.例4. D 是ABC ∠的平分线与ACB ∠的外角平分线的交点,DE ∥BC ,交AB 于E ,交AC 于F.求证:.CF BE EF -=例5.如图,CE ⊥AB 于E ,BD ⊥AC 于点D,BD,CE 交于点O ,且AO 平分∠BAC.(1)求证:OB=OC;(2 )若将条件“AO 平分∠BAC ”和结论“OB=OC ”互换,命题还能成立吗?请说明理由.M N P Q T F A AE DB C A BCE D O CE F DB A例6. 如图,ABC ∆是等腰直角三角形,︒=∠90A ,BD 是ABC ∠的平分线,BC DE ⊥于E ,cm BC 10=,求DEC ∆的周长.针对练习:1.如图,已知:AD 是ABC ∆的角平分线,DE 、DF 分别是ABD ∆和ACD ∆的高.求证:AF AE =.2.如图,已知:在ABC ∆中AD 是BAC ∠的平分线,AB DE ⊥于E ,AC DF ⊥于F .求证:EF AD ⊥.3.已知:如图,在ABC ∆中,︒=∠90C ,BC AC =,AD 是A ∠的平分线.求证:AB CD AC =+.4.如图,已知:CD BD =,AC BF ⊥于F ,AB CE ⊥于E .求证:D 在BAC ∠的平分线上.第 3 页 共 5 页二、拓展应用例1. EG ,FG 分别是∠MEF 和∠NFE 的平分线,交点是G 点,BP ,CP 分别是∠MBC 和∠NCB 的平分线,交点是P 点,点F,C 在AN 上,点B,E 在AM 上.(1) 如果∠G =470,那么∠P 的度数大小你能知道吗? (2) 试求出来.点A,P,G 的位置关系如何?证明你的结论.例2. 如图,BD 平分∠ABC ,AD=DC ,BC>AB,问∠A 与∠C 有怎样的关系?变式题:若上题中条件该为“BD 平分∠ABC ,BC>AB, ∠A +∠C =1800.”求证:AD=DC.例3.如图,在△ABC 中,AD 是△ABC 的角平分线,AC=AB+BD.求证:∠B=2∠C 变式题: 如图,在△ABC 中,AD 是△ABC 的角平分线,∠B=2∠C. 求证: AC=AB+AD例4.如图,BD =DC,ED ⊥BC 交∠BAC 的平分线于E ,作EM ⊥AB,EN ⊥AC,求证:BM =CN.例5. 如图,∠B=∠C=900,M 点是BC 中点,DM 平分∠ADC.求证:AM 平分∠DAB. D C AB B M ED NC A A BD C A B D C变式题. 如图,AB ∥CD, ∠ABC 、∠BCD 的平分线恰好交于AD 上一点E ,试说明BC =AB+CD.针对练习:1.如图,D 是等边△ABC 内一点,DB =DA ,BP =AB ,∠DBP =∠DBC.求证:∠P =0302、已知:如图,在△ABC 中,∠B =060,△ABC 的角平分线AD 、CE 线相交于点O求证:AE+CD =AC3.如图,在△ABC 中,∠A =90°,且AB=AC ,BE 平分∠ABC 交AC 于F ,过C 作BE 的垂线交BE 于E.求证:BF=2CE巩固性练习1、下列说法正确的有几个( )(1) 角的平分线上的点到角的两边的距离相等; (2) 三角形两个内角的平分线交点到三边距离相等;(3) 三角形两个内角的平分线的交点到三个顶点的距离相等;AB DPCABCE FD C A B M B A C DE DO A BCE第 5 页 共 5 页ED CBA (4) 点E 、F 分别在∠AOB 的两边上,P 点到E 、F 两点距离相等,所以P 点在∠AOB 的平分线上; (5) 若OC 是∠AOB 的平分线,过OC 上的点P 作OC 的垂线,交OB 于D ,交OA 于E ,则线段PD 、PE 的长分别是P 点到角两边的距离A .2B 3C 4D 5 2、在△ABC 中,∠C =090,BC =16cm ,∠A 的平分线AD 交BC 于D ,且CD :DB =3:5,则D 到AB 的距离等于____3、已知:如图,BD 是∠ABC 的平分线,DE ⊥AB 于E ,236cm S ABC =∆AB =18cm,BC =12cm, 求DE 的长4.已知:如图,在ABC ∆中,BE 、CF 分别平分ABC ∠、ACB ∠,且交于点O ,求证:点O 在A ∠的平分线上.5、.如图在 △ABC 中,∠BAC =100°,∠ACB =20°,CE 是∠ACB 的平分线,D 是BC 上一点,若∠DAC =20°,求∠CED 的度数.6.在四边形ABCD 中,BC ﹥BA,AD =CD,BD 平分∠ABC,∠C =72°,求∠BAD 的度数C B ADE CA B D O B F CEA。

角平分线性质定理

角平分线性质定理

角平分线性质定理定理说明在几何学中,角平分线性质定理是一个重要的几何定理。

它指出:如果一条直线将一个角分成两个相等的角(即平分该角),那么这条直线就被称为该角的角平分线。

根据这个定理,我们可以得出一些有趣的推论和性质。

角平分线的性质性质一:角平分线两侧的角相等若一条直线分割一个角,并且它分成的两个角相等,那么这条直线就是该角的平分线。

以角A为例,若BD为角A的角平分线,则∠ABD = ∠CBD。

性质二:角平分线在三角形中的应用在一个三角形中,如果一条角平分线平分了一个内角,那么它将三角形分成两个相似的三角形。

我们可以利用这个性质来求解三角形内部角的度数。

性质三:角平分线长度关系两内锐角平分线的长度之比等于与这两个角的正弦比值。

性质四:角平分线与外切圆关系若角BAC的角平分线交外接圆于点D,那么∠BDC = 90°。

性质五:角平分线的唯一性对于一个给定的角,其角平分线唯一且确定。

应用和分析角平分线性质定理在几何学中有着广泛的应用。

通过合理应用这些性质,我们可以有效地解决角平分线相关的问题,从而推理出更复杂的几何问题的解决方案。

同时,深入了解角平分线的性质也有助于提高我们的几何推理能力,培养我们的数学思维和逻辑推理能力。

结论角平分线性质定理是几何学中一个基础而重要的定理,它揭示了角平分线的一些重要性质和应用。

通过深入理解和应用这个定理,我们可以更好地解决几何学中有关角平分线的问题,并且提高自己的数学分析能力。

对于学习几何学的人来说,掌握角平分线性质定理是必不可少的,它将为我们的数学学习之路增添光彩。

九年级角平分线知识点总结

九年级角平分线知识点总结

九年级角平分线知识点总结角平分线是指从一个角的顶点出发,将这个角分成两个相等的小角的线段。

在九年级的几何学中,学生需要学习角平分线的性质和应用。

以下是对九年级角平分线知识点的总结。

一、角平分线的定义和性质角平分线的定义:从一个角的顶点出发,将这个角分成两个相等的小角的线段被称为角的平分线。

角平分线的性质:1. 角平分线将角分成两个相等的小角。

2. 角平分线与所分角的两边相交于一个点,并且与所分角的两边垂直相交。

3. 一个角的平分线只有一个。

二、角平分线的应用1. 找出角平分线:当需要找出一个角的平分线时,可以使用直尺和量角器进行作图。

首先,绘制出所给角;然后,在顶点处使用量角器测量出等分的角度,然后沿着顶点指示的方向绘制角平分线。

2. 角平分线的性质应用于证明:角平分线的性质可以在证明中起到重要的作用。

例如,可以利用角平分线的性质证明两个角相等。

3. 解题中的应用:角平分线的性质也可以在解题中应用。

例如,当需要计算一个角的度数时,可以利用角平分线将角分成两个相等的小角,从而更方便计算角的度数。

三、角平分线相关定理1. 角平分线定理:如果一条线段将一个角分成两个相等的小角,那么这条线段就是这个角的平分线。

2. 角平分线的角度关系:当一条角平分线与另外一个角的两边相交时,所形成的角与原角之间存在着特定的关系。

具体而言,两个原角与所形成的两个小角互为补角,并且两个小角之间互为互补角。

四、综合练习1. 练习题一:在下图中,角ABC被角平分线AD分成两个小角,若∠BAC = 40°,求∠BAD和∠DAC的度数。

2. 练习题二:如下图所示,∠ABC的角平分线AD交边BC于点D,若∠A = 120°,求∠BAD的度数。

五、总结本文总结了九年级角平分线的相关知识点,包括角平分线的定义和性质、角平分线的应用、角平分线相关定理以及综合练习题。

通过掌握这些知识,可以更好地理解和应用角平分线相关的概念,在几何学中取得更好的成绩。

角平分线的定义及性质应用

角平分线的定义及性质应用

角平分线的定义及性质应用角平分线是指从一个角的顶点到其两边上任意一点的线段,将这个角分成两个大小相等的角。

角平分线具有一些重要的性质和应用。

首先,角平分线的定义是从一个角的顶点出发,将这个角分成两个相等的角。

这意味着角平分线与角的两边所夹的角度大小是相等的。

这是角平分线最基本的性质之一。

其次,角平分线具有对称性。

如果一个角的平分线通过其顶点并交于角的另一边上的一个点,那么这个交点将把角分成两个大小相等的角。

同样地,这个交点也可以看作是这个角的另一个平分线通过其顶点并交于另一边上的一个点。

这个交点将角分成两部分,而这两部分的大小是相等的。

此外,角平分线还具有一些其他的重要性质和应用。

以下是其中的一些:1. 角平分线相交于角的内部:角平分线必定在角的内部相交。

这是因为在平面几何中,两点之间的直线是最短的路径,所以角平分线将角分成两部分时必须通过角的内部。

2. 角平分线垂直于角的边:如果一个角的平分线与角的一条边相交,那么它与这条边所夹的角是垂直的。

也就是说,平分线和边的交点处的两个相邻角度是垂直的。

这是一个很有用的性质,可以用来构造垂直角、垂直平分线和垂直双准线等几何图形。

3. 角平分线的长度相等:如果一个角的两条平分线相交,那么它们的长度是相等的。

换句话说,一个角的两条平分线与该角两条边的交点之间的距离是相等的。

这可以通过解析几何或使用三角函数来证明。

4. 角平分线被分成一定比例的线段:如果两个角的平分线相交于一个点,并且它们分别与这两个角的另外一条边相交于不同的点,那么这个交点将把角平分线分成一定比例的线段。

这个性质可以用于求解角平分线上的长度比例,从而解决几何问题。

5. 角平分线和三角形内心:在一个三角形中,三条角的平分线交于一点,这个点称为三角形的内心。

内心是三角形内接圆的圆心,角平分线与三角形内接圆的切点均相交于角的顶点。

内心的存在和性质可以用角平分线来证明。

综上所述,角平分线具有分割角度、对称性、相交于角的内部、垂直于角的边、长度相等、被分成一定比例的线段等性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

角的平分线性质及应用
我们知道,把一个角分成两个相等的角的射线,叫做角的平分线.关于角的平分线,它有两个重要性质
(1)性质定理:在角的平分线上的点到这个角的两边的距离相等;
(2)性质定理的逆定理:到一个角的两边的距离相等的点在这个角的平分线上.利用角的平分线的性质定理可以证明题目中某两条线段相等;利用性质定理的逆定理可以证明某两个角相等,下面举例说明角的平分线的应用.
例1.三角形内到三边的距离相等的点是()的交点.
(A)三条中线(B)三条高(C)三条角平分线(D)以上均不对.
解:由角平分线性质定理的逆定理可知:应选(C).
例2.如图1,△ABC的角平分线BM、CN相交于点P,
试问:P到AB、BC、CA的距离相等吗?
解:相等.理由如下:
过P作PD、PE、PF分别垂直于AB、BC、CA,垂足
为D、E、F,
∵BM是△ABC的角平分线,点P在BM上,∴PD=PE,同
理PE=PF,
∴PD=PE=PF,即点P到边AB、BC、CA的距离相等.
例3.如图2,△ABC中,∠C=900,AD平分∠BAC,BD=4,BC=7,
则D到AB的距离是.
分析:∵∠C=900,∴DC⊥CA,过点D作DE⊥AB,
垂足为E,∵AD平分∠BAC,∴DE=DC=BC-BD=7-4=3,
即点D到AB的距离是3.
例4.如图3,△ABC中,∠B、∠C的角平分线相交于O,下面结论中正确的是().
(A)∠1>∠2(B)∠1=∠2(C)∠1<∠2(D)不能确定.分析:由例2知点O到△ABC的三边距离相等,因此点在∠
的平分线上,即AO平分∠BAC,故选(B).例5.如图4
,在△ABC中,∠A=900,BD是角平分线,
B
D
C
图2
B C
图1
图3
若AD=m ,BC=n ,求△BDC 的面积.
分析:过点D 作DE ⊥BC ,垂足为E ,∵BD 是角平分线, AD ⊥AB ,DE ⊥BC ,∴DE=AD=m , ∴mn DE BC S ABC 2
1
21=⨯⨯=
∆. 例6.如图4,在△ABC 中,∠A=900,AC=AB ,BD 平分∠BAC ,DE ⊥BC ,BC=8, 求△BED 的周长.
分析:△BED 的周长为
DE+DC+EC=AD+DC+EC=AC+EC=AB+EC=BE+EC=BC=8.
例7.如图5,△ABC 中,∠A=900,点D 在BC 上,DE ⊥AB 于E ,且AE=EB ,DE=DC ,
求∠B 的度数.
解:∵DC ⊥AC ,DE ⊥AB ,且DE=DC ,∠1=∠2, 在△AED 和△BED 中,AE=BE ,
∠AED=∠BED ,ED=ED ,∴△AED 和△BED ,∠1=∠B , ∴∠B=∠1=∠2,又∵在Rt △ABC 中,∠B+∠BAC=900,
∴∠B=300.
例8.如图6,某市有一块由三条马路围成的三角形绿地,现准备在其中建一小亭,供人们小憩,而且要使小亭中心到三条马路的距离相等,试确定小亭的中心位置(不写作法,保留作图痕迹).
分析:到三马路的距离相等的点在每两条马路所成角的平分线上,可作任意两个角的平分线,其交点即为所求小亭的中心位置.
解:(略).
A
B
C
D E
图4
1 A B
C
D
E
2
图5
图6。

相关文档
最新文档