圆柱与圆锥单元测试卷及答案

合集下载

人教版六年级下册数学第三单元《圆柱与圆锥》测试卷加精品答案

人教版六年级下册数学第三单元《圆柱与圆锥》测试卷加精品答案

人教版六年级下册数学第三单元《圆柱与圆锥》测试卷一.选择题(共6题, 共12分)1.把一个圆柱削成一个最大的圆锥, 削去部分的体积是这个圆柱体积的()。

A. B. C.2倍2.下面图()恰好可以围成圆柱体。

(接头忽略不计, 单位: 厘米)A. B.C. D.3.王大伯挖一个底面直径是3m, 深是1.2m的圆柱体水池,求这个水池占地多少平方米?实际是求这个水池的()。

A.底面积B.容积C.表面积D.体积4.一个圆柱的侧面展开图如图, 那么这个圆柱可能是下列图中的()。

A. B. C.5.用一个高36厘米的圆锥形容器盛满水, 倒入和它等底等高的圆柱形容器中, 水的高度是()厘米。

A.36B.18C.16D.126.下面第()个图形是圆柱的展开图。

A. B.C. D.二.判断题(共6题, 共12分)1.一个正方体木料, 加工成一个最大的圆锥, 圆锥的体积是正方体体积的/。

()2.圆柱的表面积等于底面积乘高。

()3.把一个土豆放在一个盛水的圆柱形容器里, 完全浸没, 土豆的体积等于上升的水的体积, 可以通过求圆柱的体积来计算。

()4.粉笔是最常见的圆柱。

()5.一个圆柱的直径和高相等, 则圆柱体的侧面展开图是正方形。

()6.一个圆锥和一个圆柱的高相等, 它们底面积的比是3:2, 圆锥的体积与圆柱的体积的比是1:2。

()三.填空题(共6题, 共11分)1.一根2米长的圆柱形木材, 锯成3段小圆柱后, 它们的表面积总和比原来增加了12.56dm2, 原来这根木材的体积是()dm3。

2.一个圆柱的体积是15立方厘米, 与它等底等高的圆锥的体积是()立方厘米。

3.圆锥的体积=()用字母表示()。

4.把圆柱的侧面沿高剪开, 得到一个(), 这个()的长等于圆柱底面的(), 宽等于圆柱的(), 所以圆柱的侧面积等于()。

5.一个圆柱的侧面积9.42平方厘米, 高4厘米, 这个圆柱的表面积是()平方厘米。

6.一个圆柱的底面直径是15 cm, 高是8 cm, 这个圆柱的侧面积是()cm2。

人教版六年级数学下册第三单元《圆柱与圆锥》测试卷(含答案)

人教版六年级数学下册第三单元《圆柱与圆锥》测试卷(含答案)

人教版六年级数学下册 第三单元《圆柱与圆锥》测试卷(全卷共6页,满分100分,80分钟完成)题号 一 二 三 四 五 总分 分数一、认真填一填。

(每空2分,共28分)1.一个圆柱的底面半径为5厘米,侧面展开后正好是一个正方形,圆柱的体积是( )立方厘米。

2.把一个高为5厘米的圆柱沿着底面直径往下切,表面积增加40平方厘米,这个圆柱的表面积是( )平方厘米。

3.如右图所示,将底面直径是8cm 的圆柱若干等分,拼成一个近似的长方体,表面积增加了80cm 2,拼成的长方体的体积是( ) cm 3。

4.一根圆柱形木料底面直径20厘米,长1.8米。

把它截成3段,使每一段都是圆柱形,截开后表面积增加了( )平方厘米。

5.爷爷有一只玻璃茶杯(如图),为了防止烫手,妈妈制作了这个杯子的布套,布套的高是茶杯的12,做这个布套至少要用布( )平方厘米。

(结果保留整数)6.一个长方体水池,长15米,宽8米,深1.57米,池底有根内径为2分米的出水管.放水时,水流速度平均每秒2米.放完池中的水需要( )分钟。

7.把长2.4米的圆柱形钢材按1∶2∶3截成三段,表面积比原来增加56平方厘米,这三 段圆钢材中最长的一段比最短的一段体积多( )立方厘米。

8.一个圆柱形状的容器装满水(如右图)。

将一个底面半径为0.5dm,高为2.4dm的圆柱形状的石柱竖直放入容器中(石柱的底面与容器完全接触),容器中的水溢出()dm3。

9.一个药瓶,它的瓶身呈圆柱形(不包括瓶颈),如右图所示,瓶内药水的体积为25.2cm3。

瓶子正放时,瓶内药水液面高7cm,瓶子倒放时,空余部分高2cm。

这个瓶子的容积是()cm3。

10.一个等腰直角三角形的直角边为6cm,以一条直角边为轴旋转一周,得到一个圆锥,则这个圆锥的高、底面直径和体积分别是()cm、()cm、()立方厘米。

11.一个圆柱体木块,削去38立方分米后,正好削成一个最大的圆锥,这个木块原来的体积是()。

2022-2023学年六年级数学下册第3单元《圆柱和圆锥》单元测试卷及答案

2022-2023学年六年级数学下册第3单元《圆柱和圆锥》单元测试卷及答案

2022-2023学年六年级数学下册第3单元《圆柱和圆锥》单元测
试卷
一、单选题。

(共10题;共20分,每题2分)
1.(2分)一个圆柱和一个圆锥,它们的底面积和体积都分别相等,已知圆柱的高是3cm,圆锥的高是()cm.
A.1B.3C.6D.9
2.(2分)圆柱体的底面半径和高都扩大2倍,它的体积扩大()倍.
A.2B.4C.6D.8
3.(2分)一个圆柱底面直径是0.5米,高1.8米,求它的侧面积为()平方米.A.9B.2.83C.约为2.83
4.(2分)将一个张长8厘米、宽6厘米的长方形纸卷成一个圆柱.这个圆柱的侧面积是()A.25.12平方厘米B.18.84平方厘米
C.48平方厘米
5.(2分)求做一个圆柱形铁皮油桶要用多少铁皮,需要计算这个圆柱的()
A.体积B.表面积C.侧面积
6.(2分)把一块棱长4分米的正方体木料加工成最大的圆柱,圆柱的体积是()立方分米.
A.64B.200.96C.50.24
7.(2分)把一个底面周长是9.42分米,高6分米的圆柱,沿底面直径切成两个半圆柱后,表面积共增加了()平方分米.
A.36B.18C.7.065D.14.13
8.(2分)把一个大圆柱分成两个小圆柱后发生变化的是()
A.圆柱的体积B.圆柱的表面积
C.圆柱的侧面积
9.(2分)一个圆锥与一个圆柱的体积和高都相等,那么圆柱与圆锥()
A.底面半径的比是1:3B.底面直径的比是3:1
C.底面周长的比是3:1D.底面积的比是1:3
10.(2分)如图所示,一个铁锥完全浸没在水中.若铁锥一半露出水面,水面高度下降7厘米,若铁锥全部露出,水面高度共下降()厘米.
第1页共17页。

六年级第3单元《圆柱与圆锥》测试卷(一)含答案

六年级第3单元《圆柱与圆锥》测试卷(一)含答案

六年级第3单元《圆柱与圆锥》测试卷(一)含答案姓名: 班级: 得分:一、选择题(5分)1.把一团圆柱体橡皮泥揉成和它等底的圆锥体,高将()。

A.扩大到原来的3倍B.缩小到原来的三分之一C.不变2.在下图中,以直线为轴旋转,可以得到圆柱形体的是()。

A.B.C.D.3.圆锥的底面积和高都扩大到原来的2倍,则体积扩大到原来的()倍。

A.2 B.4 C.8 D.164.下面图形()是圆柱的展开图。

(单位:cm)A.B.C.5.一个圆柱与一个圆锥体积相等,底面积也相等,已知圆柱的高是12厘米,圆锥的高是()厘米。

A.4 B.24 C.36 D.48二、填空题(39分)6.看图想一想,填一填。

(1)将直角三角形ABC绕BC边旋转,形成的圆锥的高是(_______)cm,底面半径是(_______)cm。

(2)将直角三角形ABC绕AB边旋转,形成的圆锥的高是(_______)cm,底面直径是(_______)cm。

7.计算并填写下表图形半径直径高表面积体积圆柱2dm __ 3dm __ ____ 2m 1.5m ____10cm __ 5cm __ __圆锥__ 4dm 1.2dm ---- ____ 1.5m __ ---- 1.05975m3(_______)立方厘米,圆柱的体积是(_______)立方厘米。

9.将一些小麦堆成底面周长是18.84米,高是1.5米的圆锥形,这堆小麦的体积是(_____)立方米。

10.把一个体积是150dm³的圆柱形木料削成一个最大的圆锥,圆锥的体积是(_____),削去的体积是(_____)。

11.一个长为6cm,宽为4cm的长方形,以长为轴旋转一周,将会得到一个底面直径是(___)cm,高是(___)cm的圆柱体。

12.为了参加“六一”儿童节的服装表演,王宇同学准备自己动手用硬纸片做个礼帽(如下图)。

请你帮他计算一下,他至少要用硬纸片________平方厘米。

人教版六年级下册数学第三单元《圆柱与圆锥》测试卷附答案(典型题)

人教版六年级下册数学第三单元《圆柱与圆锥》测试卷附答案(典型题)

人教版六年级下册数学第三单元《圆柱与圆锥》测试卷一.选择题(共5题,共10分)1.把圆柱的底面平均分成16份切开后,照图拼成近似的长方体,()发生了变化。

A.底面积B.表面积C.体积2.圆柱和圆锥的侧面都是()。

A.平面B.曲面C.长方形3.下列形状的纸片中,不能围成圆柱形纸筒的是()。

A. B. C.D.4.一个圆柱体的体积和底面积,与一个圆锥体的体积和底面积都相等,圆柱体的高是圆锥体的()。

A. B.3 C.6 D.95.油漆圆柱形柱子,要计算油漆的面积有多大,就是求()。

A.体积B.表面积C.侧面积二.判断题(共5题,共10分)1.把一个圆柱削成一个最大的圆锥,圆锥的体积是削去部分的。

()2.把一团圆柱体橡皮泥揉成与它等底的圆锥高将缩小3倍。

()3.圆柱的表面积等于底面积乘高。

()4.一个圆柱体和一个圆锥体的底面积比是2:3,高的比是7:5,则圆锥与圆柱的体积比是14:5。

()5.圆柱的底面直径是2厘米,高是6.28厘米,它的侧面积展开图是一个正方形。

()三.填空题(共8题,共17分)1.把一个圆柱体等分成若干份,可以拼成一个近似的长方体。

拼成的长方体的底面积等于圆柱的(),长方体的高等于圆柱的(),因为长方体的体积=(),所以圆柱的体积=()。

2.把一个棱长是6厘米的正方体削成一个最大的圆柱体,圆柱的底面直径是()厘米,高是()厘米。

3.圆柱的侧面积=()×();圆柱的表面积=()+()。

4.一个圆柱的直径和高都是2dm,这个圆柱的表面积是()平方分米。

5.一个圆柱的体积是94.2立方分米,它的底面周长是12.56分米,这个圆柱的高是()分米。

6.一件圆柱的礼品,底面直径4厘米,髙6厘米。

现在需要制作一个长方体礼盒将它装起來,至少要用()平方厘米的硬纸板。

(腰头处为12平方厘米)7.把一个棱长为6厘米的正方体,削成一个最大的圆柱体,这个圆柱体的体积是()立方厘米。

8.从正面看到的图形是()形,从左面看是()形,从上面看是()形。

数学六年级下册:第3单元《圆柱圆锥》单元测试卷(含答案解析)

数学六年级下册:第3单元《圆柱圆锥》单元测试卷(含答案解析)

人教版数学六年级下册:第3单元《圆柱圆锥》单元测试卷(含答案解析)第3单元《圆柱圆锥》单元测试卷一、填空题(共9题;共20分)1.圆柱的两个底面是两个大小________的圆,如果一个圆柱的底面周长和高相等,那么它的侧面展开是一个________。

2.圆柱的侧面展开图是________形,圆锥的侧面展开图是________形。

3.圆柱有________条高,圆锥有________高.4.一个圆锥的体积是m3.与它等底等高的圆柱的体积是________ m3;如果圆锥的高是m,那么它的底面积是________ m2。

5.把一个圆柱削成一个最大的圆锥体,已知削去的部分是6立方分米,这个圆柱体的体积是________。

6.一个圆柱体和一个圆锥体的底面积相等,它们的体积比是4 :3,它们的高度比是________。

7.一个圆锥体的体积是15立方米,高是6米,它的底面积是________平方米。

8.把一个圆柱的底面半径扩大3倍,高不变,它的侧面积扩大________倍。

9.如图是一个圆柱体的侧面展开图,原来这个圆柱的体积可能是________或________ cm3.二、单选题(共5题;共10分)1.下面图形绕轴旋转一周,形成圆锥的是( )。

A. B. C. D.2.下图不能用“底面积×高”计算体积的是( )。

A. B. C. D.3.把圆柱体的侧面展开.不可能得到( )。

A. 平行四边形B. 长方形C. 正方形D. 梯形4.一个圆锥的底面半径扩大到原来的2倍,高也扩大到原来的2倍,它的体积扩大到原来的( )倍。

A. 8B. 6C. 45.压路机滚筒滚动一周能压多少路面是求滚筒的()。

A. 表面积B. 侧面积C. 体积D. 容积三、判断题(共5题;共10分)1.圆柱和圆锥都有无数条高。

( )2.一个圆柱的底面半径是r,高是2πr,那么它的侧面沿高展开是正方形。

()3.从一个圆锥高的处切下一个圆锥,这个圆锥的体积是原来体积的。

人教版小学六年级数学下册第三单元《圆柱与圆锥》测试卷(附答案)

人教版小学六年级数学下册第三单元《圆柱与圆锥》测试卷(附答案)

人教版六年级下册第三单元《圆柱与圆锥》测试卷学校:___________姓名:___________班级:___________等级:___________一、选择题(将正确答案的序号填在括号里)(10分)1.(2分)把一个圆柱形木头截成相等的三段,表面积()A.不变B.增加2个底面C.增加3个底面D.增加4个底面2.(2分)将一个圆柱体削制成一个圆锥体,削去部分的体积是圆柱体积的()A.B.C.2倍D.不能确定3.(2分)下面图形中,以某一边为轴旋转一周,可以得到圆柱体的是( )。

A.B. C.D.4.(2分)一个圆柱和一个圆锥的体积和底面积相等,圆柱的高是9厘米,圆锥的高是()A.9cm B.3cm C.27cm5.(2分)制作一个圆柱形油桶,至少需要多少平方米的材料,是求圆柱的()。

A.侧面积B.表面积C.容积D.体积二、填空题(共22分)6.(4分)圆柱的上、下底面是两个面积相等的_____形.圆柱的侧面是一个_____,沿着高展开后可能是一个_____形,也可能是一个_____形.7.(1分)计算做一个圆柱形的烟囱要用多少铁皮,要计算圆柱的______。

8.(1分)等底和等高的圆柱和圆锥,它们的体积之比是_________。

9.(2分)如下图,把圆柱切开拼成一个长方体,已知长方体的长是3.14米,高是2米。

这个圆柱体的底面半径是________米,体积是__________立方米。

10.(1分)一个圆柱的体积比与它等底等高的圆锥的体积大50.24 dm3,已知圆锥的底面半径是20cm,圆锥的高是_________dm。

11.(1分)一个圆锥形的沙堆,底面周长是62.8平方米,高是6米,这堆沙子______立方米。

12.(3分)一个圆柱的底面半径是3cm,高是10cm,侧面积是________cm2,表面积是________cm2,体积是________cm3。

13.(2分)一个圆锥的底面面积是62.8平方分米,高是6分米,它的体积是_____立方分米,与它等底等高的圆柱体的体积是_______。

六年级数学下册第三单元《圆柱与圆锥》测试卷-人教版(含答案)

六年级数学下册第三单元《圆柱与圆锥》测试卷-人教版(含答案)
16.一个圆柱和一个圆锥体积相等,底面积也相等,如果圆锥的高是9分米,则圆柱的高是(______)分米。
17.沿着圆柱的高展开,侧面得到一个长方形,这个长方形的长等于圆柱的,宽等于圆柱的,当圆柱的底面周长和高相等时,侧面展开的图形是.
18.一个无盖的圆柱形水桶,底面直径是40厘米,高50厘米,做这个水桶至少需要平方米铁皮.
33.
六年级数学下册第三单元《圆柱与圆锥》测试卷-人教版(含答案)
一、选择题
1.一个圆柱体水桶的容积()圆锥体积.
A.相等 B.大于 C.小于 D.无法确定
2.一个圆柱的高是底面直径的π倍,这个圆柱侧面的展开图是一个( )
A.平行四边形 B.正方形C.长方形 D.圆形
3.一个圆柱形杯子盛满2.1升水,把与它等底等高的圆锥形铁块完全浸入水中,杯中还有()水。
A.3B.9C.27
7.将一个圆柱体削成一个最大的圆锥体.说法不正确的是( )
A.削去的体积是圆柱体积的
B.削去的体积是圆柱体积的
C.削去的体积是圆锥体积的2倍
8.一个圆柱体、底面直径扩大3倍,体积就扩大了( )
A.3倍B.6倍C.9倍
9.将长为3米,体积为12立方米的圆柱体据成两段,它的表面积增加了( )平方米.
14.6.25
15.6
16.3
17.底面周长,高,正方形
18.0.7536
19.1.35.
20.36
21.4.71立方分米
22.√
23.√
24.×
25.√Байду номын сангаас
26.×
27.803.84立方厘米
28.1695.6立方厘米
29.50.24;37.68;不能
30.1978.2千克
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆柱与圆锥单元测试卷及答案一、圆柱与圆锥1.具有近600年历史的北京天坛祈年殿为砖木结构,殿高38米,底层直径32米,三层重檐向上逐层收缩作伞状。

殿内有28根金丝楠木大柱,里圈的4根寓意春、夏、秋、冬四季,每根高约19米,直径1.2米。

因为它们是殿内最高的柱子,所以也叫通天柱,取的是和上天互通声息的意思。

(x取整数3)(1)请你根据上面信息,计算祈年殿的占地面积是多少平方米?(2)如果要给4根通天柱刷油漆,则刷漆面积一共是多少平方米?【答案】(1)解:3×(32÷2)2=768(平方米)答:计算祈年殿的占地面积是768平方米。

(2)解:3×1.2×19×4=273.6(平方米)答:刷漆面积一共是273.6平方米。

【解析】【分析】(1)根据圆面积公式计算占地面积,底面直径是32米;(2)通天柱是圆柱形,刷漆的部分是侧面积,侧面积=底面周长×高,根据公式计算一个侧面积,再乘4就是刷漆的总面积。

2.工厂要生产一节烟囱,烟囱长2.5m,横截面是直径为40cm的圆。

(1)做一节烟囱一共需要铁皮多少平方米?(接头处忽略不计)(2)如果烟囱中充满废气,一节烟囱中最多可以容纳废气多少立方米?【答案】(1)解:40cm=0.4m3.14×0.4×2.5=3.14(m2)答:做一节烟囱一共需要铁皮3.14平方米。

(2)解:3.14×(0.4÷2)2×2.5=0.314(m3)答:一节烟囱中最多可以容纳废气0.314立方米。

【解析】【分析】1cm=0.01m,(1)做一节烟囱一共需要铁皮的平方米数=这节烟囱横截面的周长×长,其中这节烟囱横截面的周长=横截面的半径×2×π;(2)一节烟囱中最多可以容纳废气的立方米数=这节烟囱的容积=πr2h。

据此代入数据作答即可。

3.看图计算.(1)求圆柱的表面积(单位:dm)(2)求零件的体积(单位:cm)【答案】(1)解:3.14×10×20+3.14×(10÷2)2×2=628+3.14×25×2=628+157=785(平方分米)答:圆柱的表面积是785平方分米。

(2)解: ×3.14×(2÷2)2×3+3.14×(2÷2)2×4= ×3.14×1×3+3.14×1×4=3.14+12.56=15.7(立方厘米)答:零件的体积是15.7立方厘米。

【解析】【分析】(1)圆柱的表面积是两个底面积加上一个侧面积,根据圆面积公式计算出底面积,用底面周长乘高求出侧面积;(2)圆柱的体积=底面积×高,圆锥的体积=底面积×高×,根据公式计算,用圆柱的体积加上圆锥的体积就是总体积。

4.如图,一个内直径是20cm的纯净水水桶里装有纯净水,水的高度是22cm.将水桶倒放时,空余部分的高度是3cm,无水部分是圆柱形.这个纯净水水桶的容积是多少升?【答案】解:3.14×(20÷2)2×22+3.14×(20÷2)2×3=3.14×100×(22+3)=3.14×100×25=7850(立方厘米)7850立方厘米=7.85升答:这个纯净水水桶的容积是7.85升。

【解析】【分析】水桶的容积包括水的体积和空余部分的体积,根据圆柱的体积公式分别计算后再相加即可求出水桶的容积。

5.有一个底面直径为20厘米的装有一些水的圆柱形玻璃杯,已知杯中水面距杯口2.24厘米.若将一个半径为9厘米的圆锥形铅锤完全浸入水中,水会溢出314立方厘米.求铅锤的高.【答案】解:3.14×(20÷2)2×2.24+314=3.14×100×2.24+314=703.36+314=1017.36(立方厘米),1017.36 ÷(3.14×92)=1017.36×3÷254.34=3052.08÷254.34=12(厘米),答:铅锤的高是12厘米。

【解析】【分析】根据题意可知,先求出圆锥形铅锥的体积,用圆柱形玻璃杯上面的空白部分的体积+溢出的水的体积=圆锥形铅锥的体积,然后用圆锥形铅锥的体积÷÷铅锥的底面积=铅锥的高,据此列式解答.6.一个圆柱形钢管,内直径是20cm,水在钢管内的流速是每秒40cm,每秒流过的水是多少cm3?【答案】解:3.14×(20÷2)2×40=314×40=12560(cm3)答:每秒流过的水是12560cm3。

【解析】【分析】钢管是圆柱形,流出的水也是圆柱形。

用钢管的横截面面积乘每秒流出水的长度即可求出流过水的体积。

7.计算圆柱的表面积。

【答案】解:3.14×(6÷2)²×2+3.14×6×10=3.14×18+3.14×60=56.52+188.4=244.92(cm³)【解析】【分析】圆柱的表面积是两个底面积加上侧面积,根据圆面积公式计算底面积,用底面周长乘高求出侧面积。

8.我们熟悉的圆柱、长方体、正方体等立体的图形都称作直柱体,如图所示的三棱柱也是直柱体。

(1)通过比较,请你说说这类立体图形有什么样的共同特征呢?(至少写出3点)(2)我们已经学过圆柱、长方体、正方体的体积计算方法,请你大胆猜测一下,三棱柱的体积如何计算?若这个三棱柱的底面是一个直角三角形,两条直角边分别为2cm、3cm,高为5cm,请你计算出它的体积。

【答案】(1)答:①上下两个底面的大小和形状完全相同,并且它们相互平行。

②侧面与底面垂直,两个底面之间的距离就是直柱体的高。

③直柱体的侧面展开图是长方形。

④当底面周长与高相等时,侧面展开图是正方形。

(2)答:我们学过的长方体,正方体和圆柱体的体积都可以用“底面积×高”来计算.因为三棱柱也是直柱体,所以我精测,三棱柱的体积计算方法也可以用“底面积x高”来计算。

三棱柱的体积:2×3÷2×5=15cm3【解析】【分析】(1)根据每种直柱体的特征总结出它们共同的特征即可,例如:①它们的上下两个底面的大小和形状完全相同,并且它们相互平行;②它们的侧面与底面垂直,两个底面之间的距离就是直柱体的高;③它们的侧面展开图是长方形;④当底面周长与高相等时,侧面展开图是正方形;(2)长方体、正方体的体积都可以用“底面积×高”来计算,而三棱柱也是直柱体,所以三棱柱的体积也可以用“底面积×高”来计算,直角三角形的面积等于两条直角边乘积的一半,据此作答即可。

9.图“蒙古包”是由一个近似的圆柱形和一个近似的圆锥形组成,这个蒙古包的空间大约是多少立方米?【答案】解:3.14×(8÷2)2×2+3.14×(8÷2)2×1×=3.14×16×2+3.14×16×1×≈100.48+16.75=117.23(立方米)答:这个蒙古包所占的空间大约是117.23立方米。

【解析】【分析】这个蒙古包是由圆锥和圆柱组成,所以这个蒙古包的空间是圆锥的体积和圆柱的体积,圆柱的底面半径=底面直径÷2,圆柱的底面积=圆锥的底面积,所以圆柱的体积=πr2h,那么圆锥的体积=πr2h。

10.一个圆锥体钢制零件,底面半径是3cm,高是2m,这个零件的体积是多少立方厘米?【答案】解: ×3.14×32×2=3.14×6=18.84(立方厘米)答:这个零件的体积是18.84立方厘米。

【解析】【分析】圆锥的体积=底面积×高×,根据公式计算体积即可。

11.把一个底面半径是4厘米,高是6分米的铁制圆锥体放入盛满水的桶里,将有多少立方厘米的水溢出?【答案】解:×3.14×42×6=×3.14×16×6=3.14×16×2=50.24×2=100.48(立方厘米)答:有100.48立方厘米的水溢出.【解析】【分析】根据题意可知,将圆锥放入盛满水的桶里,溢出的水的体积等于圆锥的体积,依据圆锥的体积=×底面积×高,据此列式解答.12.有一个圆锥形沙堆,底面半径是10米,高是4.8米,把这些沙子均匀地铺在一条宽20米,厚40厘米的通道上,可以铺多长?【答案】 40厘米=0.4米3.14×102×4.8÷3÷(20×0.4)=502.4÷8=62.8(米)答:可以铺62.8米。

【解析】【分析】可铺的米数=圆锥的底面积×高÷3÷(宽×厚)13.一圆锥形小麦堆的底面周长为12.56米,高1.2米。

如果每立方米小麦约重30千克,这堆小麦约重多少千克?【答案】解:12.56×1.2××30=150.72(千克)答:这腿小麦重150.72千克。

【解析】【分析】这堆小麦的重量=这堆小麦的体积×每立方米小麦大约重的千克数,其中这堆小麦的体积=×πr2h。

14.一个用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个半径2米的半圆.(1)搭建这个大棚大约要用多少平方米的塑料薄膜?(2)大棚内的空间大约有多大?【答案】(1)解:3.14×22+2×3.14×2×15÷2=3.14×4+188.4÷2=12.56+94.2=106.76(平方米)答:搭建这个大棚大约要用106.76平方米的塑料薄膜。

(2)解:3.14×22×15÷2=3.14×4×15÷2=188.4÷2=94.2(立方米)答:大棚内的空间大约有94.2立方米。

【解析】【分析】(1)搭建这个大棚大约要用塑料薄膜的平方米数=大棚的侧面积+半圆的面积×2,其中半圆的侧面积=横截面的半径×2×π÷2,半圆的面积×2=圆的面积=横截面的半径2×π;(2)大棚内的空间=横截面的半径2×π×大棚的长度÷2。

相关文档
最新文档