抽样调查-第7章 系统抽样
(抽样检验)第七章整群抽样最全版

(抽样检验)第七章整群抽样第七章整群抽样第壹节整群抽样概述壹、整群抽样的概念整群抽样是先将总体各单元划分成若干群(组),然后以群为单位,从中随机抽取壹部分群,对中选群内的所有单元进行全面调查。
确切地说,这种抽样组织形式应称为单级整群抽样。
如果总体中的单元能够分成多级,则能够对前几级单元采用多阶抽样,而在最后壹阶中对该阶抽样单元所包含的全部个体(最基本单元)进行调查,这种抽样称作多级整群抽样。
本章只讨论单级整群抽样。
设总体被划分为N群,第i群含有Mi个次级单元,全部总体次级抽样单元数记为M0,即M0=∑M i。
当诸Mi都相等时,称为等群;否则,称为不等群。
采用整群抽样的俩个理由:-抽选群能大大降低数据收集的费用,当总体的分布比较广且调查采用面访时更是如此;-从总体中直接抽选个体在实际中且不总是可行的(没有关于个体的抽样框);有时,抽选单元组成群体组更简便易行(如整个住户)。
整群抽样包括俩步:首先,总体被分为群;然后,在总体中抽取群的样本且访问群中的所有单元。
如果总体单元是自然分成组或群的,创建壹个这种关于群的抽样框且对它们进行抽样比创建总体中所有单元的名录框更为容易。
或者,无法得到关于总体中所有单元的名录框,但却有这些单元分布地域的地图,因而能够创建地域框。
群的抽取能够采用简单随机抽样、系统抽样或PPS抽样等各种不同的方法。
二、群的划分问题整群抽样策略的统计效率取决于群内单元的相似程度有多大,每个群中有多少单元,及抽中群的数量。
同分层抽样壹样,整群抽样的前提是先要对总体进行分群。
关于群的划分,有俩个问题:壹是如何定义群,即当群且非是壹个自然形成的单位时,确定每个群的组成;二是如何确定群的规模即群的大小。
分层抽样是在各层都进行随机抽样,“层是缩小了的总体”,抽样单元仍然是总体基本单元。
这决定了分层的原则是:尽量缩小层内差异,而扩大层间差异。
而整群抽样只是在各群之间抽取壹部分群进行调查,且在抽中的群内作全面调查。
系统抽样法

系统抽样法系统抽样法,在统计学中是一种常用的抽样方法。
它是指根据一定的规则,从总体中随机选择具有代表性的样本,以便对总体进行统计推断。
系统抽样法不仅能保证样本的随机性,还能提高调查的效率和准确性。
下面将介绍系统抽样法的基本原理、应用场景以及优缺点。
系统抽样法的原理是通过预先设定的规则来选择样本。
首先,需要确定样本容量,即要从总体中选取多少个样本点。
然后,确定一个起始点,这个起始点是通过随机抽取总体中的一个个体来确定的。
接下来,按照一定的间隔(这个间隔可以是固定的数字,也可以是总体的大小除以样本容量得到的比例),在总体中选取样本。
直到选取到规定的样本容量为止。
这样,样本就具有代表性,能够对总体进行推断。
系统抽样法常见的应用场景是社会调查、市场研究、医学实验等。
在社会调查中,比如对某个城市的居民进行调查,我们可以先确定样本容量,然后选取一个起始点,按照一定的间隔,从不同区域或人口群体中选取样本。
这样,我们可以通过这些样本来了解整个城市的人口特征、生活习惯等信息。
在市场研究中,通过对一部分消费者进行调查,可以推断出整个市场的需求、偏好等情况。
在医学实验中,可以通过对一部分病人进行治疗或观察,来推断出某种治疗方法的有效性或某种药物的副作用。
系统抽样法具有一定的优点和缺点。
其优点之一是样本选择随机性好,能够较好地代表总体。
其次,系统抽样法也较为简单,实施起来相对容易。
此外,它还能提高调查的效率,通过合理的样本容量和间隔选择,能够最大程度地获取有用的信息。
然而,系统抽样法也存在一些缺点。
首先,它对总体的要求较高,需要清楚地了解总体的特点和组成,才能选择合适的起始点和间隔。
其次,如果选择的起始点过于倾斜,可能会导致样本选择的偏差,影响结果的准确性。
此外,系统抽样法也对调查过程的随机性和外界干扰较为敏感,需要注意控制环境和调查过程中的误差。
总之,系统抽样法是一种常用的抽样方法,通过预先设定的规则,从总体中随机选择具有代表性的样本。
(抽样检验)第七章整群抽样

第七章整群抽样第一节整群抽样概述一、整群抽样的概念整群抽样是先将总体各单元划分成若干群(组),然后以群为单位,从中随机抽取一部分群,对中选群内的所有单元进行全面调查。
确切地说,这种抽样组织形式应称为单级整群抽样。
如果总体中的单元可以分成多级,则可以对前几级单元采用多阶抽样,而在最后一阶中对该阶抽样单元所包含的全部个体(最基本单元)进行调查,这种抽样称作多级整群抽样。
本章只讨论单级整群抽样。
设总体被划分为N群,第i群含有Mi个次级单元,全部总体次级抽样单元数记为M0,即M0=∑M i。
当诸Mi都相等时,称为等群;否则,称为不等群。
采用整群抽样的两个理由:- 抽选群能大大降低数据收集的费用,当总体的分布比较广且调查采用面访时更是如此;- 从总体中直接抽选个体在实际中并不总是可行的(没有关于个体的抽样框);有时,抽选单元组成群体组更简便易行(如整个住户)。
整群抽样包括两步:首先,总体被分为群;然后,在总体中抽取群的样本并访问群中的所有单元。
如果总体单元是自然分成组或群的,创建一个这种关于群的抽样框并对它们进行抽样比创建总体中所有单元的名录框更为容易。
或者,无法得到关于总体中所有单元的名录框,但却有这些单元分布地域的地图,因而可以创建地域框。
群的抽取可以采用简单随机抽样、系统抽样或PPS抽样等各种不同的方法。
二、群的划分问题整群抽样策略的统计效率取决于群内单元的相似程度有多大,每个群中有多少单元,及抽中群的数量。
同分层抽样一样,整群抽样的前提是先要对总体进行分群。
关于群的划分,有两个问题:一是如何定义群,即当群并非是一个自然形成的单位时,确定每个群的组成;二是如何确定群的规模即群的大小。
分层抽样是在各层都进行随机抽样,“层是缩小了的总体”,抽样单元仍然是总体基本单元。
这决定了分层的原则是:尽量缩小层内差异,而扩大层间差异。
而整群抽样只是在各群之间抽取一部分群进行调查,并在抽中的群内作全面调查。
因此,群间差异的大小直接影响到抽样误差的大小,而群内差异的大小则不影响抽样误差。
统计学原理第七章 抽样调查

合
计
x A 2 x A ( d ) f ( d )f d σ f f
2
256 72 σ 50 11504 50 53.63 200 200
2
30
第三节 全及指标的推断
一、全及指标的点估计
22
不具有某一标志的单位数用N0表示。 ► 总体成数和标准差与样本成数和标准差的计 算方法相同。只是总体指标用大写字母表示, 样本指标用小写字母表示。例如: ► 具有某一标志的单位数占总体的比重:
N1 P N
总体成数
n1 p n
样本成数
不具有某一标志的单位数占总体的比重:
N0 Q 1 P N
13
► 2.
(二)中心极限定律 ► 1. 独立同分布中心极限定理:证明不论变量 总体服从何种分布,只要它的数学期望和方 差存在,从中抽取容量为n 的样本,则这个 样本的总和或平均数是个随机变量,当n 充 分大时,样本的总和或平均数趋于正态分布.
► 2.
德莫佛-拉普拉斯中心极限定理:证明属性 总体的样本成数和样本方差,在n足够大时, 同样趋于正态分布。
σ N n σ n μx ( ) μx (1 ) n N 1 n N
2 2
总体单位总数
样本单位总数
抽样比例
21
(一)抽样成数的抽样平均误差μp ► 属性总体的标志值是用文字表示的,且标志 只有两个取值,非此即彼,故将属性总体的 标志称为“交替标志”或“是非标志”。 ► 交替标志也可以计算平均数(即成数)和标 准差。为了计算交替标志的平均数和标准差 必须将交替变异的标志过渡到数量标志。 ► 交替标志仍以x表示,设:x =1表示单位具有 某一标志, x = 0表示单位不具有某一标志。 具有某一标志的单位数用N1表示;
第7章 抽样方法

分层抽样
所谓分层抽样,就是先依据某一种或某几种 特征,将总体划分成几个小的部分,每一个 部分称为一层或一类。然后,在每一个层次 中,采取简单抽样或系统抽样的方法抽取一 个子样本,最后,将这几个子样本合起来构 成总体的样本。
例如:某地共有居民20000户,按经济收入高低进 行分类,其中高收入的居民为4000户,占总体的 20%;中收入的居民为12000户,占总体的60%; 低收入的居民为4000户,占总体的20%。要从中抽 选200户进行购买力调查,则各类型应抽取的样本 单位数为: 经济收入高的样本单位数目为:200*20%=40户 经济收入中的样本单位数目为:200*60%=120户 经济收入底的样本单位数目为:200*20%=40户
较适用于同质性较高的总体
同学练习:
某学校有200位学生,采用等距离抽样方法抽 10个学生做样本。假设抽中的第一位学生排 在第三位,请问其他的样本单位的号码为?
整群抽样
整群抽样先要把调查总体划分为若干个群体, 然后用单纯随机抽样法,从中抽取某些群体 进行全面调查。 例如,要调查家庭副业发展情况,不是直接 抽取居民户.而是以村为单位,从中抽取若 干自然村,然后对中选村的全体居民户进行 调查。
• 样本平均数 x=∑xi / n • 样本标准差 S=√∑(xi- x)2 /n • 样本方差 S2=∑(xi - x)2 /n
6.总体与样本的相互关系 总体与样本的相互关系 样本是总体的缩影。 一次抽样时,一个样本单位必然同时又是一 个总体单位。但一个总体单位却不一定是一 个样本单位。 对一定的调查目的而言,总体是唯一的,样 本则不然。
第七章 抽样调查
胡林娜 温州职业技术学院
7.1抽样调查的基本概念
1.抽样调查的含义 抽样调查是按照一定的规则从总体中抽取 一部分个体单位作为样本,通过对样本的调 查研究所获得的信息资料,来推断总体的信 息资料的方法;因而抽样调查也称作抽样推 断。
第七章抽样

第七章抽样一、抽样与抽样调查抽样:是一种选择调查对象的程序和方法。
抽样调查:就是从研究对象的整体中选出一部分代表加以调查研究,然后用所得结果推论和说明总体的特征。
优点:社会学中第一次采用抽样方法的调查是A.L.Bowleg于第一次世界大战前在英格兰和威尔士所做的五城镇调查。
二战后,随着计算机技术的发展抽样调查法得到迅速推广,目前已成为社会调查的主流。
与整体调查(普查)比,抽样调查具有下列优越性。
第一、调查费用低。
抽样调查由于调查的仅仅是整体的一部分,因此,所需费用较整体调查低。
例如,我国第三次人口普查,动用普查人员710万,正式调查期间还动员了1000万干部群众参加,耗资约4亿元。
第二、速度快。
时间往往是最重要的,特别是某些社会现象需要及时了解,随时掌握。
第三、范围广。
由于上述两个特点,抽样调查可广泛用于各个领域,各种课题。
第四、可获得内容丰富的资料。
普查通常只了解少量项目,无法进行深入分析。
例如人口普查,我国1953年的第一次人口普查,只有姓名与户主的关系、性别、年龄、民族、住址六个项目,1982年的第三次人口普查,调查项目也只增加到19个。
第五、准确性高。
整体调查往往需要大批访问员,而这些访问员,有许多是缺乏经验和专业训练的,这往往会降低调查质量。
4、注意事项:抽样调查的成功首先要求所选取的样本能够代表总体,所谓代表性就是说,所选取的样本从调查要研究的总体特征看,能再现总体的结构。
在社会研究中,任何个体之间都存在着差异,任何部分都无法完全代表总体,因此,无论采用什么样的选取部分的方法,无论做得多么仔细,没有也不可能抽出毫无偏差的代表总体的所有特点和关系的样本。
这也就是说,在用样本来概括总体时,总要有误差,它的大小可以反映出样本代表性的高低。
对于研究人员来说,重要的不是没有误差,而是能知道误差的大小和控制它的大小。
有两个因素可以减少抽样误差。
首先,大样本比小样本产生的误差小。
其次,从同质的总体中抽取样本比从异质总体中抽取样本所产生的抽样误差要小。
07第七章等距抽样

i+2jK,2(j+1)K-i+1] [j=0,1,…,(n/2)-1]]
当n为奇数时,式中的j由0变到(n-1)/2-1为止, 并且,要加上接近末端的第i+(n-1)K个单元。
实际中,为便于对称等距抽样的实施,当N=nK时, 可以将原来由小到大(或由大到小)顺序排列的单 元按照顺逆交替的次序排列在一个表中,这样, 按随机起点等距抽样所抽取的样本即为对称等距 样本。所谓顺逆交替是指在单元的排序中,若第 一间隔由小到大排序,则第二间隔按由大到小排 序,以此类推。
[i+jK,(N-jK)-i+1],[j=0,1,…, (n/2)-1]
当n为奇数时,式中的j由0变到[(n-1)/2]-1为止。 然后,再加上中间一个抽样间隔中的第i+(n1)K/2个单元。(我国抽样调查工作者提出在中间 一个抽样间隔抽取中点处的一个单元。)
五、两端修正法
抽样方法同随机起点等距抽样时的情形。 但在计算总体均值的估计量时,对第一个 和最后一个样本单元加权,其余单元的权 数仍为1(在除以n以前),以矫正由于起点 不在中心位置而引起的系统偏差。
2、按有关标志排序
所谓有关标志排序,即用来对总体单元规 定排列次序的辅助标志,与调查标志具有 共同性质或密切关系。这种排序标志,在 我国抽样调查实践中有广泛应用,如农产 量调查,以本年平均亩产为调查变量,以 往年已知平均亩产作为排序标志。利用这 些辅助标志排序,有利于提高等距抽样的 抽样效果。
法,设i为1~N中的随机数。 (1)若i+(n-1)K≤N,这时n个样本单元不经
过yN,则第1个样本单元和第n个样本单元 的权数分别为:
第七章 抽样调查

数据计算出样本均值(平均耐用时间)
x=1055小时,样本成数(合格率) p=91% 依据样本统计量可以对总体参数进行估 计(估计方法将在第三节介绍)。
六、抽样推断的基本原理
样本指标 1、理论基础: 大数定律 中心极限定理 2、抽样估计的基本要求:
无偏性、有效性、一致性
总体指标
第二节 抽样组织方式
对无限总体不能采用全面调查。
另外,有些产品的质量检查具有破坏性,不可能进行全面调
查,只能采用抽样调查。 从理论上讲,有些现象虽然可以进行全面调查,但实际上没 有必要或很难办到,也要采用抽样调查
抽样调查可以用于工业生产过程的质量控制。
三、抽样推断的内容
(一)参数估计。特点是不知道总体的数量特征,
X
x
2
K
p
P p
K
2
抽样平均数平均误差的计算公式:
采用重复抽样:
x
n
此公式说明,抽样平均误差与总体标准差成正 比,与样本容量成反比。(当总体标准差未知 时,可用样本标准差代替)
例:假定抽样单位数增加 2 倍、0.5倍时, 抽样平均误差怎样变化?
解:抽样单位数增加 2 倍,即为原来的 3 倍
1 则: x 0.577 3n 3
即:当样本单位数增加2倍时,抽样平均误差为原来的0.577倍。 抽样单位数增加 0.5倍,即为原来的 1.5倍
则:
1 x 0.8165 1.5n 1.5
即:当样本单位数增加0.5倍时,抽样平均误差为原来的0.8165 倍。
例:某施工班组5个工人的日工资分别为:34、38、
例:
某厂生产一种新型灯泡共2000只,随机抽出400只作耐 用时间试验,测试结果平均使用寿命为4800小时,样 本标准差为300小时,求抽样推断的平均误差? 已知:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、总体单元的排序
系统抽样时N个总体单元的排序情况 大致有以下三种:
(1)按无关标志排队 (2)按有关标志排队
(3)介于上述两者之间
返回
四、系统抽样的优缺点
系统抽样的优点: 1.简便易行,容易确定样本单元
2.样本单元在总体中分布比较均匀
系统抽样的缺点: 1.如果单元的排列存在周期性的变化,而抽样 者对此缺乏了解或缺乏处理经验,抽取的样本 的代表性就可能很差。
3,8,13。 7 8 9 10 11 12 6 5 4 3 2
1
13
循环等距抽样
返回
3. 不等概系统抽样法
不等概系统抽样中每个单元的入样概率不相等.最常用 也是最简单的不等概系统抽样是PS 抽样.即入样概率 i 与单元大小 M 成比例的系统抽样.令
i
Mi 表示总体所有单元大小的总和,则 i n M0
Y( n1) k r
yr
Y
yk
nk
返回
令 Yrj
Y( j 1) k r (r 1,2,, k ; j 1,2,, n) 得下表:
1 2
Y12
1 2
Y11 Y21
Y22
r
Yr1
Yr 2
k
层平均
Yk1
Yk 2
j Y Y
M0 Mi
i 1
N
实施不等概系统抽样最简单的方法是代码法: 下面以例7.1来说明 【例7.1】设总体由10个行政村组成,N=10,每个行政村 的人数 M i 见下表.利用PS 系统抽样抽取n=3个行政村.
返回
用PS系统抽样抽选行政村
行政村编号 1 2 3 4 5 6 7 8 9 10
因此 y sy 是无偏估计量。
但是当 N nk 时,采用直线等距抽样得到的 k 个可能样本所包含的单元数不全相等,因此 y sy 是有偏的。
返回
三、估计量方差的不同表示形式 为方便起见,以后均假定 N nk 时,系统 样本的平均数 y sy 作为总体均值的估计是无偏的。 它的方差按定义为: 1 k 2 2 V ( y sy ) E ( y sy Y ) ( y r Y ) k r 1 下面给出方差的三种不同的表示形式。 形式一
2.系统抽样的方差估计较为复杂,一般不存
在无偏估计量。
返回
五、系统抽样、整群抽样和分层抽样的关系
系统抽样既可以看成一种特殊的整群抽样, 又可以看成一种特殊的分层抽样。下面以一般 的等距抽样为例说明:
假设抽样间距为k,总体单元数为N=nk。将总体 的N个单元排列成k行n列,如下表所示。表中的每 一行单元都是系统抽样的一个样本。
wsy
k n 2 ( yrj Y )( yru Y ) 2 (n 1)( N 1) S r 1 j u
系统样本内正相关越大,即系统内单元越 相似,则估计量方差越大,等距抽样精度越差。
返回
形式三、系统抽样可看做一种特殊的分层
抽样,系统抽样估计量的方差可以用层内
2 方差 S wst 和 wst表示:
2 S wst N n V ( y sy ) ( )[1 (n 1) wst ] n N 2 式中, S wst 为层内方差; wst 为同一系统样本内对层均值离差的 相关系数。 比较系统抽样方差 V ( y sy )与比例分配的分层随机
抽样方差 V ( y st ) ,比例分配的分层随机抽样总 体均值估计量的方差。
N 1 2 k ( n 1) 2 V ( y sy ) S S wsy N N N 1 2 k (n 1) 2 S Sr 0 N N
返回
从[1,k]中随机抽取一个整数 r=100,则代码
为:r=100,
r+k=100+623=723, r+2k=100+2×623=1346, 所对应的行政村入样,其序号依次为1,4,8.
在系统抽样中,对于特别大的单元一定要注意.
如果出现 M k ,该单元肯定被抽入样本,而且还 i 可能被重复抽到.为了避免这种情况,可以事先将这 些单元抽出直接入样.
r k , r 2k ,, 直到抽出n个单元.
返回
例如 某学院共有200个学生,要抽10个学生做样本
首先计算抽样间距
k
N 200 20, n 10
然后在1~20中随机抽出一个数字,假设抽中 排在第3位的学生,则其余 样本单元依次为第23,43,
63,83,103,123,143,163,
返回
2 S wst N n V ( y st ) ( ) n N
V ( y sy ) 1 (n 1) wst V ( y st )
因此当
wst 0时, 系统抽样的精度低于分层随机抽样; wst 0时, 系统抽样的精度与各层抽取一个单元
的分层随机抽样相同;
wst 0时, 系统抽样的精度高于分层随机抽样。
返回
(1) 以行为群的整群抽样或以行为“系统样本”
的系统抽样k=6,n=5.
N 1 2 k ( n 1) 2 V ( y sy ) S S wsy N N N 1 2 k (n 1) 2 S Sr 0 N N
返回
(1) 以行为群的整群抽样或以行为“系统样本”
的系统抽样k=6,n=5.
§7.1 引言
一、系统抽样的定义
系统抽样(systematic sampling)是将N个总体单元 按一定顺序排列,先随机抽取一个单元作为样本
的第一个单元,然后按某种确定的规则抽取其他
样本单元的一种抽样方法。
返回
系统抽样的特点
系统抽样是一种被广泛采用的抽样方法,系
统抽样比简单随机抽样易于操作,但抽样误差的
183位共10个学生抽取.
返回
2.循环等距抽样
不是整数时,实际抽取的样本量是不确定的,每个 总体单元入样的概率也是不等的,这时用直线等距 抽样就有可能产生偏倚,若采用循环等距抽样则可 以解决此问题. 其方法是将N个总体单元排成首尾相接的一个
N 当N不是n的整数倍,即抽样间距 k n
圆从1到N中随机抽取一个起点作为起始单元,然后
每隔k个单元抽出一个,直到抽出n个单元为止.
返回
例如总体有14个单元,欲抽取n=3,则 k N 4.7 n 取与之最近的整数 k 5. 然后在总体中随机抽取一个 单元作为起点,假设抽中3,即 r 3, 依次抽取 r 3,
r k 8, r 2k 13, 直到抽满。因此样本的编号为:
1j
n
Y1n Y21
群平均
Y1 Y2
2j
Yrj
Ykj
Yrn
Yr
j
Ykn
Yk
Y1
Y2
Y
Yn
如果将每一行单元视为一个群,则总体由k个群组成 每个群的大小都是n。系统抽样就是从 Y11 ~ Yk 1中任选 一个单元,被选中单元所在行的所有单元就构成系统抽样 返回 的一个样本。
§7.2 等概率系统抽样估计量 一、符号说明
返回
下面通过一个模拟的例子说明系统抽样与其他抽
样方法的联系,并对不同抽样方法的效果进行比较。
【例6.3】 设某总个体N=30个单元,总体单元排列
如下表,我们要产生一个样本量n=5为的系统样本,
试与其他抽样方法的结果进行比较。
返回
N=30,k=6, n=45
1
1 11
等距样本数据
4
14
2
12
3
13
N
人数(Mi) 103 432 96 246 84 73 205 168 146 317
累计人数 103 535 631 877 961 1034 1239 1407 1553 1870
抽中代码 100
723
1346
M0 M 0 M i 1870, n 3, k 623 n i 1
n 1 2 V ( y srs ) V ( y sy ) ( S wsy S 2 ) n
对于固定总体,总体方差是惟一确定的,因
2 S 此,系统样本内的方差 wsy 越大,系统抽样的
精度越高.为了提高系统抽样的精度,总体单元
的排列应尽可能增大样本内方差。
返回
形式二 系统抽样可看作一种特殊的整群抽样 系统抽样估计量的方差可以用样本内相关系数 wsy 表示: S 2 N 1 V ( y sy ) ( )[1 (n 1) wsy ] n N 式中, wsy 为样本内相关系数。
同一系统内对层均值离差的相关系数:
wst
E ( yrj y j )( yru y u ) 2 E ( yrj y j )
二、估计量 假设起始值为R,相应系统样本的平均值为: 1 n 1 n y r yrj Yrj n j 1 n j 1 返回
取系统样本的平均数作为总体均值 Y 的估计量: 1 n y sy y r yrj n j 1 性质1 当 N=nk 时,有k个可能样本: 1 k 1 k n E ( y sy ) y r yrj Y k r 1 nk r 1 j 1
5
15
群平均
13.00
群内方差
2.5
2
3 4
11
11 11
12
12 12
13
13 13
14
14 14
15
15 15
13.00
13.00 13.00
2.5
2.5
11 0