20.1.1平均数(第一课时)

合集下载

20.1.1平均数(第一课时)

20.1.1平均数(第一课时)

6000×1+5500×1+4000×2+1000×14+500×2
=1725 < 3400
你认为该公司的广告行为属于一种什么行为?
练习
1、若4、x、5的平均数是7,则3、4、5、x、6 6 这五个数的平均数是___ 2 、有一组数据,各个数据之和为505,如果它们的平 5 均数为101,那么这组数据的个数为_____. 3 、如果x1,x2,x3,x4,x5的平均数是20,那么5x1, 100 5x2,5x3,5x4,5x5的平均数是_____. 4、5个数据的和为405,其中一个数据为85,那么另4个 80. 数据的平均数是_
技工 普工 杂工
总经理
总工程师
6000元
5500元
4000元
1000元
500元
(6000+5500+4000+1000+500)÷5=3400
运用所学知识分析社会现象
该公司的实际情况如下表:
职务 月工资/元 员工人数 平均工资= 总经理 总工程师 技工 6000 1 5500 1 4000 2 20 普工 1000 14 杂工 500 2
理解新知
——加权平均数的概念
问题:某校初二年级共有4个班,在一次数学考试
中各班参考人数和平均成绩如下表:
班级 参考人数 平均成绩
1班 51 80
2班 49 81
3班 45 82
4班 55 79
• 该校初二年级的这次数学考试的平均成绩 是多少?
班级 参考人数 平均成绩
1班 51 80
2班 49 81
3班 45 82
4班 55 79
讨论:
小明求得该校初二年级的这次数学考试 的平均成绩为

初中数学 第20章数据的分析 全章教案

初中数学 第20章数据的分析 全章教案

第二十章数据的分析20.1数据的代表20.1.1平均数(第一课时)一、教学目标:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。

二、重点、难点和难点突破的方法:1、重点:会求加权平均数2、难点:对“权”的理解1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值第二十章数据的分析课题20.1 数据的代表课时:六课时第一课时20.1.1 平均数【学习目标】1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。

【重点难点】重点:会求加权平均数难点:对“权”的理解【导学指导】学习教材P124-P127相关内容,思考、讨论、合作交流后完成下列问题:1.你认为P124“思考”中小明的做法有道理吗?为什么?2.正确的解法应是怎样的?请谈谈你的看法。

3.什么是加权平均数?4.P125“例1”中,所求的结果已不再是各人听说读写成绩的简单平均,而是听说读写成绩的加权平均数,它们的权分别是多少?5.P126“例2”中,两名选手的单项成绩都是两个95分与一个85分,为什么他们的最后得分不同呢?谈谈你对权的作用的体会。

【课堂练习】1.教材P127练习第1,2题。

2、在一个样本中,2出现了x1次,3出现了x2次,4出现了x3次,5出现了x4次,则这个样本的平均数为.3、某人打靶,有a次打中x环,b次打中y环,则这个人平均每次中靶环。

4、一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占50%,各项成绩如表所示:试判断谁会被公司录取,为什么?5、在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。

《20.1.1平均数》作业设计方案-初中数学人教版12八年级下册

《20.1.1平均数》作业设计方案-初中数学人教版12八年级下册

《平均数》作业设计方案(第一课时)一、作业目标本作业设计旨在通过《平均数》的学习,使学生能够理解平均数的概念,掌握其计算方法,并能够运用平均数解决实际问题。

通过作业练习,巩固学生对平均数知识的掌握,提高其数学应用能力。

二、作业内容1. 基础练习:(1)填空题:给出几组数据,要求学生计算其平均数。

例如:一组数据为8、9、10、11、12,求其平均数。

(2)选择题:选择正确的平均数计算方法。

例如:在计算一组数据的平均数时,应先将数据_____(填“去极值”或“不做处理”)。

2. 提升练习:(1)实际应用题:设置生活中常见的情境,如计算学生考试成绩的平均分,要求学生运用平均数的知识解决问题。

(2)图表示例:通过图表形式展示一组数据,要求学生计算其平均数,并分析数据特点。

3. 探究题:(1)让学生自主收集一组数据(如班级学生身高、年龄等),计算其平均数,并分析结果。

(2)探究平均数的其他应用,如平均速度、平均成本等,并举例说明。

三、作业要求1. 学生需独立完成作业,不得抄袭他人答案。

2. 作业中需注明每道题的解题思路和计算过程。

3. 作业需在规定时间内完成,并按时提交。

4. 探究题部分需附上数据收集的来源和数据分析的结论。

四、作业评价1. 教师根据学生完成情况,对每道题进行批改,并给出相应的分数。

2. 对学生的解题思路和计算过程进行评价,指出其中的优点和不足。

3. 对学生的探究题部分进行评价,肯定其独立思考和解决问题的能力。

五、作业反馈1. 教师将批改后的作业发回给学生,让学生了解自己的错误和不足。

2. 针对学生在作业中出现的共性问题,进行课堂讲解和辅导。

3. 鼓励学生相互交流,分享解题经验和思路,提高学习效果。

通过以上作业设计,旨在通过多层次、多形式的练习,使学生全面掌握《平均数》的知识点,并能够灵活运用。

同时,通过探究题的设计,培养学生的独立思考和解决问题的能力,提高其数学应用能力。

五、作业反馈1. 教师通过批改作业,了解学生对《平均数》的掌握情况,对错误进行及时的纠正和指导。

人教版八年级数学下册20.1.1平均数(第1课时)一等奖优秀教学设计

人教版八年级数学下册20.1.1平均数(第1课时)一等奖优秀教学设计

人教版义务教育课程标准实验教科书八年级下册20.1.1平均数(1) 教学设计一、内容和内容解析1.内容人教版八年级下册“20.1.1平均数”第一课时.2.内容解析统计活动的几个环节中,数据的分析是在对数据的收集、整理基础之上进行的,是统计活动中最重要的环节.平均数是最常用、最基本的数据分析方法,反映一组数据的“平均水平”,并与中位数、众数相结合,通过对数据集中趋势的描述,体现数据向其中心值靠拢或聚集的程度,因此平均数(尤其是加权平均数)是统计中的一个重要概念.本节着重研究加权平均数,“权”的重要性在于它反映的是数据的相对“重要程度”.尽管学生在以前的学习中已初步了解了平均数的意义,并会计算权数相等情况下的算术平均数,但对加权平均数的意义以及“权”的作用理解仍将非常困难,教学中应尽量列举典型的、贴近学生生活和具有现实意义的生活例子,在对实际问题的分析和解决中加深对“权”的理解和体会,渗透平均数和“权”的统计思想,为更好地进行数据的描述与分析,为实现后继统计知识的学习目标──建立统计观念、突出统计思想奠定基础.基于上述分析,确定本节教学重点是:以具体问题为载体,在实际问题情景中理解加权平均数的意义和作用,学会运用加权平均数解决实际问题.二、目标和目标解析1.通过本节教与学的活动,使学生了解平均数(加权平均数)的统计意义,理解“权”的意义和作用,学会计算加权平均数.教学中,以具体实例研究为载体,了解平均数可以描述一组数据的“平均水平”,理解“权”反映数据的相对“重要程度”,体会“权”的作用,使学生更全面的理解加权平均数,正确运用加权平均数解决实际问题.2.通过对加权平均数的学习,经历运用数据描述信息,作出推断的过程,体验统计与生活的联系,形成和发展统计观念,体会权的统计思想,养成用数据说话的习惯和实事求是的科学态度.3.通过具体问题的解决,培养学生严谨的统计精神,思维的深刻性.通过设计“我来决策”等教学活动,让学生学会从不同的侧面有侧重地对评价对象进行全面的客观的考察和评价,培养科学严谨的数学精神和思维的深刻性.三、教学问题诊断分析1.教师教学可能存在的问题:(1)就本论本,不能很恰当地列举典型的、贴近学生生活的现实例子,以具体的实际问题为载体,创设问题情景,揭示概念;(2)不能设计有效的数学问题,使学生通过有思维含量的数学活动,引导学生对“权”的意义和作用有深刻的理解;(3)过分强调知识的获得,忽略了统计思想的揭示和统计观念的建立;(4)对前两个学段中学生已经具有的相关平均数的知识经验了解不足,致使引入的问题太过简单或难度要求过高,导致学生的学习积极性不高.2.学生学习中可能出现的问题:(1)由于生活经验不足,同时受认知水平的影响,对抽象的“权”的意义和作用的理解会有所困难;(2)尽管在第一、第二学段已经学习了统计的简单知识,但对统计的意义和统计思想的理解尚处在最粗浅的认识层面,加之对“权”理解的困难,所以可能会感到这部分知识的学习比较抽象,缺少学习的激情.鉴于上述分析,确定本节的教学难点是:列举典型的、贴近学生生活的、和具有现实意义的生活例子,通过设计有效的、有思维含量的数学问题,激活学生的数学思维,深入理解数据的权的意义和作用.三、学准备:多媒体课件、导学案四、学过程。

《20.1.1平均数》学历案-初中数学人教版12八年级下册

《20.1.1平均数》学历案-初中数学人教版12八年级下册

《平均数》学历案(第一课时)一、学习主题本课学习主题为“初中数学课程《平均数》”,旨在让学生掌握平均数的概念、计算方法及其在日常生活中的应用。

通过本课的学习,学生将能够理解平均数的意义,学会用平均数来描述一组数据的整体水平。

二、学习目标1. 知识与技能:(1)理解平均数的概念,知道平均数是一组数据的和除以数据的个数所得的结果。

(2)掌握平均数的计算方法,能够熟练地运用平均数进行计算。

(3)了解平均数在日常生活中的应用,能够用平均数来描述一组数据的整体水平。

2. 过程与方法:(1)通过观察、分析具体实例,让学生自主探究平均数的概念和计算方法。

(2)通过小组合作,让学生共同解决问题,培养合作与交流的能力。

3. 情感态度与价值观:(1)激发学生的学习兴趣,提高学生对数学的认识和热爱。

(2)通过实际问题,让学生感受到数学在生活中的作用,培养应用意识。

三、评价任务1. 概念理解评价:通过课堂提问和小组讨论,评价学生对平均数概念的理解程度。

2. 计算能力评价:通过布置相关练习题,评价学生的平均数计算能力。

3. 应用能力评价:通过让学生解决实际问题,评价学生将平均数应用于实际生活的能力。

四、学习过程1. 导入新课:通过生活中的实例,引导学生思考如何描述一组数据的整体水平,从而引入平均数的概念。

2. 探究新知:通过具体实例,让学生自主探究平均数的概念和计算方法。

教师可以引导学生观察、分析、总结,让学生自主发现平均数的计算方法。

3. 小组合作:让学生分组,共同解决问题,互相交流,培养合作与交流的能力。

教师可以根据学生的实际情况,设计合适的问题,让学生进行小组合作。

4. 归纳总结:让学生总结本课所学知识,巩固记忆。

教师可以进行适当的补充和强调。

五、检测与作业1. 检测:通过布置相关练习题,检测学生对平均数概念和计算方法的掌握情况。

2. 作业:布置相关实际问题,让学生将所学知识应用于实际生活中,培养学生的应用意识。

六、学后反思1. 教师反思:教师应对本课教学进行反思,总结教学经验,找出不足之处,为今后的教学提供借鉴。

人教版数学八年级下册20.1.1《平均数和加权平均数》(第1课时)教案

人教版数学八年级下册20.1.1《平均数和加权平均数》(第1课时)教案

人教版数学八年级下册20.1.1《平均数和加权平均数》(第1课时)教案一. 教材分析平均数和加权平均数是初中数学八年级下册的教学内容,主要让学生了解平均数的定义和性质,掌握加权平均数的计算方法。

本节课通过引入实际问题,引导学生探讨平均数的求法,进而引出加权平均数的概念,并通过例题讲解和练习,使学生熟练掌握加权平均数的计算方法。

二. 学情分析学生在七年级已经学习了算术平均数的概念,对本节课的内容有一定的认知基础。

但部分学生对概念的理解不够深入,对实际问题的分析能力有待提高。

此外,学生在运算能力方面也存在差异,部分学生对复杂运算的计算过程不够熟练。

三. 教学目标1.理解平均数的定义和性质,掌握加权平均数的计算方法。

2.能运用加权平均数解决实际问题,提高分析问题和解决问题的能力。

3.培养学生的运算能力和合作精神,提高学生的数学素养。

四. 教学重难点1.重点:加权平均数的计算方法。

2.难点:对实际问题中权重的理解和运用。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究平均数的定义和性质。

2.通过实例分析,让学生了解加权平均数的应用,培养学生的实际问题解决能力。

3.利用小组合作学习,让学生在讨论中巩固知识,提高合作意识。

4.采用讲练结合的方法,对学生进行有针对性的辅导,提高学生的运算能力。

六. 教学准备1.准备相关的实际问题,用于引导学生探讨平均数的概念。

2.准备PPT课件,展示平均数和加权平均数的定义和性质。

3.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用PPT课件展示一些实际问题,如成绩统计、商品销售等,引导学生思考如何求解这些问题的平均值。

通过讨论,让学生回顾算术平均数的概念,为新课的学习做好铺垫。

2.呈现(15分钟)讲解平均数的定义和性质,引导学生理解平均数的概念。

通过PPT课件展示加权平均数的定义,让学生了解加权平均数与算术平均数的关系。

同时,讲解加权平均数的计算方法,让学生掌握计算加权平均数的基本步骤。

人教版八年级数学下册20.1.1平均数(第1课时)公开课优秀教学案例

人教版八年级数学下册20.1.1平均数(第1课时)公开课优秀教学案例
3.教师巡回指导,关注每个小组的学习情况,及时给予反馈和鼓励,提高他们的自信心。
(四)反思与评价
1.教师引导学生回顾本节课所学内容,帮助他们巩固知识点,提高他们的自主学习能力。
2.让学生进行自我评价,发现自己的不足,明确今后的学习方向。
3.教师对学生的学习情况进行总结评价,强调平均数在实际生活中的应用,激发他们的学习兴趣。
1.情境创设贴近生活:本节课通过展示运动员比赛成绩的统计数据和生活实例,让学生感受到平均数的概念和应用,增强了学生的学习兴趣和积极性。
2.问题导向引导思考:本节课设计了丰富的问题,引导学生思考和探讨平均数的定义、性质和计算方法,提高了学生的思维能力和解决问题的能力。
作为一名特级教师,我深知教学内容与过程的重要性。在教学过程中,我将根据学生的实际情况,灵活运用各种教学方法和策略,确保每个学生都能在导入新课、讲授新知、学生小组讨论、总结归纳和作业小结等方面取得良好的学习效果。同时,我会关注学生的个体差异,给予他们个性化的指导和支持,帮助他们充分发挥自己的潜能。
五、案例亮点
作为一名特级教师,我深知教学策略的重要性。在教学过程中,我将根据学生的实际情况,灵活运用各种教学策略,确保每个学生都能在情境创设、问题导向、小组合作和反思与评价等方面取得良好的学习效果。同时,我会关注学生的个体差异,给予他们个性化的指导和支持,帮助他们充分发挥自己的潜能。
四、教学内容与过程
(一)导入新课
2.新课导入:通过具体案例,让学生探究并总结平均数的定义和性质。
3.实践环节:设计一些实际问题,让学生分组讨论,运用平均数解决生活中的问题。
4.总结提升:引导学生总结本节课所学内容,并展望平均数在实际生活中的广泛应用。
5.作业布置:选取一些有关平均数的练习题,巩固所学知识,提高学生的应用能力。

20.1.1平均数(1)

20.1.1平均数(1)
显然甲的成绩比乙高,所以从成绩看,应该录取甲. 我们常用平均数 表示一组数据的“平 均水平”.
应试者 甲 乙 听 85 73 说 78 80 读 85 82 写 73 83
重要程度 不一样! 问题2 如果公司想招一名笔译能力较强的翻译, 用算术平均数来衡量他们的成绩合理吗? 听、说、读、写的成绩按照2:1:3:4的比确定.
应试者 甲 乙 听 85 73 说 78 80
3 : 4
读 85 82 写 73 83
探究新知
思考 吗?
85 2+78 1+85 3+73 4 =79.5 2+1+3+ 4 能把这种加权平均数的计算方法推广到一般
一般地,若n个数x1,x2,„,xn的权分别 是w1,w2,„,wn,则
创新能力
72 85 67
计算机能力
50 74 72
公关能力
88 45 67
(2)请你设计合理的权重,为公司招聘一名职员: ① 网络维护员;② 客户经理;③ 创作总监.
20章
数据的分析
20.1.1 平均数
复习引入
1、重庆7月中旬一周的最高气温如下:
星期 气温/ 0c 一 38 二 36 三 38 四 36 五 38 六 36 日 36
(1)你能快速计算这一周的平均最高吗? (2)你还能回忆、归纳出算术平均数的概念吗? 日常生活中,我们常用平均数表示一组数据的“平均水 平”. 一般地,对于n个数x1, x2, …, xn,我们把
选手 A B
演讲内容 85 95
演讲能力 95 85
演讲效果 95 95
小结反思
知识点:
(1)加权平均数在数据分析中的作用是什么?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20.1数据的代表
20.1.1平均数(第一课时)
一、教学目标:
1、使学生理解数据的权和加权平均数的概念
2、使学生掌握加权平均数的计算方法
3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。

二、重点、难点和难点突破的方法:
1、重点:会求加权平均数
2、难点:对“权”的理解
3、难点的突破方法:
首先应该复习平均数的概念:把一组数据的总和除以这组数据的个数所得的商,叫做这组数据的平均数。

复习这个概念的好处有两个:一则可以将小学阶段的关于平均数的概念加以巩固,二则便于学生理解用数据与其权数乘积后求和作为加权平均数的分子。

在教材P136“讨论”栏目中要讨论充分、得当,排除学生常见的思维障碍。

讨论问题中的错误做法是学生常见错误,尤其是中差生往往按小学学过的平均数计算公式生搬硬套。

在讨论过程中教师应注意提问学生平均数计算公式中分子是什么、分母又是什么?学生由前面复习平均数定义可答出分子是数据的总和、分母是数据的个数,这时教师可递进设疑:那么,题目中涉及的每个数据是每个占有耕地面积还是人均占有耕地面积呢?数据个数是指
A 、
B 、
C 三个县还是三个县的总人数呢?这样看来小明的做法有道理吗,为什么? 通过以上几个问题的设计为学生充分思考和相互讨论交流就铺好了台阶。

要使学生更好的去理解权的意义,可以再举一些生活、学习中的例子。

比如:初二.五班有4个小组,在一次测验中第一组有7名同学得了99分,1名同学得了61分,第二组有1名同学得到了
100分、7名同学得62分。

能否由
2
6210026199+<+得出第二小组平均成绩这样的结论?为什 么?这个例子简单明了又便于学生想象理解,能够让学生从中体会到得99分的7个人比1个得61分的学生对平均成绩影响更大,从而理解权的意义。

在讨论栏目过后,引出加权平均数。

最好让学生将公式与小学学过的平均数计算公式作比较看看意义上是否一致,这样做利于学生把新旧知识联系起来,利于对加权平均数公式的理解,也利于理解“权”的意义。

三、例习题意图分析
1、教材P136的问题及讨论栏目在教学中起到的作用。

(1)这个问题的设计和讨论栏目在此处安排最直接和最重要的目的是想引出权的概念和加权平均数的计算公式。

(2)这个讨论栏目中的错误解法是初学者常见的思维方式,也是已学者易犯的错误。

在这里安排讨论很得当,起揭示思维误区,警示学生、加深认识的作用。

(3)客观上,教材P136的问题是一个实际问题,它照应了本节的前言——将在实际问题情境中,进一步探讨它们的统计意义,体会它们在解决实际问题中的作用,揭示了统计知识在解决实际问题中的重要作用。

(4)P137的云朵其实是复习平均数定义,小方块则强调了权意义。

2、教材P137例1的作用如下:
(1)解决例1要用到加权平均数公式,所以说它最直接、最重要的目的是及时复习巩固公式,并且举例说明了公式用法和解题书写格式,给学生以示范和模仿。

(2)这里的权没有直接给出数量,而是以比的形式出现,为加深学生对权的意义的理解。

(3)两个问题中的权数各不相同,直接导致结果有所不同,这既体现了权数在求加权平均数的作用,又反映了应用统计知识解决实际问题时要灵活、体现知识要活学活用。

3、教材P138例2的作用如下:
(1)这个例题再次将加权平均数的计算公式得以及时巩固,让学生熟悉公式的使用和书写步骤。

(2)例2与例1的区别主要在于权的形式又有变化,以百分数的形式出现,升华了学生
对权的意义的理解。

(3)它也充分体现了统计知识在实际生活中的广泛应用。

四、课堂引入:
1、若不选择教材中的引入问题,也可以替换成更贴近学生学习生活中的实例,下举一例可
x =4
1(79+80+81+82)=80.5 五、例习题分析:
例1和例2均为计算数据加权平均数型问题,因为是初学尤其之前与平均数计算公式已经作过比较,所以这里应该让学生搞明白问题中是否有权数,即是选择普通的平均数计算还是加权平均数计算,其次若用加权平均数计算,权数又分别是多少?例2的题意理解很重要,一定要让学生体会好这里的几个百分数在总成绩中的作用,它们的作用与权的意义相符,实际上这几个百分数分别表示几项成绩的权。

六、随堂练习:
1、老师在计算学期总平均分的时候按如下标准:作业占100%、测验占30%、期中占35%、
2
七、课后练习:
1、在一个样本中,2出现了x 1次,3出现了x 2次,4出现了x 3次,5出现了x 4次,则这个样本的平均数为 .
2、某人打靶,有a 次打中x 环,b 次打中y 环,则这个人平均每次中靶 环。

3、一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占50%,各项成绩如表所示:
4、在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。

已知该班平均成绩为80分,问该班有多少人?。

相关文档
最新文档