电机控制技术论文
电机控制技术论文集

电机控制技术论文集电机应用于消费电子、住宅、工业、通用、交通和农业等领域。
下面小编给大家分享一些电机控制技术论文集,大家快来跟小编一起欣赏吧。
电机控制技术论文篇一基于PMAC的电机控制技术研究【摘要】随着科学技术的不断发展,工业水平的不断提升,在世界范围内的先进控制技术得到了很大的提升。
在以往的电机控制中,由于控制器的控制能力有限,使得被控对象在运行时有很大的误差产生,而以PMAC为核心控制器的电机运行设备具有更高的控制能力。
本文在对PMAC运动控制器及直线电机原理进行概述的基础上,重点研究PMAC控制器在直线电机PID调节中的应用,并以具体的实验进行验证。
【关键词】PMAC,PID,直线电机1.引言当今社会,自动控制技术和微型计算机作为高科技时代的领导者,更加严格要求各种自动控制系统的定位精准度,由此,在传统旋转电机的基础上配备一套变换机构而构成的直线运动驱动装置,已难以满足当代控制系统愈发精准的要求,因此直线电机的研究、发展与应用工作成为世界各国当今的发展方向,促使直线电机具有越来越开扩的应用领域。
2.PMAC控制器简介上世纪九十年代,美国Delta Tau公司研发了一种开放式多轴运动控制器,命名为PMAC(Programmable Multi-axis Contro-ller)。
PMAC是具有高性能的伺服控制器,其核心为DSP,它可借助高级语言灵活的控制最多八轴同时运行,还能提供内务处理、运动控制、离散开展、同主机交互等功能。
PMAC是一台完整的可以任务识别的计算机,能自动进行任务等级识别,将高优先级的任务比低优先级的任务先进行操作。
其执行速度、分辨率等指标均高于普通的控制器。
伺服控制分为PID加Notch 和速度、加速度前馈控制。
可与MACRO现场总线的高速环网相连接,直接灵活的对生产线实施控制。
相对于其他运动控制器,PMAC的开放性最为突出。
其内部寄存器可允许用户按照自身需要来使用。
PMAC的A/D和I/O和内部寄存器都是统一编址,A/D和I/O的用法与PMAC其它内存用法相同,具有很强的便利性。
多电机同步控制技术论文

多电机同步控制技术论文【摘要】卷接机组中的多电机同步控制技术应用较广,并具有较好的效果。
目前很过单位应用的同步控制技术仍然较为落后和传统,所以这种多电机同步控制技术体现出高性能和控制较好的精准度,这种特点对控制系统十分重要,并拥有较为广泛的应用前景,所以工作人员应不断提高控制精准度,使这种技术在卷接机组的应用更为完善。
我国现代工业的不断发展与机械自动化技术的不断提高,很多生产场合都无法满足现代工业的发展要求,其电机控制系统要求多台电机共同驱动一台设备运作。
在整个生产过程中,应尽量满足现代工业的发展需求,确保这些电机能够协调运行,所以多电机同步控制技术的应用越来越广泛,这种技术在机械传动系统中,尤其是卷接机组中,可以通过多个电机向多个主要机组,传递其生产需要的动力,这种传动方式是控制方式上的一大创新。
一、多电机同步控制技术为了保证多电机能够实现同步控制,可以通过两种方式:机械方式和电方式。
在同步控制技术应用初期,机械同步控制技术在工业自动化生产中广泛应用。
因为机械控制方式与传动连接十分可靠,这种连接在应用初期得到了广泛应用,但是这种机械控制方式有一些常见的缺点,整个系统智能运用一台电机作为动力输出,所以动力分配到各个单元的动力功率都比较小,很难进行系统同的维修工作,且系统只能获得有效的传动范围[1]。
机械同步控制系统通过齿轮、皮带、链条这些零件进行传动,造成整个系统出现劣迹误差,所以在整个控制过程中,系统的控制精度很容易受到影响。
工作人员在一些精度要求较高的环境,电方式的多电机协调控制更加灵活,拥有更高的精度和稳定性,并能在生产实践中,逐渐被完善。
二、卷接机中同步控制技术的应用流程多电机同步控制技术一般选用YJ27卷接机组,其机械设备结构复杂,且各个鼓轮的转速间应保持精准的比例关系。
现阶段,相关单位采用的是传统的机械式齿轮传动方式对各个鼓轮进行同步控制,从而保证系统精度,对于高速环境下的齿轮,工作人员应为其设置润滑系统,确保整个系统的传动链不会太长,机构系统导致传动造成过大,在连续工作时,造成设备损坏,润滑齿轮箱容易出现漏油,以及传动误差较大等现象,设备的维修量会大幅增加,传动系统速度的波动会影响卷接机的运用功能[2]。
伺服电机控制系统毕业论文设计

调速应用领域最初用得最多的是直流电机,随着交流调速技术特别是电力电子技术和控制技术的发展,交流变频技术获得了广泛应用,变频器和交流电动机迅速渗透到原来直流调速系统的绝大多数应用领域。近几年来,由于直流伺服电动机体积小、重量小和高效节能等一系列优点,中小功率的交流变频系统正逐步被直流伺服电动机系统所取代,特别是在纺织机械、印刷机械等原来应用变频系统较多的领域,而在一些直接由电池供电的直流电机应用领域,则更多的由直流伺服电动机所取代。
This article mainly discusses the designations of three-phase BLDCM velocity modulation system. The master controlled unit is BLDCM special-purpose control chip 80C196MC, assistanceswith the keyboard, the monitor, examines the electric circuit, the power electric circuit, actuates the electric circuit, the protection circuit and so on. The BLDCM with 3 Hall sensors establishing inside, to exam the position of the rotor and decide the phase change of electricalmachinery, the system calculates the rotational speed of the electrical machinery to realize the velocity-feedback control according to the Hall signal.
电机控制技术论文

U
n
后,通过两个调节器的控制作
用,使 Uct、Udo、Id 都上升,当 Id≥Idl 后,电动机开始转动。由于电机惯性的作用,转速
的增长不会太快,因而
ASR
的输入偏差电压∆Un=
U
n
-Un
数值较大并使其输出达到饱和
7
值U
* im
,强迫电流
Id
迅速上升。当
I
d
I dm 时,U i
U
im
,电流调节器
方程要继续保持平衡,则电磁转矩 Te 必然改变,又由
Te Ct Id
得电枢电流 Id 必然改变。
二、直流电动机的数学模型
为了分析调速系统的稳定性和动态品质,必须首先建立描直流电动机的数学模型。
电路方程:
U d0
RId
L
dI d dt
E
动力学方程: 额定励磁下:
Te
TL
GD 2 375
dn dt
E Cen
Tl
L R
Tm
GD2 R 375CeCm
Tm —电力拖动系统机电时间常数(s)
I dL
TL Cm
在零初始条件下,取等式两侧的拉氏变换, 得电压与电流间的传递函数和电流与电动
势间的传递函数:
1 Id(s) R Ud0 (s) E(s) Tl s 1
E(s) R Id (s) IdL (s) Tms
1
摘要
直流电动机具有良好的起动、制动性能,宜于在宽范围内平滑调速,在许多需要调 速和(或)快速正反向的电力拖动领域中得到了广泛的应用。近年来,虽然高性能交流 调速技术发展很快,交流调速系统已逐步取代直流调速系统。然而直流拖动控制系统不 仅在理论上和实践上都比较成熟,目前还在应用;而且从控制规律的角度来看,直流拖 动控制系统又是交流拖动控制系统的基础。因此,掌握直流拖动控制系统的基本规律和 控制方法是非常必要的。转速、电流反馈控制的直流调速系统是静、动态性能优良、应 用最广的直流调速系统。本文用 MATLAB 仿真软件对转速、电流反馈控制的直流调速系 统进行仿真。
控制电机论文(DOC)

《控制电机》论文指导老师: __***__学生姓名: ___**____学号: _**********_班级: __Z电气111_专业:电气工程及其自动化电气工程学院2014.5.1引言本篇论文是基于这一学期以来对《控制电机》这门学科学习与个人感悟而撰写的。
本篇论文选择的课题是力矩式自整角机。
全篇论文主要阐述了力矩式自整角机的原理、主要特性以及力矩式自整角机的应用,从这三个方面展示出个人对力矩式自整角机的学习及认识整角机作为精密旋转伺服元件广泛地应用在近代技术的各个领域。
随着科学的发展,自整角机面临着许多特殊要求和特殊应用,研讨这些新课题,有利于发展新品种。
七十年代以来,国内发展了控制-力矩式自整角机(ZKL)系列。
这种自整角机同时兼有控制式自整角变压器和力矩式自整角机的双重功能,既可以在控制式系统中作自整角变压器,经过线路换接,又可在力矩式系统中作自整角接收机。
其结构特征是定子(或转子)放置星形连接的三相整步绕组(和传统的自整角机三相绕组相同),转子(或定子)放置两个空间垂直的单相绕组,其中一个绕组作为控制式自整角变压器的输出绕组,另一绕组作为力。
由于我国经济发展迅速,工农业生产和日常生活中使用的电动机种类和数量日益增加,且性能各异,因此,必须熟悉各类电动机和负载机械设备的类型、结构、性能及用途等,使其能安全、高效、经济地去拖动各种负载机械设备。
本篇论文对力矩式自整角机既有理论论述,又有实际应用介绍,具有全面性、系统性、实用性、可读性的特点,避免繁琐的数学运算和高深的理论,从实际出发,深入浅出,涉及的范围广,内容丰富,特别是有具体的实例介绍,对于学习力矩式自整角机的应用具有重要的参考价值。
力矩式自整角机的原理及应用1160601150 周灵一、力矩式自整角机的工作原理:力矩式自整角机的原理图如图1所示。
假定各相整步绕组参数相同,两台自整角机参数相同。
在自整角机中,以a相整步绕组轴线和励磁绕组轴线之间的夹角,作为转子的转角。
电机控制论文六篇

电机控制论文六篇电机掌握论文范文1传统的教学模式通常以课堂灌输与讲授为主,辅以试验巩固。
由于本身课时有限,加之继电器接触器线路的设计应用环节简单,电气元件图形符号种类繁多、PLC寻址方式和基本指令不易识记等,加之双语教学过程中,老师课堂表述英语用量大,同学接受力量参差不齐,造成课堂教学效果很不抱负。
1.中英文双语教学同学听力差异双语教学过程中,既要把机自专业学问讲透,还要大力提升英语表述的比例。
[3]这样造成的结果是,外语听力稍差的同学需要老师重复解释,或者中文翻译,基础好的同学反而收听重复,使得课时进度受到影响,双语教学的效果大打折扣。
2.课堂与试验教学双语比重不同课堂授课使用双语而试验只有中文的教学方法,使得双语教学效果甚微。
依据随机调查反映,课堂教学环节双语教学比重大,同学熟识各个电气元件的英文名称,会用基本的语言进行掌握环节的动作描述,但到了试验与实践环节,遭受了只用中文的尴尬,同学没有配套的双语试验环境。
3.双语教辅和资料配套不足目前在国内外还没有发觉正式出版的针对机自专业电气掌握技术课程的双语或英文原版教材,配套的双语帮助资料、手册等也不多见,无形中增加了双语教学的难度。
4.双语教学的评价方法有待改善依据该课程的性质,在教学考核环节既要注意机自专业学问考核,还要兼顾双语基本素养的考查,更要考核同学语言表达与实际操作等诸多力量,仅靠卷面考试和试验得分的单一评价方法明显不合时宜。
5.其他问题比如课内互动方式、沟通和作业等实践力量培育环节的双语环境建设问题。
二、解决对策1.[4]CDIO理念提出了将同学作为学习的主体,强调同学的主动性,老师只是组织者和管理者,属于次要位置;CDIO理念强调课程之间的有机联系,对同学特殊是老师的思维提出了更高要求;CDIO理念重视同学团队意识和合作意识的培育,取代了同学过多追求高分而“单打独斗”的学习偏见;在教学方法上,提倡以同学主动学习为为主,主讲老师引导关心为辅等等。
电梯电机控制技术现状和发展论文

浅谈电梯电机控制技术的现状和发展摘要作为垂直交通工具的电梯,在高层建筑、大型商场等公共场所已经成为重要的建筑设备,方便了大家的日常生活,并成为人类物质文明的一种标志。
本文从我国电梯产业和电梯电机的现状出发,全面了解国内外应用现状,并结合当前的电机控制的发展趋势,分析了如何推进电梯电机控制技术的发展方向,提高国产电梯的竞争力。
关键词电梯电机控制vvvf 智能控制中图分类号:tu857文献标识码:a据统计,电梯在最初30年的产销量不足1万台,而仅去年电梯新增就达42万台,远远超过了全世界电梯产量的一半,而如此巨大的产销量也没有达到发达国家的人均拥有电梯量的水平。
每年仅报废更新的电梯就需要近6万台,再加之巨大的安装、维保和质检缺口,就像十几年前的汽车行业,供需两旺,电梯市场前景一片光明。
巨大的市场带来了机遇和挑战,吸引了世界上所有大型电梯公司,也为国内的电梯厂商设立了很高的门槛和技术壁垒。
随着用户对电梯的安全性要求越来越高,对响应速度、运行速度、舒适度也都有很高的要求,我国电梯产业的发展举步维艰。
而我国电机行业随着生产现代化程度的不断提高,以及技术的进步,产品的快速更新换代,所以如何找到电梯行业的突破口,增加产品竞争力是目前摆在所有电梯企业领导目前的一个十分重要的问题。
一、电梯电机的发展电机行业是一个传统的行业,是劳动密集型产业。
经过200多年的发展,它已经成为现代生产、生活中不可或缺的核心、基础,是国民经济中重要的一环。
电机是利用电磁感应原理工作的机械。
控制电机具有高可靠性﹑好精确度﹑快速响应的特点。
由于电力拖动具有控制简单﹑调节性能好﹑耗损小﹑经济,能实现远距离控制和自动控制等一系列优点,因此大多数生产机械都采用电力拖动。
随着设计、评价、测量、控制、功率半导体、轴承、磁性材料、绝缘材料、制造加工技术、电工技术的发展,对电能的转换、控制以及高效使用的要求越来越高,电动机本体经历了轻量化、小型化、高效化、高力矩输出、低噪音振动、高可靠、低成本等一系列变革,相应的驱动和控制装置也更加智能化和程序化。
plc控制伺服电机毕业论文

plc控制伺服电机毕业论文PLC控制伺服电机毕业论文摘要:本文阐述了PLC控制伺服电机的基本原理,介绍了伺服电机的基本结构和特性,探讨了PLC在伺服电机控制中的应用及其优势,详细阐述了PLC控制伺服电机的具体实现方法,最后通过实验验证了PLC控制伺服电机的有效性和可行性。
关键词:PLC;伺服电机;控制;应用;优势一、引言伺服电机是一种精密、高性能的电动机,可以广泛应用于工业自动化、机床、机器人、医疗设备等众多领域。
伺服电机具有极高的控制精度和响应速度,可以精确控制电机的转速、转矩等参数,实现复杂的高精度运动控制。
PLC(可编程逻辑控制器)作为一种常见的工业控制器,也被广泛应用于各种自动化系统中。
PLC以其高效、稳定、可靠等优势,在伺服电机控制中也有着广泛的应用。
本文将从PLC控制伺服电机的基本原理、应用及优势、具体实现方法等方面进行探讨,并通过实验验证PLC控制伺服电机的有效性和可行性,以期为相关研究提供参考和借鉴。
二、伺服电机的基本结构和特性伺服电机是一种具有高精度、快速响应、可靠性高等特点的电机。
伺服电机通常采用电磁转子、光栅或编码器等装置,可以对转子位置、转速、转矩等参数进行高精度控制。
伺服电机常用的控制方式包括位置环控制、速度环控制、转矩环控制等,其中位置环控制的精度最高。
伺服电机具有响应速度快、精度高、适应性强等优点,广泛应用于自动控制系统、机器人等领域。
三、PLC在伺服电机控制中的应用及优势PLC作为一种常见的工业控制器,可以实现各种复杂的控制任务。
在伺服电机控制中,PLC也有着广泛的应用。
PLC在伺服电机控制中的应用包括位置控制、速度控制、转矩控制等。
PLC控制伺服电机的优势主要体现在以下几个方面:1.高精度控制PLC可以实现高精度的运动控制,通过编程控制伺服电机的转速、转矩、位置等参数,可以实现高精度的位置、速度、转矩控制。
2.快速响应PLC的响应速度快,可以实时控制伺服电机的运动状态,对于需要快速响应的应用场景尤为适用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n* ,Un
,但由于积分
作用,Ui* Ui*m ,所以电动机仍在最大电流下加速,必然使转速必超调。当 n n* 时,
U n
0 ,使
ASR
退出饱和状态,其输出电压即
ACR
的给定电压
U
* i
迅速下降,
I
d
也迅
速下降。但由于 I d
I dL ,在一段时间内,转速仍继续增加。当 I d
尽快地跟随
ASR
的输出量
U
* i
长,其输入偏差电压 Ui Ui* Ui 必须维持一定的恒值,也就是说, I d 应略低于 I dm 。 此外还应指出,为了保证电流环的这种调节作用,在起动过程中电流调节器是不能饱和
的,同时整流装置的最大电流U d 0m 也须留有余地,即晶闸管装置也不应饱和,这都是设 计中必须注意的。
第Ⅲ阶段:t2 以后是转速调节阶段。此时 n
方程要继续保持平衡,则电磁转矩 Te 必然改变,又由
Te Ct Id
得电枢电流 Id 必然改变。
二、直流电动机的数学模型
为了分析调速系统的稳定性和动态品质,必须首先建立描直流电动机的数学模型。
电路方程:
U d0
RId
L
dI d dt
E
动力学方程: 额定励磁下:
Te
TL
GD 2 375
dn dt
E Cen
5
3
TA
L
Un* Un
ASR
Ui
Ui*
ACR
Uc UPE
Id Ud0
EM
if
n
Utg
TG
图 4 转速一电流双闭环直流调速系统
一般来说,我们总希望在最大电流受限制的情况下,尽量发挥直流电动机的过载能 力,使电力拖动控制系统以尽可能大的加速度起动,达到稳态转速后,电流应快速下降, 保证输出转矩与负载转矩平衡,进入稳定运行状态。为实现在约束条件快速起动,关键 是要有一个使电流保持在最大值的恒流过程。根据反馈控制规律,要控制某个量,只要 引入这个量的负反馈。因此采用电流负反馈控制过程,起动过程中,电动机转速快速上 升,而要保持电流恒定,只需电流负反馈;稳定运行过程中,要求转矩保持平衡,需使 转速保持恒定,应以转速负反馈为主。采用转速、电流双闭环控制系统。如图 5 所示。
两个调节器之间实行串级联接,转速调节器ASR的输出是电流调节器ACR的输入,其 输出Uc控制电力电子变换器。从闭环结构上看,转速环在外环,电流环在内环,这就构 成了转速一电流双闭环直流调速系统。
电动机的转速和电流分别由两个独立的调节器控制,系统中设置了电流调节器ACR和 转速调节器ASR。可见,电流调节器ACR和电流检测反馈回路构成了电流环(内环);转 速调节器ASR和转速检测反馈环节构成了转速环(外环)。ASR和ACR均为PI调节器,输 入输出均设有限幅电路。
关键词:双闭环控制系统,转速控制环,电流控制环,MATLAB
ABSTRACT
DC motor has a good start, braking performance, it is appropriate to smooth speed over a wide range, has been widely used in many speed control and (or) fast forward and reverse electric drive field. In recent years, the rapid development of high-performance AC variable speed AC drive system has been gradually replacing the DC speed control system. DC drive control system, however, not only in theory and in practice are more mature, is still used; and from the point of view of the control law, the DC drive control system is the basis of the AC drive control system. Therefore, grasp the basic law of the DC drive control system and control method is necessary.Speed, current feedback control for DC motor static and dynamic performance, the most widely used DC speed control system. Speed, current feedback control for DC motor using MATLAB simulation software simulation.
作用下的
电流调节系统,基本上保持电流 Id 恒定(电流可能超调,也可能不超调,取决于 ACR 的
参数),因而拖动系统的加速度恒定,转速呈线性增加。又U d 0 Rd I d Cen ,n↑→Ud0
↑→U ct ↑,这样才能保持 Id =常数。由于 ACR 是 PI 调节器,要使它的输出量按线性增
I dL 时,Te
TL
,dn dt
0,
n 达到最大值(t3 时刻)。此后,电动机在负载的阻力下减速,与此相应,电流 Id 也出现
一段小与 IdL 的过程,直到稳定。在这最后的转速调节阶段内,ASR 与 ACR 都不饱和,同
时起调节作用。由于转速调节在外环,ASR 处于主导地位,而 ACR 的作用则是力图使 Id
Key words: Double-loop control system, speed control loop, current control loop,
MATLAB
引言
转速电流双闭环调速系统是最典型的直流调速系统,利用电流调节器和转速调节器 控制,可以无限逼近理想启动过程。本文分析了系统的控制原理,建立了系统的动态数 学模型,并利用MATLAB中的Simulink进行了系统建模仿真,给出了仿真结果。通过对结 果的分析进一步验证了双闭环调速系统的优越性。
ACR
的作用使
Id
不再迅速增加,标志着这一阶段的结束。在这一阶段中,ASR 由不饱和很快达到饱和,
而 ACR 一般应该不饱和,以保证电流环的调节作用。
第Ⅱ阶段:t1~t2 是恒流加速阶段。这一阶段是起动过程的主要阶段。在这个阶段
中,ASR
一直是饱和的,转速环相当于开环状态,系统表现为在恒流给定
U
* im
图 5 双闭环直流调速系统动态结构图 6
Id
n
Idm
Idcr
n
IdL
O
t
a 带电流截止负反馈的单闭环调速系统
n
i dm
n
i dl
0
t
b 理想的快速起动过程
图 6 直流调速系统的电流、转速启动特性曲线
四、双闭环直流调速系统性能分析
4.1 启动过程 双闭环控制的一个重要目的就是要获得接近于理想的起动过程,因此在分析双闭环
分别画出对应上两式的动态结构框图:
图 2 动态结构框图
组合成电动机的动态结构框图:
4
图 3 直流电动机的数学模型
由图可以看出,直流电动机有两个输入量: 一个是施加在电枢上的理想空载电压; 一个是负载电流。 前者是控制输入量,后者是扰动输入量。
三、双闭环直流调速系统的组成
转速一电流双闭环直流调速系统的结构如图4所示。图中,M为直流电动机,TG为测 发电机,ASR为转速调节器,ACR为电流调节器,GT为触发器,TA为电流互感器,VT整流 装置。Un*为转速给定电压,Un为转速反馈电压,Ui*为电流给定电压,Ui为电流反馈电压, Uc为控制电压,Ud0为电枢端电压。
目录
摘要 ...................................................... 2 ABSTRACT .................................................. 2 引言 ...................................................... 2 一、对直流电动机运动方程的分析 ............................ 3 二、 直流电动机的数学模型 ................................. 3 三、 双闭环直流调速系统的组成 ............................. 5 四、 双闭环直流调速系统性能分析 ........................... 7
1
摘要
直流电动机具有良好的起动、制动性能,宜于在宽范围内平滑调速,在许多需要调 速和(或)快速正反向的电力拖动领域中得到了广泛的应用。近年来,虽然高性能交流 调速技术发展很快,交流调速系统已逐步取代直流调速系统。然而直流拖动控制系统不 仅在理论上和实践上都比较成熟,目前还在应用;而且从控制规律的角度来看,直流拖 动控制系统又是交流拖动控制系统的基础。因此,掌握直流拖动控制系统的基本规律和 控制方法是非常必要的。转速、电流反馈控制的直流调速系统是静、动态性能优良、应 用最广的直流调速系统。本文用 MATLAB 仿真软件对转速、电流反馈控制的直流调速系 统进行仿真。
4.1 启动过程 ............................................ 7 4.2 双闭环直流调速系统的静特性 .......................... 9 4.3 双闭环直流调速系统的动态性能....................... 10 五、 基于 MATLAB/SIMULINK 的调速系统的仿真 ................ 11 5.1 转速单闭环直流调速系统的 Simulink 仿真.............. 11 5.2 双闭环直流调速系统的 simulink 仿真.................. 12 六、实验验证双闭环直流调速系统的启动过程 ................. 14 七、总结 ................................................. 15 八、参考文献 ............................................. 15