九年级数学上册222一元二次方程的解法第5课时学案无答案新版华东师大版
华东师大版九年级数学初三数学上册教案含教学反思:22.1《一元二次方程教案(含答案)

一元二次方程22.1 一元二次方程【知识与技能】1.知道一元二次方程的意义,能熟练地把一元二次方程整理成一般形式ax2+bx+c=0(a ≠0).2.在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识.【过程与方法】通过解决实际问题,把实际问题转化为数学模型,引入一元二次方程的概念,让学生认识一元二次方程及其相关概念,提高学生利用方程思想解决实际问题的能力.【情感态度】通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.【教学重点】判定一个数是否是方程的根.【教学难点】由实际问题列出的一元二次方程解出根后,还要考虑这些根是否确定是实际问题的根.一、情境导入,初步认识问题1 绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?【分析】设长方形绿地的宽为x米,不难列出方程x(x+10)=900,整理可得x2+10x-900=0.(1)问题2 学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.解:设这两年的年平均增长率为x,我们知道,去年年底的图书数是5万册,则今年年底的图书数是5(1+x)万册,同样,明年年底的图书数又是今年年底的(1+x)倍,即5(1+x)·(1+x)=5(1+x)2万册.可列得方程5(1+x)2=7.2,整理可得5x2+10x-2.2=0(2)【教学说明】教师引导学生列出方程,解决问题.二、思考探究,获取新知思考、讨论问题1和问题2分别归结为解方程(1)和(2).显然,这两个方程都不是一元二次方程.那么这两个方程与一元二次方程的区别在哪里?它们有什么共同特点呢?共同特点:(1)都是整式方程(2)只含有一个未知数(3)未知数的最高次数是2【归纳总结】上述两个整式方程中都只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程.通常可写成如下的一般形式:ax2+bx+c=0(a、b、c是已知数,a≠0).其中ax2叫做二次项,a叫做二次项系数,bx叫做一次项系数,c叫做常数项.例1判断下列方程是否为一元二次方程:解:①是;②不是;③是;④不是;⑤不是;⑥是.【教学说明】(1)一元二次方程为整式方程;(2)类似⑤这样的方程要化简后才能判断.例2 将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数.一次项系数及常数项.解:2x2-13x+11=0;2,-13,11.【教学说明】将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整.三、运用新知,深化理解1.将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.(1)5x2-1=4x(2)4x2=81(3)4x(x+2)=25(4)(3x-2)(x+1)=8x-3解:(1)5x2-4x-1=0;5,-4,-1;(2)4x 2-81=0;4,0,-81(3)4x 2+8x-25=0;4,8,-25(4)3x 2-7x+1=0;3,-7,1.2.根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式.(1)4个完全相同的正方形的面积之和是25,求正方形的边长x ;(2)一个长方形的长比宽多2,面积是100,求长方形的长x ;(3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x.解:(1)4x 2=25;4x 2-25=0;(2)x (x-2)=100;x 2-2x-100=0;(3)x=(1-x )2;x2-3x+1=0.3.若x=2是方程ax 2+4x-5=0的一个根,求a 的值.解:∵x=2是方程ax2+4x-5=0的一个根.∴4a+8-5=0解得:a=-43. 四、师生互动,课堂小结1.只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程.2.一元二次方程的一般形式为ax 2+bx+c=0(a ≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的.3.在实际问题转化为数学模型(一元二次方程)的过程中,体会学习一元二次方程的必要性和重要性.1.布置作业:从教材相应练习和“习题22.1”中选取.2.完成练习册中本课时练习的“课时作业”部分.学习本课时,可让学生先自主探索再合作交流,小组内,小组之间充分交流后概括所得结论,从而强化学生对一元二次方程的有关概念的认识,掌握建模思想,利用一元二次方程解决实际问题.。
华东师大版九年级数学上册 第22章 22.1 一元二次方程 导学案(无答案)

华东师大版九年级数学上册 第22章 22.1 一元二次方程 导学案知识路线:1、了解一元二次方程的定义2、一元二次方程的一般形式3、能将一元二次方程进行变形为一般形式,确定各项以及各项系数难关突破:一元二次方程的变形预习探究:一、知识导航4、学生预习教材;5、只含有 ,并且未知数的最高次数为 ,最高次数前的系数的 方程叫做一元二次方程6、一元二次方程的一般形式是7、满足一元二次方程的值叫 注意:一元二次方程成立的重点是: 。
二、有问必究三、探究讨论8、一元二次方程与一元一次方程的异同9、一元二次方程成立的条件10、下列方程:②02=-m ③012=-+x x ④07342=++y x⑤)4)(1(62+-=+x x x⑥24)3()25(x x x x x +-=+其中是一元二次方程的有 个11、把方程)2(5)2(-=+x x x 化为一般形式为 ,各项系数为12、方程1322+=+x x kx 是一元二次方程,则k 的范围是13、方程的一个根为2,则k 值交流展示:一、交流展示:教材上的练习二、教师点拨14、下列式子是一元二次方程的是( )A 、02=+xyB 、1)5(2=+x xC 、142+-x xD 、012=+x15、关于x 的一元二次方程013222=+--a x x 的一个根为2,求a 的值16、判断关于x 的方程x m x mx x =+--)12(2是不是一元二次方程,如果是,指出它的二次项系数、一次项和常数项示导拓展一、方法引导二、典例诠释例1、已知关于x 的方程03)1()3)(1(2=+--++-k x k x k k(1) 当k 为何值时,它是一元二次方程(2) 当k 为何值时为一元一次方程例2,关于x 的一元二次方程043)2(22=-++-m x x m 有一个根为0,求m 的值。
对照巩固17、若关于x 的一元二次方程04)3(72=-+--ax xa a ,求a 值18、关于x 的方程043222=-+=-m x x mx 是一元二次方程,求m 的范围19、已知x=1是关于x 的一元二次方程0122=-+kx x 的一个根,求k 值20、若关于x 的一元二次方程0235)1(22=+--+-m m x x m 的常数项为0,求m 的值21、如果x=1是方程02=++c bx ax 的根,那么c b a ++=拓展延伸(选做)22、若关于x 的一元二次方程02=++c bx ax 的一个根为-1,且244--+-=c c a ,求cb a 2018)(2019+的值23、证明,关于x 的方程012)178(22=+++-mx x m m ,不论x 为何值,该方程都是一元二次方程24、如果关于x 的方程012=++bx x 的一个实数根的倒数恰是它本身,求b 值课后感悟:。
华师大版-数学-九年级上册-23.2 一元二次方程的解法(5)教案

华师大版 九年级(上) 第二十三章《 一元二次方程》 第二节23.2 一元二次方程的解法-5(根的判别式) 教案【三维教学目标】知识与技能:用b 2-4ac 大于、等于0、小于0判别ax 2+bx+c=0(a ≠0)的根的情况及其运用过程与方法:①引导(教师指出学习目标) ②学生自学 ③分组交流、探究④展示(探究结果) ⑤教师点评(探究结果最终确认与知识、能力的提升)情感态度与价值观:通过复习用配方法解一元二次方程的b 2-4ac>0、b 2-4ac=0、b 2-4ac<0各一题,•分析它们根的情况,从具体到一般。
教学重点:b 2-4ac>0↔一元二次方程有两个不相等的实根;b 2-4ac=0↔一元二次方程有两个相等的实数;b 2-4ac<0↔一元二次方程没有实根。
教学难点:从具体题目来推出一元二次方程ax 2+bx+c=0(a ≠0)的b 2-4ac 的情况与根的情况的关系。
【课堂导入】学生活动:用公式法解下列方程.(1)2x 2-3x=0 (2)3x 2x+1=0 (3)4x 2+x+1=0 老师点评:(1)b 2-4ac=9>0,•有两个不相等的实根;(2)b 2-4ac=12-12=0,有两个相等的实根;(3)b 2-4ac=│-4×4×1│=<0,•方程没有实根【教学过程】A 自 学:请同学们用10---15分钟时间自学教科书上本节内容。
B 交 流:从前面的具体问题,我们已经知道b 2-4ac>0(<0,=0)与根的情况,现在我们从求根公式的角度来分析:求根公式:x=2b a-±,当b 2-4ac>0一个具体数,所以一元一次方程的x 1=2b a -+≠x 1=2b a-,即有两个不相等的实根.当b 2-4ac=0时,•,所以x 1=x 2=2b a -,即有两个相等的实根;当b 2-4ac<0时,根据平方根的意义,负数没有平方根,所以没有实数解.因此,(1)当b 2-4ac>0时,一元二次方程ax 2+bx+c=0(a ≠0)•有两个不相等实数根即x 1x 2 (2)当b-4ac=0时,一元二次方程ax 2+bx+c=0(a ≠0)有两个相等实数根即x 1=x 2=2b a-. (3)当b 2-4ac<0时,一元二次方程ax 2+bx+c=0(a ≠0)没有实数根。
【新华东师大版】九年级数学上册:22.1《一元二次方程》学案

22.1 —兀二次方程学习目标1.知道一元二次方程的定义,能熟练地把一元二次方程整理成一般形式ax 2 bx c 0( a丰0)2 •在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过 程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。
3 •正确认识一元二次方程中二次项系数、一次项系数,常数项 重点:一元二次方程的一般形式。
难点:正确认识一元二次方程中二次项系数、一次项系数,常数项。
教学过程:一、问题导入: 问题一:绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为 900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?分析:现设长方形绿地的宽为 x 米,则长为 _____________________ 米,可列方程整理得 7. 2万册.求这两年的年平均问题二:学校图书馆去年年底有图书5万册,预计到明年年底增加到增长率.分析:设这两年的年平均增长率为 x .已知去年年底的图书数是 5万册,则今年年底的图书数是万册; 同样,明年年底的图书数又是今年年底的万册•可列得方程整理可得 __________________________________________ 二、一元一次方程: 问题三:前面我们已经认识了一元一次方程, 那么方程x 2 10x 900 0和5x 2 10x 2.2 0是一元一次方程吗?答案显而易见, 不是。
那么这两个方程与一元一次方程的区别在哪里?它们有什么共同特点呢?概括:方程x2 10x 900 0 , 5x2 10x 2.2 0中都只含有—个未知数,并且未知数的最高次数都是_,这样的整式方程叫做一个一元二次方程•一元二次方程的一般形式:2 _________________________________________ax + bx+ c= 0(a、b、c是已知数,a* 0)其中a叫做二次项系数、b叫一次项系数,c叫常数项.三、例题讲解例:把方程3x(x 1) 2(x 2) 8化成一般形式,并写出它的二次项系数、一次项系数,常数项。
九年级数学上册22.2一元二次方程的解法教案华东师大版(2021-2022学年)

22.2 一元二次方程的解法22.2。
1 直接开平方法和因式分解法第1课时直接开平方法【知识与技能】1.理解一元二次方程降次的转化思想.2.会用直接开平方法解形如(x+b)2=n(n≥0)的一元二次方程.【过程与方法】1.会用直接开平方法解简单的一元二次方程.2.会根据平方根的意义解缺一次项的一元二次方程ax2+c=0,然后迁移到解a(x+f)2+c=0型的一元二次方程.【情感态度】1.通过探究活动,培养学生勇于探索的良好学习习惯.2.感受数学的严谨性以及数学结论的确定性.【教学重点】运用开平方法解形如(x+m)2=n(n≥0)的方程;领会解一元二次方程的基本思想——通过降次转化为一元一次方程求解.【教学难点】通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.一、创设情境,导入新知1.叙述平方根的定义.2.求适合x2=4的x的值.说明:学生不难得出本题的解x=2或x=-2。
教师可引导学生观察这个方程的特点,探索解这个方程与已学知识(第11章“数的开方”中的平方根)的联系.在求出方程x2=4的解以后,教师总结:解这样的方程就是“要求一个数,使它的平方等于4”,即求4的平方根,可用直接开平方的方法.从而引出新课——直接开平方法解一元二次方程.二、合作探究,理解新知问题1:怎样解形如x2=b的方程?教师用上面的例子说明这类一元二次方程的解法,当b≥0时,方程解为x=±错误!未定义书签。
.问题2:怎样解方程ax2+c=0(a≠0)?(1)教师可用①x2-2=0;②2x2-8=0;③2x2+8=0等方程为例,由学生把它们变形为x2=-错误!的形式,再用平方根的定义来求解,并指出方程③的解不存在.在此基础上给出直接开平方法的定义:利用平方根的定义直接开平方求一元二次方程根的方法叫直接开平方法.(2)引导学生归纳方程ax2+c=0(a≠0)的解法:当a、c异号时,方程ax2+c=0的根为x=±错误!未定义书签。
九年级数学上册 22.1 一元二次方程教案 (新版)华东师大版

一元二次方程22.1 一元二次方程【知识与技能】1.知道一元二次方程的意义,能熟练地把一元二次方程整理成一般形式ax2+bx+c=0(a ≠0).2.在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识.【过程与方法】通过解决实际问题,把实际问题转化为数学模型,引入一元二次方程的概念,让学生认识一元二次方程及其相关概念,提高学生利用方程思想解决实际问题的能力.【情感态度】通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.【教学重点】判定一个数是否是方程的根.【教学难点】由实际问题列出的一元二次方程解出根后,还要考虑这些根是否确定是实际问题的根.一、情境导入,初步认识问题1 绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?【分析】设长方形绿地的宽为x米,不难列出方程x(x+10)=900,整理可得x2+10x-900=0.(1)问题2 学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.解:设这两年的年平均增长率为x,我们知道,去年年底的图书数是5万册,则今年年底的图书数是5(1+x)万册,同样,明年年底的图书数又是今年年底的(1+x)倍,即5(1+x)·(1+x)=5(1+x)2万册.可列得方程5(1+x)2=7.2,整理可得5x2+10x-2.2=0(2)【教学说明】教师引导学生列出方程,解决问题.二、思考探究,获取新知思考、讨论问题1和问题2分别归结为解方程(1)和(2).显然,这两个方程都不是一元二次方程.那么这两个方程与一元二次方程的区别在哪里?它们有什么共同特点呢?共同特点:(1)都是整式方程(2)只含有一个未知数(3)未知数的最高次数是2【归纳总结】上述两个整式方程中都只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程.通常可写成如下的一般形式:ax2+bx+c=0(a、b、c是已知数,a≠0).其中ax2叫做二次项,a叫做二次项系数,bx叫做一次项系数,c叫做常数项.例1判断下列方程是否为一元二次方程:解:①是;②不是;③是;④不是;⑤不是;⑥是.【教学说明】(1)一元二次方程为整式方程;(2)类似⑤这样的方程要化简后才能判断.例2 将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数.一次项系数及常数项.解:2x2-13x+11=0;2,-13,11.【教学说明】将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整.三、运用新知,深化理解1.将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.(1)5x2-1=4x(2)4x2=81(3)4x(x+2)=25(4)(3x-2)(x+1)=8x-3解:(1)5x2-4x-1=0;5,-4,-1;(2)4x 2-81=0;4,0,-81(3)4x 2+8x-25=0;4,8,-25(4)3x 2-7x+1=0;3,-7,1.2.根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式.(1)4个完全相同的正方形的面积之和是25,求正方形的边长x ;(2)一个长方形的长比宽多2,面积是100,求长方形的长x ;(3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x.解:(1)4x 2=25;4x 2-25=0;(2)x (x-2)=100;x 2-2x-100=0;(3)x=(1-x )2;x2-3x+1=0.3.若x=2是方程ax 2+4x-5=0的一个根,求a 的值.解:∵x=2是方程ax2+4x-5=0的一个根.∴4a+8-5=0解得:a=-43. 四、师生互动,课堂小结1.只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程.2.一元二次方程的一般形式为ax 2+bx+c=0(a ≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的.3.在实际问题转化为数学模型(一元二次方程)的过程中,体会学习一元二次方程的必要性和重要性.1.布置作业:从教材相应练习和“习题22.1”中选取.2.完成练习册中本课时练习的“课时作业”部分.学习本课时,可让学生先自主探索再合作交流,小组内,小组之间充分交流后概括所得结论,从而强化学生对一元二次方程的有关概念的认识,掌握建模思想,利用一元二次方程解决实际问题.。
最新华东师大版初中数学九年级上册精品教案22.2 一元二次方程的解法
22.2一元二次方程的解法1. 直接开平方法和因式分解法知识与技能:1.会用直接开平方法解形如a(x-k)2=b(a≠0,ab≥0)的方程.2. 灵活运用因式分解法解一元二次方程.3. 使学生了解转化的思想在解方程中的应用.过程与方法:创设学生熟悉的问题情境,综合运用探究式、启发式、活动式等几种方法进行教学.情感态度:鼓励学生积极主动地参与“教”与“学”的整个过程,激发求知的欲望,体验求知的成功,增强学习的兴趣和自信心.教学重难点:重点:利用直接开平方法和因式分解法解一元二次方程.难点:合理选择直接开平方法和因式分解法较熟练地解一元二次方程.一、情境导入,初步认识问:怎样解方程(x+1)2=256?解:(方法1)直接开平方,得x+1=±16.所以原方程的解为x1=15,x2=-17.(方法2)原方程可变形为(x+1)2-256=0.方程左边分解因式,得(x+1+16)(x+1-16)=0,即(x+17)(x-15)=0.所以x+17=0或x-15=0.所以原方程的解为x1=15,x2=-17.【教学说明】让学生说出作业中的解法,教师板书.二、思考探究,获取新知例1 用直接开平方法解下列方程:(1)(3x+1)2=7;(2)y2+2y+1=24;(3)9n2-24n+16=11.解:(1)直接开平方,得3x+1=±7.所以原方程的解为x=317-±. (2)原方程可变形为(y+1)2=24. 直接开平方,得y+1=±62.所以原方程的解为x=-1±62.(3)原方程可变形为(n -34)2=911. 直接开平方,得n -34=±311.所以原方程的解为x =3114 . 【教学说明】运用开平方法解形如(x +m )2=n (n ≥0)的方程时,最容易出现的错误是漏掉负根.例2 用因式分解法解下列方程:(1)5x 2-4x =0; (2)3x (2x +1)=4x +2; (3)(x +5)2=3x +15. 解:(1)方程左边分解因式,得x (5x -4)=0. 所以x =0或5x -4=0. 所以原方程的解为x 1=0,x 2=54. (2)原方程可变形为6x 2-x -2=0. 方程左边分解因式,得6(x -32)(x +21)=0.所以x -32=0或x +21=0.所以原方程的解为x 1=32,x 2=-21.(3)原方程可变形为x 2+7x +10=0. 方程左边分解因式,得(x +2)(x +5)=0. 所以x +2=0或x +5=0.所以原方程的解为x 1=-5,x 2=-2.【教学说明】解这里的(2)(3)题时,注意整体化归的思想. 三、运用新知,深化理解 1. 用直接开平方法解下列方程:(1)3(x -1)2-6=0; (2)x 2-4x +4=5; (3)(x +5)2=25; (4)x 2+2x +1=4. 解:(1)x 1=1+2,x 2=1-2. (2)x 1=2+5,x 2=2-5.(3)x 1=0,x 2=-10. (4)x 1=1,x 2=-3.2. 用因式分解法解下列方程:(1)x 2+x =0;(2)x 2-23x =0;(3)3x 2-6x =-3;(4)4x 2-121=0;(5)(x -4)2=(5-2x )2.解:(1)x 1=0,x 2=-1. (2)x 1=0,x 2=23.(3)x 1=x 2=1. (4)x 1=211,x 2=-211. (5)x 1=1,x 2=3.3. 把小圆形场地的半径增加5 m 得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.解:设小圆形场地的半径为x m. 则可列方程为2πx 2=π(x +5)2. 解得x 1=5+52,x 2=5-52(舍去). 答:小圆形场地的半径为(5+52)m.【教学说明】可由学生自主完成例题,分小组展示结果,教师点评. 四、师生互动,课堂小结1. 引导学生回忆用直接开平方法和因式分解法解一元二次方程的一般步骤.2. 对于形如a (x -k )2=b (a ≠0,b ≥0)的方程,只要把(x -k )看作一个整体,就可将其转化为x 2=n (n ≥0)的形式用直接开平方法解.3. 当方程出现相同因式(单项式或多项式)时,切不可约去相同因式,而应用因式分解 法解. 五、教学反思本节课教师引导学生探讨直接开平方法和因式分解法解一元二次方程,让学生小组讨论,归纳总结探究,掌握基本方法和步骤,合理、恰当、熟练地运用直接开平方法和因式分解法,在整个教学过程中注意整体化归的思想.2. 配方法知识与技能:1. 使学生掌握配方法的推导过程,熟练地用配方法解一元二次方程.2. 在配方法的应用过程中体会“转化”的思想,掌握一些转化的技能. 过程与方法:通过探索配方法的过程,让学生体会转化的数学思想方法. 情感态度:学生在独立思考和合作探究中感受成功的喜悦,并体验数学的价值,增加学生学习数学的 兴趣. 教学重难点:重点:使学生掌握用配方法解一元二次方程.难点:发现并理解配方的方法. 一、情境导入,初步认识问题:要使一块矩形场地的长比宽多6 m ,且面积为16 m 2,场地的长和宽分别是多少? 设场地的宽为x m ,则长为(x +6)m. 根据矩形的面积为16 m 2,得到方程为x (x + 6)=16. 整理,得x 2+6x -16=0.【教学说明】创设实际问题情境,让学生感受到生活中处处有数学,激发学生的主动性和求知欲.二、思考探究,获取新知探究:如何解方程x 2+6x -16=0?问题1: 通过上节课的学习,我们现在会解什么样的一元二次方程?举例说明. 【教学说明】用问题唤起学生的回忆,明确我们现在会解的一元二次方程的特点:等号左边是一个完全平方式,右边是一个非负常数,即(x +m )2=n (n ≥0),运用直接开平方法可求解.问题2: 你会用直接开平方法解下列方程吗?(1)(x +3)2=25;(2)x 2+6x +9=25;(3)x 2+6x =16;(4)x 2+6x -16=0.【教学说明】教师启发学生逆向思考问题的思维方式,将x 2+6x -16=0转化为(x +3)2=25的形式,从而求得方程的解. 解:(1)移项,得x 2+6x =16. 两边都加上9,即(26)2,使左边配成x 2+bx +b 2的形式,得x 2+6x +9=16+9, 左边写成完全平方形式,得(x +3)2=25. 开平方,得x +3=±5,(降次) 即x +3=5或x +3=-5.解一次方程,得x 1=2,x 2=-8.【归纳总结】将方程左边配成一个含有未知数的完全平方式,右边是一个非负常数,从而可以直接开平方求解,这种解一元二次方程的方法叫作配方法. 例1 填空:(1)x 2+8x + 16 =(x + 4)2;(2)x 2-x +41=(x -21)2;(3)4x 2+4x +1=(2x +1)2.例2 解方程:(1)x 2+6x +5=0; (2)2x 2+6x +2=0; (3)(1+x )2+2(1+x )-4=0. 解:(1)x 1=-1,x 2=-5. (2)x 1=-2325-,x 2=2325-. (3)x 1=5-2,x 2=-5-2.【教学说明】教师可让学生自主完成例题,小组展示,教师点评归纳. 【归纳总结】利用配方法解方程应该遵循的步骤: (1)把方程化为一般形式ax 2+bx +c =0; (2)把常数项移到方程的右边; (3)方程两边同时除以二次项系数a ;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方形式,利用直接开平方法来解. 三、运用新知,深化理解 1. 用配方法解下列方程:(1)2x 2-4x -8=0;(2)x 2-4x +2=0;(3)x 2-21x -1=0. 2. 如果x 2-4x +y 2+6y +2 z +13=0,求(xy )z的值. 【答案】1. 解:(1)x 1=1+5,x 2=1-5. (2)x 1=-2+2,x 2=2+2. (3)x 1=41+417,x 2=41-417. 2. 解:由题意知,x =2,y =-3,z =-2. 所以(xy )z=(-6)-2=361. 【教学说明】学生独立解答,小组内交流,上台展示并讲解思路. 四、师生互动,课堂小结1. 用配方法解一元二次方程的步骤.2. 用配方法解一元二次方程的注意事项. 五、教学反思本节课先创设情境导入一元二次方程的解法,引导学生将要解决的问题转化为已学过的直接开平方法来解,从而探索出配方法的一般步骤,熟练运用配方法来解一元二次方程.3. 公式法知识与技能:1. 理解一元二次方程求根公式的推导过程,了解公式法的概念.2. 会熟练运用公式法解一元二次方程. 过程与方法:通过复习配方法解一元二次方程,引导学生推导出求根公式,使学生进一步认识特殊与一般的关系.情感态度:经历探索求根公式的过程,培养学生的抽象思维能力,渗透辩证唯物主义观点. 教学重难点:重点:求根公式的推导和公式法的运用. 难点:一元二次方程求根公式的推导. 一、情境导入,初步认识用配方法解方程:(1)x 2+3x +2=0;(2)2x 2-3x +5=0. 解:(1)x 1=-1,x 2=-2.(2)无解. 二、思考探究,获取新知如果这个一元二次方程是一般形式ax 2+bx +c =0(a ≠0),你能否用上面配方法的步骤求出它们的两根?问题:已知ax 2+bx +c =0(a ≠0),试推导它的两个根:x 1=a ac b b 242-+-,x 2=aac b b 242---.【分析】因为前面具体数字的题目已做得很多,现在不妨把a ,b ,c 也当成具体的数字,根据上面的解题步骤就可以推导下去.探究: 一元二次方程ax 2+bx +c =0(a ≠0)的根由方程的系数a ,b ,c 而定,因此, (1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0,当b 2-4ac ≥0时,将a ,b ,c 代入式子x =aac b b 242-±-就得到方程的根,当b 2-4ac <0时,方程没有实数根.(2)x =aac b b 242-±-叫作一元二次方程ax 2+bx +c =0(a ≠0)的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.【教学说明】教师可以引导学生利用配方法推出求根公式,体验获取知识的过程,体会成功的喜悦,可让学生小组展示. 例1 用公式法解下列方程:①2x 2-4x -1=0; ②5x +2=3x 2; ③(x -2)(3x -5)=0; ④4x 2-3x +1=0. 解:①x 1=1+26,x 2=1-26.②x 1=2,x 2=-31.③x 1=2,x 2=35.④无解.【教学说明】(1)②,③要先化成一般形式;(2)强调确定a ,b ,c 的值,注意它们的符号;(3)先计算b 2-4ac 的值,再代入公式. 三、运用新知,深化理解 用公式法解下列方程:(1)x 2+x -12=0; (2)x 2-2x -41=0; (3)x 2+4x +8=2x +11; (4)x (x -4)=2-8x ; (5)x 2+2x =0; (6)x 2+25x +10=0. 解:(1)x 1=3,x 2=-4. (2)x 1=232+,x 2=232-. (3)x 1=1,x 2=-3.(4)x 1=-2+6,x 2=-2-6. (5)x 1=0,x 2=-2. (6)无解.【教学说明】用公式法解方程的关键是要先将方程化为一般形式再求解. 四、师生互动,课堂小结 1. 求根公式的概念及其推导过程. 2. 公式法的概念.3. 运用公式法解一元二次方程. 五、教学反思在学习活动中,要求学生主动参与,认真思考,比较观察,交流与表述,体验知识获取的过程,激发学生的学习兴趣,利用师生的双边活动,适时调试,从而提高学习效率.4. 一元二次方程根的判别式知识与技能:1. 能运用根的判别式,判断方程根的情况和进行有关的推理论证.2. 会运用根的判别式求一元二次方程中字母系数的取值范围. 过程与方法:1. 经历一元二次方程根的判别式的产生过程.2. 向学生渗透分类讨论的数学思想.3. 培养学生的逻辑思维能力以及推理论证能力. 情感态度:1. 体验数学的简洁美.2. 培养学生的探索、创新精神和协作精神. 教学重难点:重点:根的判别式的正确理解与运用.难点:含字母系数的一元二次方程根的判别式的运用. 一、情境导入,初步认识用公式法解下列一元二次方程:(1)x 2+5x +6=0;(2)9x 2-6x +1=0;(3)x 2-2x +3=0. 解:(1)x 1=-2,x 2=-3. (2)x 1=x 2=31.(3)无解.【教学说明】让学生亲身感知一元二次方程根的情况,回顾已有知识. 二、思考探究,获取新知观察解题过程,可以发现:在把系数代入求根公式之前,需先确定a ,b ,c 的值,再求出b 2-4ac 的值,它能决定方程是否有解,我们把b 2-4ac 叫作一元二次方程根的判别式,通常用符号“Δ”来表示,即Δ=b 2-4ac .我们回顾一元二次方程求根公式的推导过程发现:(x +a b 2)2=a acb 2244-.【归纳结论】(1)当Δ>0时,方程有两个不相等的实数根:x 1=aacb b 242-+-,x 2=aacb b 242---;(2)当Δ=0时,方程有两个相等的实数根:x 1=x 2=-ab2; (3)当Δ<0时,方程没有实数根.例1 利用根的判别式判定下列方程的根的情况: (1))2x 2-3x -23=0;(2)16x 2-24x +9=0;(3)x 2-42x +9=0;(4)3x 2+10x =2x 2+8x . 解:(1)有两个不相等的实数根. (2)有两个相等的实数根. (3)无实数根.(4)有两个不相等的实数根.例2 当m 为何值时,方程(m +1)x 2-(2m -3)x +m +1=0. (1)有两个不相等的实数根; (2)有两个相等的实数根; (3)没有实数根. 解:(1)m <41且m ≠-1.(2)m =41. (3)m >41. 【教学说明】注意(1)中的m +1≠0这一条件. 三、运用新知,深化理解1. 方程x 2-4x +4=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 有一个实数根D. 没有实数根2. 已知x 2+2x =m -1没有实数根,求证:x 2+mx =1-2m 必有两个不相等的实数根. 【答案】 1. B2. 证明:∵x 2+2x =m -1没有实数根, ∴4-4(1-m )<0,解得m <0.将方程x 2+mx =1-2m 化为x 2+mx +2m -1=0,∴Δ=m 2-8m +4. ∵m <0,∴Δ>0,∴x 2+mx =1-2m 必有两个不相等的实数根. 【教学说明】引导学生灵活运用知识. 四、师生互动,课堂小结1. 用判别式判定一元二次方程根的情况:(1)当Δ>0时,一元二次方程有两个不相等的实数根; (2)当Δ=0时,一元二次方程有两个相等的实数根. (3)当Δ<0时,一元二次方程无实数根.2. 运用根的判别式解决具体问题时,要注意二次项系数不为0这一隐含条件. 【教学说明】可让学生先分组讨论,回忆整理,再由小组代表陈述. 五、教学反思本节课创设情境,启发引导,让学生充分感受理解知识的产生和发展过程,在教师适时的点拨下,学生在发现归纳的过程中积极主动地去探索,发现数学规律,培养了学生的创新意识、创新精神及思维能力.5. 一元二次方程的根与系数的关系知识与技能:1. 引导学生在已有的一元二次方程解法的基础上,探索出一元二次方程根与系数的关系,及其关系的运用.2. 通过观察、实践、讨论等活动,经历从观察判断到发现关系的过程. 过程与方法:通过探究一元二次方程的根与系数的关系,培养学生观察分析和综合判断的能力,激发学生发现规律的积极性,鼓励学生勇于探索的精神. 情感态度:在积极参与数学活动的同时,初步体验发现问题,总结规律的态度及养成质疑和独立思考的习惯. 教学重难点:重点:一元二次方程根与系数之间的关系的运用. 难点:一元二次方程根与系数之间的关系的运用. 一、情境导入,初步认识 1. 完成下列表格:问题:你发现了什么规律?①用语言叙述你发现的规律;(两根之和为一次项系数的相反数;两根之积为常数项) ②设方程x 2+px +q =0的两根分别为x 1,x 2,用式子表示你发现的规律.(x 1+x 2=-p ,x 1x 2=q ) 2. 完成下列表格:问题:上面发现的结论在这里成立吗?(不成立) 请完善规律:①用语言叙述你发现的规律;(两根之和为一次项系数与二次项系数之比的相反数,两根之积为常数项与二次项系数之比)②设方程ax 2+bx +c =0的两根分别为x 1,x 2,用式子表示你发现的规律.(x 1+x 2=-a b ,x 1x 2=ac)二、思考探究,获取新知通过以上的活动你发现了什么规律?对一般的一元二次方程ax 2+bx +c =0(a ≠0)这一规律是否成立?试通过求根公式加以说明.ax 2+bx +c =0的两根分别为x 1=a acb b 242-+-,x 2=a ac b b 242---,则x 1+x 2=-a b ,x 1x 2=ac.【教学说明】教师可引导学生根据求根公式推导出根与系数之间的关系,体会知识形成的过程,加深对知识的理解.例1 不解方程,求下列方程的两根之和与两根之积:(1)x 2-6x -15=0; (2)3x 2+7x -9=0; (3)5x -1=4x 2.解:(1)x 1+x 2=6,x 1x 2=-15.(2)x 1+x 2=-37,x 1x 2=-3. (3)x 1+x 2=45,x 1x 2=41. 【教学说明】先将方程化为一般形式,再找出对应的系数.例2 已知方程2x 2+kx -9=0的一个根是-3,求另一根及k 的值. 解:另一根为23,k =3. 【教学说明】此题有两种解法,一种是根据根的定义,将x =-3代入方程先求k ,再求另一个根;一种是利用根与系数的关系解答.例3 已知α,β是方程x 2-3x -5=0的两根,不解方程,求下列代数式的值.(1)βα11+; (2)βα22+; (3)βα-. 解:(1)βα11+=-53. (2)βα22+=19.(3)βα-=29或βα-=-29.三、运用新知,深化理解1. 不解方程,求下列方程的两根之和与两根之积:(1)x 2-3x =15; (2)5x 2-1=4x 2; (3)x 2-3x +2=10;(4)4x 2-144=0; (5)3x (x -1)=2(x -1); (6)(2x -1)2=(3-x )2.2. 两根均为负数的一元二次方程是( )A. 7x 2-12x +5=0B. 6x 2-13x -5=0C. 4x 2+21x +5=0D. x 2+15x -8=0【教学说明】两根均为负数的一元二次方程根与系数的关系满足两根之和为负数,两根之积为正数.【答案】1. 解:(1)x 1+x 2=3,x 1x 2=-15.(2)x 1+x 2=0,x 1x 2=-1.(3)x 1+x 2=3,x 1x 2=-8.(4)x 1+x 2=0,x 1x 2=-36.(5)x 1+x 2=35,x 1x 2=32. (6)x 1+x 2=-32,x 1x 2=-38. 2. C 【教学说明】可由学生自主完成抢答,教师点评.四、师生互动,课堂小结1. 一元二次方程的根与系数的关系.2. 一元二次方程根与系数的关系成立的前提条件.五、教学反思本节课先由学生探究特殊一元二次方程的根与系数的关系,再猜想一般一元二次方程的根与系数的关系,并从理论上加以推导证明,加深学生对知识的理解,培养学生严密的逻辑思维能力.。
华师版九年级数学上册教案:第22章 一元二次方程2 一元二次方程的解法(5课时)
22.2 一元二次方程的解法1 直接开平方法和因式分解法(第1课时)一、基本目标1.理解直接开平方法和因式分解法,掌握用两种方法解一元二次方程的一般步骤,并会根据方程的特点灵活选用方法解一元二次方程.2.通过利用已学知识求解一元二次方程,获得成功的体验,体会转化思想的应用. 二、重难点目标 【教学重点】用直接开平方法和因式分解法解一元二次方程. 【教学难点】根据方程特点选择合适的方法解一元二次方程.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P20~P25的内容,完成下面练习. 【3 min 反馈】1.直接开平方法:利用__平方根的定义__解一元二次方程的方法. 2.因式分解法:利用__因式分解__求出方程的解的方法.3.因式分解法的依据:如果两个因式的积等于0,那么两个因式中__至少__有一个等于0.反过来,如果两个因式中有一个等于0,那么__它们的积__就等于0.4.方程(x -1)2=1的解为__x 1=2,x 2=0__.5.用因式分解法解一元二次方程(4x -1)(x +3)=0时,可将原方程转化为两个一元一次方程,其中一个方程是4x -1=0,则另一个方程是__x +3=0__.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】用直接开平方法或因式分解法解下列方程: (1)(x +1)2=2; (2)(2x +1)2=2x +1; (3)-x 2=4x ; (4)12(x +5)2=9.【互动探索】(引发学生思考)观察方程的特点,确定解方程的方法及一般步骤. 【解答】(1)直接开平方,得x +1=±2. 故x 1=2-1,x 2=-2-1.(2)移项,得(2x +1)2-(2x +1)=0.方程左边分解因式,得(2x +1)(2x +1-1)=0,所以2x +1=0或2x +1-1=0,得x 1=-12,x 2=0.(3)方程可变形为x 2+4x =0.方程左边分解因式,得x (x +4)=0,所以x =0或x +4=0,得x 1=0,x 2=-4.(4)方程两边同时乘2,得(x +5)2=18.直接开平方,得x +5=±32,所以x 1=32-5,x 2=-32-5.【互动总结】(学生总结,老师点评)(1)用直接开平方法解一元二次方程的一般步骤:①观察方程两边是否符合x 2=b (b ≥0)或(mx +a )2=b (m ≠0,b ≥0)的形式;②直接开平方,得到两个一元一次方程;③解这两个一元一次方程,得到原方程的两个根.(2)用因式分解法解一元二次方程的一般步骤:①移项,将方程的右边化为0;②将方程的左边分解成两个一次因式的积的形式;③令每个因式分别为0,得到两个一元一次方程;④解这两个一元一次方程,得到原方程的两个根.活动2 巩固练习(学生独学)1.一元二次方程x 2-16=0的根是( D ) A .x =2 B .x =4 C .x 1=2,x 2=-2D .x 1=4,x 2=-42.在实数范围内定义一种运算“﹡”,其规则为a ﹡b =a 2-b 2,根据这个规则,方程(x +1)﹡3=0的解为__x 1=2,x 2=-4__.【教师点拨】根据新定义,由(x +1)﹡3=0,得(x +1)2-32=0. 3.解下列方程: (1)4x 2=25; (2)x (x +2)=x +2.解:(1)方程可化为x 2=254.直接开平方,得x =±52,所以x 1=52,x 2=-52.(2)移项,得x (x +2)-(x +2)=0.方程左边分解因式,得(x +2)(x -1)=0,所以x +2=0或x -1=0,得x 1=-2或x 2=1.活动3 拓展延伸(学生对学)【例2】由多项式乘法:(x +a )(x +b )=x 2+(a +b )x +ab ,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x 2+(a +b )x +ab =(x +a )(x +b ).示例:分解因式:x 2+5x +6=x 2+(2+3)x +2×3=(x +2)(x +3). (1)尝试:分解因式:x 2+6x +8=(x +__2__)(x +__4__); (2)应用:请用上述方法解方程:x 2-3x -4=0.【互动探索】理解“十字相乘法”的含义→对方程左边因式分解(十字相乘法)→解方程.【解答】∵x 2-3x -4=0,即x 2+(-4+1)x +(-4)×1=0,∴(x -4)(x +1)=0,则x +1=0或x -4=0,解得x 1=-1,x 2=4.【互动总结】(学生总结,老师点评)解此类题时,要把握新定义的内涵,抓住关键词语,合理套用求解.环节3 课堂小结,当堂达标 (学生总结,老师点评)直接开平方法⎩⎪⎨⎪⎧定义依据:平方根的定义形式:方程x 2=a (a ≥0)的根为x 1=a ,x 2=-a因式分解法⎩⎪⎨⎪⎧定义依据:若ab =0,则a =0或b =0方法:提公因式、完全平方公式、平方差公式请完成本课时对应练习!2 配方法(第2课时)一、基本目标1.理解配方法解一元二次方程的含义,并掌握用配方法解一元二次方程的一般步骤. 2.经历利用完全平方公式推导配方法的过程,掌握新的解一元二次方程的方法——配方法.二、重难点目标 【教学重点】用配方法解一元二次方程. 【教学难点】把一元二次方程通过配方转化为(x ±h )2=k (k ≥0)的形式.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P25~P27的内容,完成下面练习. 【3 min 反馈】1. (1)x 2+6x +__9__=(x +__3__)2;(2)x 2-x +__14__=⎝⎛⎭⎫x -!!!!__12__####2; (3)4x 2+4x +__1__=(2x + __1__)2.2.配方法:通过方程的简单变形,将左边配成一个含有未知数的__完全平方式__,右边是一个__非负常数__,从而可以直接开平方求解,这种解一元二次方程的方法叫做配方法.环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】用配方法解下列方程: (1)x 2-4x -12=0; (2)22x 2+4x -6=0.【互动探索】(引发学生思考)用配方法解一元二次方程的一般步骤是什么? 【解答】(1)原方程可化为x 2-4x =12. 配方,得x 2-4x +4=16,即(x -2)2=16. 直接开平方,得x -2=±4, 所以x 1=-2,x 2=6. (2)移项,得22x 2+4x =6. 两边同除以22,得x 2+211x =311.配方,得x 2+211x +⎝⎛⎭⎫1112=311+⎝⎛⎭⎫1112,即⎝⎛⎭⎫x +1112=34121. 直接开平方,得x +111=±3411,所以x 1=-1+3411,x 2=-1-3411.【互动总结】(学生总结,老师点评)用配方法解一元二次方程的一般步骤:(1)变形:将方程化为一般形式ax 2+bx +c =0(a ≠0);(2)移项:将常数项移到方程的右边;(3)系数化为1:方程的两边同除以二次项的系数,将二次项系数化为1;(4)配方:在方程的两边各加上一次项系数绝对值的一半的平方,把原方程化为(x ±h )2=k 的形式;(5)求解:若k ≥0,则利用直接开平方法求解;若k <0,则原方程无实数根.活动2 巩固练习(学生独学)1.用配方法解下列方程,配方正确的是( D ) A .2y 2-4y -4=0可化为(y -1)2=4 B .x 2-2x -9=0可化为(x -1)2=8 C .x 2+8x -9=0可化为(x +4)2=16 D .x 2-4x =0可化为(x -2)2=42.用配方法解下列方程,其中应在方程左右两边同时加上4的是( C ) A .x 2-2x =5 B .2x 2-4x =5 C .x 2+4x =3D .x 2+2x =53.用配方法解方程2x 2-x =4,配方后方程可化为⎝⎛⎭⎫x -142=__3316__. 4.用配方法解下列方程:(1)x 2+6x +1=0; (2)2x 2-3x +12=0.解:(1)x 1=22-3,x 2=-22-3. (2)x 1=5+34,x 2=-5+34. 活动3 拓展延伸(学生对学)【例2】试用配方法说明:无论x 取何值,代数式x 2-4x +5的值总是正数,并指出当x 取何值时,这个代数式的值最小,最小值是多少?【互动探索】这是一个二次三项式的最值问题→对x 2-4x +5进行配方→确定代数式的最小值.【解答】x 2-4x +5=(x -2)2+1. ∵(x -2)2≥0, ∴(x -2)2+1≥1,∴不论x 为何值,代数式x 2-4x +5的值总是正数,且当(x -2)2=0,即x =2时,代数式x 2-4x +5有最小值,最小值为1.【互动总结】(学生总结,老师点评)已知代数式是一个关于x 的二次三项式且含有一次项,在求它的最值时,通常用配方法将原代数式变形为一个完全平方式加一个常数的形式,再根据一个数的平方是非负数求出原代数式的最值.环节3 课堂小结,当堂达标 (学生总结,老师点评)配方法⎩⎪⎨⎪⎧定义依据:完全平方公式:a 2±2ab +b 2=(a ±b )2形式:方程(x ±h )2=k (k ≥0)的根为x 1=k ±h ,x 2=-k ±h请完成本课时对应练习!3 公式法(第3课时)一、基本目标1.理解求根公式的推导过程,能正确推导出一元二次方程的求根公式.2.理解b 2-4ac ≥0是求根公式使用的前提条件和重要的组成部分,当b 2-4ac <0时,方程无解.3.理解和掌握用公式法解一元二次方程的一般步骤,并能正确运用公式法解一元二次方程.二、重难点目标 【教学重点】用公式法解一元二次方程. 【教学难点】 求根公式的推导过程.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P28~P31的内容,完成下面练习. 【3 min 反馈】 1.一元二次方程ax 2+bx +c =0(a ≠0)的求根公式是x =__-b ±b 2-4ac 2a(b 2-4ac ≥0)__.将一元二次方程中系数a 、b 、c 的值,直接代入这个公式,就可以求得方程的根.这种解一元二次方程的方法叫做__公式法__.2.用公式法解方程2x 2-3x -1=0时,a =__2__,b =__-3__,c =__-1__,则b 2-4ac =__17__,代入求根公式,得x =__3±174__.环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】用公式法解下列方程:(1)5x 2-4x -1=0; (2)3x 2+5(2x +1)=0.【互动探索】(引发学生思考)用公式法解一元二次方程的一般步骤是什么? 【解答】(1)∵a =5,b =-4,c =-1,∴b 2-4ac =(-4)2-4×5×(-1)=16+20=36, ∴x =-b ±b 2-4ac 2a =4±362×5=4±610,∴x 1=1,x 2=-15.(2)将方程化为一般形式,得3x 2+10x +5=0. ∵a =3,b =10,c =5,∴b 2-4ac =102-4×3×5=100-60=40, ∴x =-b ±b 2-4ac 2a =-10±402×3=-5±103,∴x 1=-5+103,x 2=-5-103.【互动总结】(学生总结,老师点评)用公式法解一元二次方程的一般步骤:(1)把一元二次方程化为一般形式ax 2+bx +c =0(a ≠0);(2)确定a 、b 、c 的值;(3)求出b 2-4ac 的值;(4)判断b 2-4ac 的符号.当b 2-4ac ≥0时,把a 、b 及b 2-4ac 的值代入求根公式,求出x 1、x 2;当b 2-4ac <0时,b 2-4ac 无意义,此时方程无解.活动2 巩固练习(学生独学)1.以x =b ±b 2+4c2为根的一元二次方程可能是( D )A .x 2+bx +c =0B .x 2+bx -c =0C .x 2-bx +c =0D .x 2-bx -c =02.方程3x 2-5x +1=0的解,正确的是( B ) A .x =-5±136B .x =5±136C .x =-5±133D .x =5±1333.用公式法解下列方程: (1)3x 2-6x -1=0; (2)(x -1)(x +3)=12; (3)x 2-x +3=0.解:(1)x 1=3+233,x 2=3-233.(2)x 1=-5,x 2=3. (3)方程没有实数解. 活动3 拓展延伸(学生对学)【例2】我们规定一种运算:⎪⎪⎪⎪a b c d =ad -bc ,例如:⎪⎪⎪⎪24 35=2×5-3×4=10-12=-2.按照这种运算的规定,当x 取何值时,⎪⎪⎪⎪x 1 0.5-x 2x =0?【互动探索】理解新定义的规则→转化所求式子形式→得一元二次方程→利用公式法解方程.【解答】由⎪⎪⎪⎪x 1 0.5-x 2x =0,得2x 2-1×(0.5-x )=0. 整理,得4x 2+2x -1=0,则a =4,b =2,c =-1,∴b 2-4ac =22-4×4×(-1)=20, ∴x =-2±202×4=-1±54,∴当x =-1+54或-1-54时,⎪⎪⎪⎪x 1 0.5-x 2x =0.【互动总结】(学生总结,老师点评)这是一个关于二元一次方程的新定义问题,解这类题的关键是根据新定义得到方程,再解方程即可.环节3 课堂小结,当堂达标 (学生总结,老师点评)公式法⎩⎪⎨⎪⎧定义—求根式公:-b ±b 2-4ac 2a(b 2-4ac ≥0)推导过程—配方法一般形式—方程ax 2+bx +c =0(a ≠0)的根为x =-b ±b 2-4ac 2a(b 2-4ac ≥0)请完成本课时对应练习!4 一元二次方程根的判别式(第4课时)一、基本目标1.了解根的判别式,掌握由根的判别式符号判断一元二次方程ax 2+bx +c =0(a ≠0)的实数根的情况.2.经历思考、探究一元二次方程ax 2+bx +c =0(a ≠0)的根的过程,学会合作交流,并掌握代数学习的常用方法——分类讨论法.二、重难点目标 【教学重点】由根的判别式符号判断一元二次方程ax 2+bx +c =0(a ≠0)的实数根的情况. 【教学难点】推导一元二次方程ax 2+bx +c =0(a ≠0)的b 2-4ac 的符号与其根的关系.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P31~P32的内容,完成下面练习.【3 min反馈】1.根的判别式:一元二次方程ax2+bx+c=0(a≠0)的__b2-4ac__叫做一元二次方程根的判别式,通常用符号“__Δ__”来表示.2.一元二次方程ax2+bx+c=0(a≠0)根的情况:当Δ__>0__时,方程有两个不相等的实数根;当Δ__=0__时,方程有两个相等的实数根;当Δ<0时,方程__没有__实数根.3.一元二次方程x2-5x-78=0根的情况是__有两个不相等的实数根__.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】不解方程,判定下列方程的根的情况:(1)16x2+8x=-3;(2)9x2+6x+1=0;(3)2x2-9x+8=0;(4)x2-7x-18=0.【互动探索】(引发学生思考)不解方程,要判断方程的根的情况,结合一元二次方程ax2+bx+c=0(a≠0)中Δ的符号与根的关系,各个方程的Δ与0的大小关系是什么?相应的方程根的情况是什么?【解答】(1)原方程可变形为16x2+8x+3=0,则a=16,b=8,c=3.∵Δ=b2-4ac=82-4×16×3=64-192=-128<0,∴方程没有实数根.(2)a=9,b=6,c=1.∵Δ=b2-4ac=62-4×9×1=36-36=0,∴方程有两个相等的实数根.(3)a=2,b=-9,c=8.∵Δ=b2-4ac=(-9)2-4×2×8=81-64=17>0,∴方程有两个不相等的实数根.(4)a=1,b=-7,c=-18.∵Δ=b2-4ac=(-7)2-4×1×(-18)=49+72=121>0,∴方程有两个不相等的实数根.【互动总结】(学生总结,老师点评)不解一元二次方程,由Δ确定方程根的情况的一般步骤:(1)将原方程化为一般形式;(2)确定a、b、c的值;(3)计算b2-4ac的值;(4)判断b2-4ac与0的大小;(5)得出结论.活动2巩固练习(学生独学)1.一元二次方程x2+3x+5=0的根的情况是(C)A.有两个不相等的实数根B.有两个相等的实数根C .没有实数根D .无法判断2.若关于x 的一元二次方程x 2+x -m =0有实数根,则m 的取值范围是( B ) A .m ≥14B .m ≥-14C .m ≤14D .m ≤-14【教师点拨】若一元二次方程ax 2+bx +c =0(a ≠0)有实数根,则b 2-4ac ≥0. 3.已知方程x 2+px +q =0有两个相等的实数根,则p 与q 的关系是__p 2=4q __. 4.不解方程,试判断下列方程的根的情况: (1)2+5x =3x 2;(2)x 2-(1+23)x +3+4=0. 解:(1)方程有两个不相等的实数根. (2)方程没有实数根.5.已知关于x 的方程kx 2-6x +9=0,问k 为何值时,这个方程: (1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根?解:(1)当k <1且k ≠0时,方程有两个不相等的实数根. (2)当k =1时,方程有两个相等的实数根. (3)当k >1时,方程没有实数根. 活动3 拓展延伸(学生对学)【例2】已知关于x 的一元二次方程(a +c )x 2+2bx +(a -c )=0,其中a 、b 、c 分别为△ABC 三边的长.若方程有两个相等的实数根,试判断△ABC 的形状,并说明理由.【互动探索】方程有两个相等的实数根→得出a 、b 、c 的数量关系→确定三角形的形状. 【解答】△ABC 是直角三角形.理由如下:∵关于x 的一元二次方程(a +c )x 2+2bx +(a -c )=0有两个相等的实数根, ∴Δ=0,即(2b )2-4(a +c )(a -c )=0, ∴a 2=b 2+c 2,∴△ABC 是直角三角形.【互动总结】(学生总结,老师点评)解此类题时,先根据根的情况得到判别式的符号,再推出系数之间的关系,进而解决问题.【例3】如果关于x 的方程mx 2-2(m +2)x +m +5=0没有实数根,试判断关于x 的方程(m -5)x 2-2(m -1)x +m =0的根的情况.【互动探索】方程mx 2-2(m +2)x +m +5=0没有实数根→确定m 的取值范围→分类讨论确定方程(m -5)x 2-2(m -1)x +m =0的根的情况.【解答】∵方程mx 2-2(m +2)x +m +5=0没有实数根,∴Δ=[-2(m +2)]2-4m (m +5)=4(m 2+4m +4-m 2-5m )=4(4-m )<0,∴m >4.对于方程(m -5)x 2-2(m -1)x +m =0,当m =5时,方程有一个实数根;当m ≠5时,Δ1=[-2(m -1)]2-4m (m -5)=12m +4.∵m >4,∴Δ1=12m +4>0,∴此时方程有两个不相等的实数根.综上,当m =5时,方程(m -5)x 2-2(m -1)x +m =0有一个实数根;当m >4且m ≠5时,方程(m -5)x 2-2(m -1)x +m =0有两个不相等的实数根.【互动总结】(学生总结,老师点评)解此题时,不要忽略对方程(m -5)x 2-2(m -1)x +m =0是否为一元二次方程进行讨论,此方程可能是一元一次方程.环节3 课堂小结,当堂达标(学生总结,老师点评)一元二次方程根的判别式⎩⎪⎨⎪⎧ 定义——Δ=b 2-4ac 与ax 2+bx +c =0(a ≠0)实数根的关系⎩⎪⎨⎪⎧ Δ>0↔有两个不相等的实数根Δ=0↔有两个相等的实数根Δ<0↔没有实数根请完成本课时对应练习!5 一元二次方程的根与系数的关系(第5课时)一、基本目标1.理解并掌握一元二次方程的根与系数的关系.2.能利用一元二次方程根与系数的关系解决相关问题.二、重难点目标【教学重点】一元二次方程两根之和及两根之积与方程系数之间的关系.【教学难点】一元二次方程的根与系数的关系的推导及其应用.环节1 自学提纲,生成问题【5 min 阅读】阅读教材P33~P35的内容,完成下面练习.【3 min 反馈】1.一元二次方程根与系数的关系:若关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1、x 2,则有x 1+x 2=__-b a __,x 1x 2=__c a __. 特殊形式:若x 2+px +q =0的两根为x 1、x 2,则x 1+x 2=__-p __,x 1x 2=__q __.2.已知x 1、x 2是一元二次方程x 2-6x -15=0的两根,则x 1+x 2=__6__,x 1x 2=__-15__.3.已知实数x 1、x 2满足x 1+x 2=11,x 1x 2=30,则以x 1、x 2为根的一元二次方程是__x 2-11x +30=0__.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】已知x 1、x 2是方程x 2+6x +3=0的两实数根,不解方程,求下列代数式的值.(1)(x 1-x 2)2; (2)x 2x 1+x 1x 2. 【互动探索】(引发学生思考)方程x 2+6x +3=0的根与系数的关系怎样?所求代数式与它们的关系有什么联系?【解答】∵x 1、x 2是方程x 2+6x +3=0的两实数根,∴x 1+x 2=-6,x 1x 2=3.(1)(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=(-6)2-4×3=24.(2)x 2x 1 + x 1x 2=x 22 + x 21x 1x 2=(x 1 + x 2)2-2x 1x 2x 1x 2=(-6)2-2×33=10. 【互动总结】(学生总结,老师点评)(1)解此类题时,先根据根与系数的关系得到两根和与两根积,再把所求代数式变形,最后利用整体代入法计算即可.(2)常见的与一元二次方程根的和、积有关系的代数式变形:①x 21 + x 22=(x 1 + x 2)2-2x 1x 2; ②(x 1-x 2)2=(x 1+x 2)2-4x 1x 2;③1x 1+1x 2=x 1+x 2x 1x 2; ④x 2x 1+x 1x 2=(x 1+x 2)2-2x 1x 2x 1x 2; ⑤(x 1+k )(x 2+k )=x 1x 2+k (x 1+x 2)+k 2;⑥|x 1-x 2|=(x 1-x 2)2=(x 1+x 2)2-4x 1x 2.活动2巩固练习(学生独学)1.方程x2-6x+10=0的根的情况是(C)A.两个实根和为6B.两个实根之积为10C.没有实数根D.有两个相等的实数根2.若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程可能是(C) A.x2+3x-2=0 B.x2+3x+2=0C.x2-3x+2=0 D.x2-2x+3=03.已知关于x的方程5x2+kx-6=0的一个根2,则k=__-7__,另一个根为__-35__.4.设a、b是方程x2+2x-2019=0的两个不相等的实数根.(1)a+b=__-2__,ab=__-2019__,2a2+4a=__4038__;(2)求代数式a2+3a+b的值.解:a2+3a+b=a2+2a+a+b=2019-2=2017.5.请利用一元二次方程的根与系数关系解决下列问题:(1)若x2+bx+c=0的两根为-2和3,求b和c的值;(2)设方程2x2-3x+1=0的两根为x1、x2,不解方程,求1x1+1x2的值.解:(1)b=-1,c=-6.(2)1x1+1x2=3.活动3拓展延伸(学生对学)【例2】设一元二次方程x2-6x+k=0的两根分别为x1、x2.(1)若x1=2,求x2的值;(2)若k=4,且x1、x2分别是Rt△ABC的两条直角边的长,试求Rt△ABC的面积.【互动探索】(1)已知方程一根→利用根与系数的关系得方程的另一个根.(2)分析法:Rt△的面积→与两直角边的乘积相关,即x1x2的乘积关系→根与系数的关系,确定x1x2的值.【解答】(1)∵x1、x2是一元二次方程x2-6x+k=0的两根,且x1=2,∴x1+x2=-(-6),即2+x2=6,∴x2=4.(2)∵x1、x2是一元二次方程x2-6x+k=0的两根,k=4,∴x1·x2=k=4.又∵x1、x2分别是Rt△ABC的两条直角边的长,∴S Rt△ABC=12x1·x2=12×4=2.【互动总结】(学生总结,老师点评)求(2)问时,弄清直角三角形的面积与方程两实根的关系是解决问题的关键.环节3 课堂小结,当堂达标 (学生总结,老师点评)一元二次方程的根与系数的关系:ax 2+bx +c =0(a ≠0)的两根为x 1、x 2,则x 1+x 2=-b a ,x 1x 2=c a. 特殊地,x 2+px +q =0的两根为x 1、x 2,则x 1+x 2=-p ,x 1x 2=q .请完成本课时对应练习!。
九年级数学上册第22章《一元二次方程》(第3课时)一元二次方程的解法导学案(无答案)(新版)华东师大版
一元二次方程的解法
一、学习目标
掌握用因式分解方法解一元二次方程。
二、学习重点
重点:掌握用因式分解方法解一元二次方程的步骤。
难点:理解并应用因式分解方法解特殊的一元二次方程。
三、自主预习
我们学过因式分解的方法有:,,,
将下列各式因式分解:
(1)-(2)25x2-9y2(3)x2-4xy+4y2 (4)
四、合作探究
探究1.用因式分解法解一元二次方程:
(1)x2-2x=0 (2)x(3x+2)-6(3x+2)=0
(3)4x2-12x=-9 (4)(2x-1)2-x2-4x-4=0
探究2.下列各方程解题中是否有错误,有的请改正。
(1)解方程x2=81 (2)解方程x2=2x
解:因为x2=81,所以x=9 解:由方程x2=2x两边都除以x,得x=2
五、巩固反馈
1.若2x2+3与2x2-4互为相反数,则x的值为()
A、 B、2 C、 2或-2 D、或-
2.关于x的一元二次方程x2-5x+p2-2p+5=0的一个根为1,则实数p的值为()
A. 4
B.0或2
C. 1
D.-1
3.方程(x-1)(x+2)(x-3)=0的根是:
4.用因式分解解下列方程:
(1)(t-2)(t+1)=0(2)x(x+1)-5x=0.
(3)(3y+1)2-4=0 (4)9(x-2)2=4(x+1)2
(5)+2x-3=0 (6)-50x+225=0
5.已知三角形的两边分别为3和8,第三边长是方程x(x-7)-10(x-7)=0的一个根,求这个三角形的周长。
九年级数学上册22.2一元二次方程的解法第5课时 精品导学案 华东师大版3
22.2一元二次方程的解法第五课时 一元二次方程的根与系数的关系学习目标:1.理解并掌握根与系数关系:a b x x -=+21,ac x x =21; 2.会用根的判别式及根与系数关系解题. 重点、难点重点:理解并掌握根的判别式及根与系数关系. 难点:会用根的判别式及根与系数关系解题;【课前预习】阅读教材P40 — 42 , 完成课前预习 1、知识准备( 1 ) 一元二次方程的一般式: (2)一元二次方程的解法: (3)一元二次方程的求根公式: 2方 程1x2x12x x +12.x x2560x x -+=2 5 x 2+3x-10=0-3问题:你发现什么规律? ①用语言叙述你发现的规律;②x 2+px +q =0的两根1x ,2x 用式子表示你发现的规律。
探究2方 程1x2x12x x +12.x x2x 2-3x -2=0 2 -1 3x 2-4x +1=01问题:上面发现的结论在这里成立吗? 请完善规律;①用语言叙述发现的规律;② ax 2+bx +c =0的两根1x ,2x 用式子表示你发现的规律。
3、利用求根公式推到根与系数的关系(韦达定理)ax 2+bx +c =0的两根1x = , 2x =12x x + 12.x x= = = = = = = =练习1:根据一元二次方程的根与系数的关系,求下列方程的两根和与两根积: (1)2310x x --= (2)22350x x +-= (3)21203x x -=【课堂活动】 活动1:预习反馈 活动2:典型例题例1:不解方程,求下列方程的两根和与两根积:(1)x 2-6x -15=0 (2)3x 2+7x -9=0 (3)5x -1=4x 2例2:已知方程2290x kx +-=的一个根是 -3 ,求另一根及k 的值。
例3:已知α,β是方程x 2-3x-5=0的两根,不解方程,求下列代数式的值例4:已知关于x 的方程3x 2-5x-2=0,且关于y 的方程的两根 是x 方程的两根的平方,则关于y 的方程是__________221(2)(3)αβαβαβ++-1(1)活动3:随堂训练不解方程求下列方程的两根和与积:(1)x 2-3x =15 (2)5x 2-1=4x 2+x(3)x 2-3x +2=10 (4)4x 2-144=0(5)3x (x-1)=2(x-1) (6)(2x-1)2=(3-x )2活动4:课堂小结一元二次方程的根与系数的关系: 【课后巩固】 一、填空1. 若方程20ax bx c ++=(a≠0)的两根为1x ,2x 则12x x += ,12.x x = __2 .若方程22310x x --= 则12x x += ,12.x x = __3 .若方程220x px ++=的一个根2,则它的另一个根为____ p=____4 .已知方程230x x m -+=的一个根1,则它的另一根是____ m= ____5 .若0和-3是方程的20x px q ++=两根,则p+q= ____6 .在解方程x 2+px+q=0时,甲同学看错了p ,解得方程根为x=1与x=-3;乙同学看错了q ,解得方程的根为x=4与x=-2,你认为方程中的p=——,q=——。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22.2一元二次方程的解法
第五课时一元二次方程的根与系数的关系
学习目标:1.理解并掌握根与系数关系:,;
2.会用根的判别式及根与系数关系解题.
重点、难点
重点:理解并掌握根的判别式及根与系数关系.
难点:会用根的判别式及根与系数关系解题;
【课前预习】阅读教材P40 — 42 , 完成课前预习
1、知识准备
( 1 ) 一元二次方程的一般式:
(2)一元二次方程的解法:
(3)一元二次方程的求根公式:
2、探究1
10=0
问题:你发现什么规律?
①用语言叙述你发现的规律;
②x2+px+q=0的两根,用式子表示你发现的规律。
探究2
问题:上面发现的结论在这里成立吗?
请完善规律;
①用语言叙述发现的规律;
② ax2+bx+c=0的两根,用式子表示你发现的规律。
3、利用求根公式推到根与系数的关系(韦达定理)ax2+bx+c=0的两根=,=
= =
= =
= =
= =
练习1:根据一元二次方程的根与系数的关系,求下列方程的两根和与两根积:(1)(2)(3)
【课堂活动】
活动1:预习反馈
活动2:典型例题
例1:不解方程,求下列方程的两根和与两根积:
(1)x2-6x-15=0 (2)3x2+7x-9=0 (3)5x-1=4x2
例2:已知方程的一个根是 -3 ,求另一根及k的值。
例3:已知α,β是方程x2-3x-5=0的两根,不解方程,求下列代数式的值
例4:已知关于x的方程3x2-5x-2=0,且关于y的方程的两根
是x方程的两根的平方,则关于y的方程是__________
活动3:随堂训练
不解方程求下列方程的两根和与积:
(1)x2-3x=15 (2)5x2-1=4x2+x。