2017-2018学年(新课标)湘教版七年级数学下册《平方差公式》同步测试题及答案解析

合集下载

七年级数学下册2.2.1平方差公式同步练习(新版)湘教版.docx

七年级数学下册2.2.1平方差公式同步练习(新版)湘教版.docx

2.2.1平方差公式要点感知 两个数的 __________与这两个数的 __________ 的等于这两个数的平方差, 即(a+b)(a-b)=__________. 预习练习计算:(1)(2a+1)(2a-1)=__________ ; (2)(s-3t)(s+3t)=__________ ;(3)(2a+3b)(2a-3b)=__________ ;(4)(ab+4b)(ab-4b)=__________. 知识点 1平方差公式1. 下列计算中,不能用平方差公式计算的是()A .( x+y )( x-y)B .( -x-y)( -x+y)C .( x-y)( -x+y)D .( -x-y)( y-x )2. 下列各式计算正确的是 ( ) A.(x+3)(x-3)=x2-3B.(2x+3)(2x-3)=2x2-9C.(2x+3)(x-3)=2x2-9D.(5ab+1)(5ab-1)=25a2b 2-13. 如果 (2x-3y)· M=4x 2-9y 2, 那么M 表示的式子为( )A.-2x+3y 4. 下列各式B.2x-3y: ① (x-2y)(2y+x)C.-2x-3y;② (x-2y)(-x-2y)D.2x+3y;③ (-x-2y)(x+2y);④ (x-2y)(-x+2y).其中能用平方差公式计算的是()A. ①②B.①③ C.②③D. ②④5. 计算:( 1) (3x-y)(3x+y)=__________;6. 当 x=3, y=1 时,代数式 (x+y)(x-y)+y7. 计算:( 2) (-x-1)(x-1)=__________.2的值是 ________ __.(1)(2m+3n)(3n-2m);(2)(-1x-1y)(1 y-1x);2 332(3)(-3x2+ 1)(-3x2-1).22知识点 2 平方差公式的应用8. 若 a 2-b 2=12,a+b=6, 则 a-b 的值是 ()A.1B.2C.3D.49. 对于任意的整数 n, 能整除 (n+2)(n-2)-(n+3)(n-3)的整数是 ( )A.2B.3C.4D.510. 如果( x+y-3) 2+(x-y+5) 2=0,那么 x 2 -y 2=__________.11. 计算:(1)197 × 203;(2)99.8× 100.2.12. 如 1,从 a 的正方形片中剪去一个 b 的小正方形,再沿着段AB 剪开,把剪成的两片拼成如 2 的等腰梯形 .(1) 1 中阴影部分面 S1, 2 中阴影部分面 S2,直接用含 a, b 的代数式表示 S1,S2;(2) 写出上述程所揭示的乘法公式.13.下列各式能用平方差公式算的是( )A.(3a+b)(a-b)B.(-3a-b)(-3a+b)C.(3a+b)(-3a-b)D.(-3a+b)(3a-b)14.算 2 011 × 2 013-2 0122的果是 ()A.1B.-1C.2D.-215.察等式 : ①9-1= 2× 4;② 25-1=4 × 6;③ 49-1=6 ×8⋯按照种律写出第n 个等式____________________.16.算:(1)(-3x+5y)(-5y-3x);(2)(x+y)(x-y)+(x+2y)(-x+2y);11(3)(-a+b)(-a-b)-(3a-2b)(3a+2b);(4)(x+2y)(x-2y)-(x-4y)(x+4y)+(6y-5x)(5x+6y).2217. 已知 (a+b-1)(a+b+1)=8 ,求 a+b 的 .18. 利用平方差公式 算: (1)602× 591;(2)201422014 .3 32015 201319. 小明家有一 a 米的正方形土地租 了养 殖 刘杰 . 今年小明的爸爸 刘杰 :“我把 地一 减少 1 米, 另外一 增加 1 米 , 租金不 , 租 你 , 你看如何?”养殖 刘杰一听 , 就答 了 . 你 养殖 刘杰吃 了 ? 什么?20. 若 (2x+y-1) 2+|x-2y- 3|=0, 求代数式 (2x+y)(2x-y)-(x+2y)(x-2y)-1的 .21. 先 察下面的解 程,然后解答 : 目:化 : (2+1)(2 2+1)(2 4+1).解: (2+1)(2 2 +1)(2 4+1)=(2-1)(2+1)(22+1)(2 4+1)=(2 2-1)(2 2+1)(2 4+1)=(2 4- 1)(2 4+1)=2 8-1.:化 : (3+1)(3 2+1)(3 4+1)(3 8 +1) ⋯ (3 64+1).参考答案要点感知和 差 a 2-b 2(1)4a2-1 (2)s 2-9t 2 (3)4a 2-9b 2 (4)a2b 2-16b 21. C2. D3. D4. A5. (1)9x 2-y 2 (2)1-x 26. 97. (1) 原式 =9n 2-4m 2.(2) 原式 = 1x 2- 1y 2.49(3) 原式 =9x 4- 1.48. B 9. D10. -1511. (1) 原式 =(200-3)(200+3)=200 2-3 2=40 000-9=39 991.(2) 原式 =(100-0.2) × (100+0.2)=100 2-0.2 2=10 000-0.04=9 999.96.12. (1)S 1= a 2-b 2, S 2= 1(2b+2a)(a-b)= (a+b)(a-b).2(2)(a+b)(a-b) = a 2-b 2.13. B 14. B2215. (2n+1)-1 =2n(2n+2)16. (1) 原式 =(-3x+5y)(-3x-5y)=(-3x) 2-(5y) 2 =9x 2-25y 2.(2) 原式 =x 2 -y 2+4y 2-x 2=3y 2.(3) 原式 =a 2- 1b 2 -9a 2+4b 2=-8a 2+15b 2.44(4) 原式 =x 2 -4y 2-x 2+16y 2+36y 2-25x 2=48y 2-25x 2. 17. (a+b-1)(a+b+1)=[(a+b)-1][(a+b)+1]=(a+b) 2-1=8 ,所以 (a+b) 2 =9,所以 a+b=±3.18. (1) 原式 =(60+ 2) × (60-2)=3 600-4=3 599 5 .3399(2) 原式 =2014=2014=2 014.20141 (201420142 201421) 2014 2 119. 养殖 刘杰吃 了 .理由:因 原正方形的面 a 2 平方米 , 改 后面 (a+1)(a-1)=a 2-1 (平方米) , 因 a 2 > a 2-1, 所以 , 养殖 刘杰吃 了 .20.x 2y 3 0, x 1, 根据 意,得y1 解得y1.2x 0.所以,原式 =3x 2+3y 2-1=3 × 12+3× (-1) 2-1=5. 21. 原式 = 1 (3-1)(3+1)(32+1)(3 4+1)(3 8+1) ⋯ (3 64+1)2= 1 (3 2-1)(3 2+1)(3 4+1)(3 8+1) ⋯ (3 64+1)2=1 (3 4-1)(3 4+1)(3 8+1) ⋯ (3 64+1)2=1(3 8-1)(3 8+1) ⋯ (3 64+1)21664= 1(3 -1) ⋯ (3 +1)2= 1 (3 64-1)(364+1)2=1(3 128-1).2。

初中数学 平方差公式经典习题及答案(新版)湘教版

初中数学 平方差公式经典习题及答案(新版)湘教版

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:化简:(a+1)2-(a-1)2=( )A.2B.4C.4aD.2a2+2试题2:下列各式计算正确的是( )A.(x+2)(x-2)=x2-2B.(2a+b)(-2a+b)=4a2-b2C.(2x+3)(2x-3)=2x2-9D.(3ab+1)(3ab-1)=9a2b2-1试题3:下列运用平方差公式计算错误的是( )A.(a+b)(a-b)=a2-b2B.(x+1)(x-1)=x2-1C.(2x+1)(2x-1)=2x2-1D.(-a+2b)(-a-2b)=a2-4b2试题4:如果x+y=-4,x-y=8,那么代数式x2-y2的值是.试题5:计算:= .试题6:观察下列各式,探索发现规律:22-1=3=1×3;42-1=15=3×5;62-1=35=5×7;82-1=63=7×9;102-1=99=9×11;…用含正整数n的等式表示你所发现的规律为.试题7:先化简,再求值:(x-1)(x+1)-x(x-3),其中x=3.试题8:解方程:(x-4)(x+3)+(2+x)(2-x)=4.试题9:如图1,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿着线段AB剪开,把剪成的两张纸片拼成如图2的等腰梯形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2,请直接用含a,b的代数式表示S1,S2.(2)请写出上述过程所揭示的乘法公式.试题10:阅读下列材料:某同学在计算3×(4+1)(42+1)时,把3写成4-1后,发现可以连续运用平方差公式计算:3×(4+1)(42+1)=(4-1)(4+1)(42+1)=(42-1)(42+1)=162-1.很受启发,后来在求(2+1)(22+1)(24+1)(28+1)…(21024+1)的值时,又改造此法,将乘积式前面乘以1,且把1写为2-1得(2+1)(22+1)(24+1)(28+1)…(21024+1)=(2-1)(2+1)(22+1)(24+1)(28+1)…(21024+1)=(22-1)(22+1)(24+1)(28+1)…(21024+1)=(24-1)(24+1)(28+1)…(21024+1)=…=(21024-1)(21024+1)=22048-1.回答下列问题:(1)请借鉴该同学的经验,计算:(3+1)(32+1)(34+1)(38+1).(2)借用上面的方法,再逆用平方差公式计算:….试题1答案:C.(a+1)2-(a-1)2=[(a+1)-(a-1)]·[(a+1)+(a-1)]=2×2a=4a.试题2答案:D.(x+2)(x-2)=x2-4≠x2-2;(2a+b)(-2a+b)=(b+2a)(b-2a)=b2-4a2≠4a2-b2;(2x+3)(2x-3)=4x2-9≠2x2-9;(3ab+1)(3ab-1)=9a2b2-1.试题3答案:C.根据平方差得(2x+1)(2x-1)=4x2-1,所以C错误.而A,B,D符合平方差公式条件,计算正确.试题4答案:-32试题5答案:1【解析】原式====1.试题6答案:(2n)2-1=(2n-1)(2n+1)试题7答案:【解析】原式=x2-1-(x2-3x)=x2-1-x2+3x=3x-1,当x=3时,原式=3×3-1=8.试题8答案:去括号得x2-4x+3x-12+4-x2=4,移项得x2-4x+3x-x2=4+12-4,合并同类项得-x=12,系数化为1得x=-12.试题9答案:【解析】(1)图1中阴影部分面积为S1=a2-b2;图2中阴影部分面积为S2=(2b+2a)(a-b)=(a+b)(a-b).(2)(a+b)(a-b)=a2-b2.试题10答案:【解析】(1)(3+1)(32+1)(34+1)(38+1)=(32-1)(32+1)(34+1)(38+1)=(34-1)(34+1)(38+1)=(38-1)(38+1)=(316-1).(2)…=…=××××…××=×=.。

湘教版七年级下册数学第2章2.2.1平方差公式习题课件1

湘教版七年级下册数学第2章2.2.1平方差公式习题课件1

素养核心练
解:原式=12(3-1)(3+1)(32+1)(34+1)(38+1)(316+1) =12(32-1)(32+1)(34+1)(38+1)(316+1) =12(34-1)(34+1)(38+1)(316+1)=12(38-1)(38+1)(316+1) =12(316-1)(316+1)=12(332-1).
习题链接
提示:点击 进入习题
答案显示
新知笔记
差;a2-b2
1C
2C
3B
4A
5 x2-1
6A
7C
8 249A10 B11 见习题 12 见习题 13 见习题 14 见习题 15 见习题
新知笔记
平方差公式:两个数的和与这两个数的___差_____的积 等于这两个数的平方差. 用数学式表示:(a+b)(a-b)=__a_2_-__b_2 _.
B.x4-116
C.x4-12x2+116
D.x4-18x2+116
能力提升练
11.运用平方差公式计算: (1) 105×95;
解:(1)原式=(100+5)×(100-5)=1002-52=9 975. (2) 54.52-45.52.
原式=(54.5-45.5)×(54.5+45.5) =9×100 =900.
能力提升练 12.化简: (1)(3a-2b)(3a+2b);
解:(1)原式=(3a)2-(2b)2=9a2-4b2. (2)(3a-b)(3a+b)-(a2+b2);
原式=9a2-b2-a2-b2=8a2-2b2. (3)【2021·湖州】x(x+2)+(1+x)(1-x).
原式=x2+2x+(1-x2)=2x+1.
基础巩固练
【点拨】长方形的面积为(a+6)(a-6)=a2-36(平方米), 正方形的面积为a2平方米,所以长方形的面积比正方形 的面积小了36平方米.故选C. 【答案】C

2018年湘教版七年级数学下册全册同步练习含答案最新

2018年湘教版七年级数学下册全册同步练习含答案最新

2017-2018学年湘教版初中数学七年级下册全册课时作业目录1.1 二元一次方程组课时作业1.3 二元一次方程组的应用(第1课时)课时作业1.3 二元一次方程组的应用(第2课时)课时作业1.4 三元一次方程组课时作业2.1.1 同底数幂的乘法课时作业2.1.2 多项式的乘法课时作业2.1.2 幂的乘方与积的乘方课时作业2.1.3 单项式的乘法课时作业2.1.4 多项式的乘法课时作业2.2.1 平方差公式课时作业2.2.2 完全平方公式课时作业2.2.3 运用乘法公式进行计算课时作业3.1 多项式的因式分解课时作业3.2 提公因式法课时作业3.3 公式法(第1课时)课时作业3.3 公式法(第2课时)课时作业4.1.1 相交与平行课时作业4.1.2 相交直线所成的角课时作业4.2 平移课时作业课时作业4.3 平行线的性质课时作业4.4 平行线的判定课时作业4.5 垂线课时作业4.6 两条平行线间的距离课时作业5.1.1轴对称图形课时作业5.1.2轴对称变换课时作业5.2 旋转课时作业5.3 图形变换的简单应用课时作业6.1.1 平均数课时作业6.1.2 中位数课时作业6.1.3 众数课时作业6.2 方差课时作业建立二元一次方程组(30分钟50分)一、选择题(每小题4分,共12分)1.下列方程中,是二元一次方程的是( )A.3x2-2y=4B.6x+y+9z=0C.+4y=6D.4x=2.以为解的二元一次方程组是( )A. B.C. D.3.(2013·广州中考)已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是( )A. B.C. D.二、填空题(每小题4分,共12分)4.请写出一个二元一次方程组,使它的解是5.方程(k2-1)x2+(k+1)x+2ky=k+3,当k= 时,它为一元一次方程;当k=时,它为二元一次方程.6.母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从信息中可知,若设鲜花x元/束,礼盒y 元/盒,则可列方程组为.三、解答题(共26分)7.(8分)下列各组数据中哪些是方程3x-2y=11的解?哪些是方程2x+3y=16的解?哪些是方程组的解?为什么?①②③④8.(8分)(1)若是方程2x+y=0的解,求6a+3b+2的值.(2)若是方程3x-y=1的解,求6a-2b+3的值.【拓展延伸】9.(10分)为民医疗器械经销部经营甲、乙两种医疗器械,甲器械每台2万元,乙器械每台5万元,今年厂方给经销部规定了24万元的营销任务,那么该经销部要想刚好完成任务,有哪些销售方案可选择?若乙医疗器械的利润是甲医疗器械的3倍,那么你觉得选择哪个方案更好些?答案解析1.【解析】选D.4x=含有两个未知数x,y,并且含x,y项的次数都是1,是二元一次方程.选项A有二次项,选项B有三个未知数,选项C分母中有未知数,故A,B,C都不是二元一次方程.2.【解析】选D.将分别代入四个方程组中,只有D中的两个方程同时成立.3.【解析】选C.由题意知,x+y=10,x-3y=2,即x=3y+2,所以4.【解析】以为解的二元一次方程有无数个,如x+y=1,x-y=3,x+2y=0等,只要满足x=2,y=-1即可.然后从中选两个方程,但是这两个方程的对应项的系数不能成倍数关系. 答案:(答案不唯一)5.【解析】无论是一元一次方程还是二元一次方程,都不可能有二次项,所以k2-1=0,即k=±1.当k=-1时,原方程为-2y=2是一元一次方程;当k=1时,原方程为x+y=2为二元一次方程. 答案:-1 16.【解析】一束鲜花x元,一盒礼盒y元,由一束鲜花和两盒礼盒共55元,得:x+2y=55;由两束鲜花和3盒礼盒共90元,得2x+3y=90,故答案:7.【解析】①②是方程3x-2y=11的解.②③是方程2x+3y=16的解.②是方程组的解.因为方程组的解必须是方程组中两个方程的公共解.8.【解析】(1)把代入方程2x+y=0得2a+b=0,两边同时乘以3得:6a+3b=0,所以6a+3b+2=2.(2)把代入3x-y=1得3a-b=1,则6a-2b+3=2(3a-b)+3=5.【归纳整合】解决本题的方法为整体代入法,将含a,b的式子整体代入,使得整个求解过程更加简便,在解决整体代入法求值问题时,要多观察式子的特点,合理运用整体代入法.9.【解析】设销售甲医疗器械x台,乙医疗器械y台,根据题意,得2x+5y=24.因为x,y都是非负整数,所以x==12-2y-.当y=0时,x=12;当y=2时,x=7;当y=4时,x=2.所以销售方案有三种:方案一:销售甲器械12台,乙器械0台;方案二:销售甲器械7台,乙器械2台;方案三:销售甲器械2台,乙器械4台.设甲医疗器械的利润为a(a>0),则方案一的利润为12a+0×3a=12a(元);方案二的利润为7a+2×3a=13a(元);方案三的利润为2a+4×3a=14a(元).因为14a>13a>12a,所以选择方案三更好些.二元一次方程组的应用(第1课时)(30分钟50分)一、选择题(每小题4分,共12分)1.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x分钟,下坡用了y分钟,根据题意可列方程组为( ) A. B.C. D.2.(2013·潍坊中考)为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是 2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是( )A.B.C.D.3.已知甲、乙两种商品的进价和为100元,为促销而打折销售,若甲商品打8折,乙商品打6折,则可赚50元;若甲商品打6折,乙商品打8折,则可赚30元,则甲、乙两种商品的定价分别是( )A.50元,150元B.150元,50元C.100元,50元D.50元,100元二、填空题(每小题4分,共12分)4.甲种电影票每张20元,乙种电影票每张15元.若购买甲,乙两种电影票共40张,恰好用去700元,则甲种电影票买了张.5.学校组织一次有关历史知识的竞赛,共有20道题,每一题答对得5分,答错或不答都倒扣1分,小明最终得了76分,那么他答对道题.6.一个长方形的长减少5cm,宽增加2cm,就变成了一个正方形,并且这两个图形的面积相等,则原长方形的面积为cm2.三、解答题(共26分)7.(8分)(2013·济南中考)某寄宿制学校有大、小两种类型的学生宿舍共50间,大宿舍每间可住8人,小宿舍每间可住6人.该校360名住宿生恰好住满这50间宿舍.求大、小宿舍各有多少间.8.(8分)(2013·宜宾中考)2013年4月20日,四川省芦山县发生7.0级强烈地震,造成大量的房屋损毁,急需大量帐篷.某企业接到任务,须在规定时间内生产一批帐篷.如果按原来的生产速度,每天生产120顶帐篷,那么在规定时间内只能完成任务的90%.为按时完成任务,该企业所有人员都支援到生产第一线,这样,每天能生产160顶帐篷,刚好提前一天完成任务.问规定时间是多少天?生产任务是多少顶帐篷?【拓展延伸】9.(10分)一辆汽车从A地驶往B地,前路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h.请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组解决的问题,并写出解题过程.答案解析1.【解析】选B.第一个等量关系式为:x+y=1.2,第二个等量关系式为:x+y=16,构成方程组2.【解析】选B.根据“吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人”所得的方程是x-y=22;调查的吸烟的人数是,不吸烟的人数是,根据共调查了10000人,列方程得+=10000,所以可列方程组3.【解析】选B.设甲的定价为x元,乙的定价为y元.则解得:4.【解析】设购买甲种电影票x张,乙种电影票y张,由题意得解得即甲种电影票买了20张.答案:20【归纳整合】二元一次方程组的优点当我们遇到两个量之间出现两种等量关系时,可以考虑列二元一次方程组解题.虽然本题也可列一元一次方程,但相比较而言,列二元一次方程组比列一元一次方程更好.5.【解析】设他答对x道题,答错或不答y道题.根据题意,得解得答案:166.【解析】设长方形的长为xcm,宽为ycm,则根据题意得解这个方程组得所以长方形的面积xy=.答案:7.【解析】设大宿舍有x间,小宿舍有y间,根据题意得解得答:大宿舍有30间,小宿舍有20间.8.【解析】设规定时间为x天,生产任务是y顶帐篷,由题意得,解得答:规定时间是6天,生产任务是800顶帐篷.9.【解析】本题答案不唯一,方法一:问题:普通公路段和高速公路段各长多少千米?设普通公路段长为xkm,高速公路段长为ykm.由题意可得:解得答:普通公路段长为60km,高速公路段长为120km.方法二:问题:汽车在普通公路段和高速公路段上各行驶了多少小时?设汽车在普通公路段上行驶了xh,在高速公路段上行驶了yh.由题意可得:解得:答:汽车在普通公路段上行驶了1h,在高速公路段上行驶了1.2h.二元一次方程组的应用(第2课时)(30分钟50分)一、选择题(每小题4分,共12分)1.如图所示的两台天平保持平衡,已知每块巧克力的质量相等,且每个果冻的质量也相等,则每块巧克力和每个果冻的质量分别为( )A.10g,40gB.15g,35gC.20g,30gD.30g,20g2.根据以下对话,可以求得小红所买的笔和笔记本的价格分别是( )A.1.2元/支,3.6元/本B.0.8元/支,3.6元/本C.1.2元/支,2.6元/本D.0.8元/支,2.6元/本3.某校团委与社区联合举办“保护地球,人人有责”活动,选派20名学生分三组到120个店铺发传单,若第一、二、三小组每人分别负责8,6,5个店铺,且每组至少有两人,则学生分组方案有( )A.6种B.5种C.4种D.3种二、填空题(每小题4分,共12分)4.(2013·绍兴中考)我国古代数学名著《孙子算经》中有这样一道题:今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是鸡有23只,兔有12只.现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是鸡有只,兔有只.5.如图,正方形是由k个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k= .6.(2013·鞍山中考)如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为220cm,此时木桶中水的深度是cm.三、解答题(共26分)7.(8分)(2013·莱芜中考)某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同,求两种跳绳的单价各是多少元?8.(8分)(2013·嘉兴中考)某镇水库的可用水量为12000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)年降水量为多少万立方米?每人年平均用水量为多少立方米?(2)政府号召节约用水,希望将水库的使用年限提高到25年,则该镇居民人均每年需节约多少立方米水才能实现目标?【拓展延伸】9.(10分)某公园的门票价格如表所示:某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人?答案解析1.【解析】选C.设每块巧克力的质量为xg,每个果冻的质量为yg,由题意得解得2.【解析】选 A.设小红所买的笔和笔记本的价格分别是x元/支,y元/本,则解得所以小红所买的笔和笔记本的价格分别是1.2元/支,3.6元/本.3.【解析】选 B.设第一小组有x人,第二小组有y人,则第三小组有(20-x-y)人,则8x+6y+5(20-x-y)=120,3x+y=20,当x=2时,y=14,20-x-y=4,符合题意;当x=3时,y=1 1,20-x-y=6,符合题意;当x=4时,y=8,20-x-y=8,符合题意;当x=5时,y=5,20-x-y=10,符合题意;当x=6时,y=2,20-x-y=12,符合题意,故学生分组方案有5种.4.【解析】设鸡有x只,兔有y只,根据题意可得解得:即鸡有22只,兔有11只.答案:22 115.【解析】设矩形的长为x,矩形的宽为y,中间竖的矩形为n个,则可列方程组解得n=4.则k=2+2+4=8.答案:86.【解析】设长铁棒长为xcm,短铁棒长为ycm,由题意可得解得所以水的深度为×120=80(cm).答案:807.【解析】设长跳绳的单价是x元,短跳绳的单价是y元.由题意,得解得所以长跳绳的单价是20元,短跳绳的单价是8元.8.【解析】(1)设年降水量为x万立方米,每人年平均用水量为y立方米,则:解得答:年降水量为200万立方米,每人年平均用水量为50立方米.(2)设该城镇居民年平均用水量为z立方米才能实现目标,则:12000+25×200=20×25z,解得z=34.所以50-34=16.答:该城镇居民人均每年需要节约16立方米的水才能实现目标.9.【解析】设甲班有x人,乙班有y人,根据题意得,解得答:甲班有55人,乙班有48人.三元一次方程组(30分钟 50分)一、选择题(每小题4分,共12分)1.下列方程中,是三元一次方程组的是( ) A.B.C.D.2.若方程组的解x 与y 的值的和为3,则a 的值为()A.7B.4C.0D.-43.(2012·德阳中考)为确保信息安全,信息需加密传输,发送方由明文→密文(加密);接收方由密文→明文(解密).已知加密规则为:明文a,b,c,d 对应密文a+2b,2b+c,2c+3d,4d.例如:明文1,2,3,4对应的密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为( ) A.4,6,1,7 B.4,1,6,7 C.6,4,1,7D.1,6,4,7二、填空题(每小题4分,共12分)4.解方程组时,①+②可消去未知数 ,得到一个二元一次方程.5.已知方程组则x+y+z= .6.已知甲、乙、丙三人各有一些钱,其中甲的钱数是乙的钱数的2倍,乙的钱数比丙的钱数多1元,丙的钱数比甲的钱数少11元.三人共有元.三、解答题(共26分)7.(8分)李红在做这样一个题目:在等式y=ax2+bx+c中,当x=1时,y=6;当x=2时,y=21;当x=-1时,y=0;当x=-2时,y等于多少?她想,在求y值之前应先求a,b,c的值,你认为她的想法对吗?请你帮她求出a,b,c及y的值.8.(8分)某单位职工在植树节时去植树,甲、乙、丙三个小组共植树50棵,乙小组植树的棵数是甲、丙两小组的和的,甲小组植树的棵数恰是乙小组与丙小组的和,问每小组各植树多少棵?【拓展延伸】9.(10分)某企业为了激励员工参与技术革新,设计了技术革新奖,这个奖项分设一、二、三等,按获奖等级颁发一定数额的奖金,每年评选一次,下表是近三年技术革新获奖人数及奖金总额情况.三等奖人数(人)2012年那么技术革新一、二、三等奖的奖金数额分别是多少万元?答案解析1.【解析】选C.三元一次方程组里必须有三个方程,故排除A,B;D中有两个方程不是一次方程,故它也不是三元一次方程组.2.【解析】选A.把x+y=3和原方程组联立,得到一个关于x,y,a的三元一次方程组,求得a=7.3.【解析】选C.根据题意,得解得故选C.4.【解析】方程①和②中未知数y的系数互为相反数,相加可消去未知数y,得2x+z=27.答案:y 2x+z=275.【解析】①+②+③得:2x+2y+2z=12,所以x+y+z=6.答案:66.【解析】设甲有x元、乙有y元、丙有z元,根据题意,得解得所以三人共有20+10+9=39(元).答案:397.【解析】她的想法对.根据题意,得解得所以该等式为y=4x2+3x-1,所以当x=-2时,y=4×4-3×2-1=9,即y=9.8.【解析】设甲小组植树x棵、乙小组植树y棵、丙小组植树z棵,根据题意,得解得答:甲小组植树25棵、乙小组植树10棵、丙小组植树15棵.9.【解析】设一、二、三等奖的奖金数额分别是x万元、y万元、z万元, 根据题意,得解得答:一、二、三等奖的奖金数额分别是1万元、万元、万元.同底数幂的乘法(30分钟50分)一、选择题(每小题4分,共12分)1.计算(-x)2·x3的结果是( )A.x5B.-x5C.x6D.-x62.下列各式计算正确的个数是( )①x4·x2=x8;②x3·x3=2x6;③a5+a7=a12;④(-a)2·(-a2)=-a4;⑤a4·a3=a7.A.1B.2C.3D.43.下列各式能用同底数幂乘法法则进行计算的是( )A.(x+y)2·(x-y)2B.(x+y)2(-x-y)C.(x+y)2+2(x+y)2D.(x-y)2(-x-y)二、填空题(每小题4分,共12分)4.(2013·天津中考)计算a·a6的结果等于.5.若2n-2×24=64,则n= .6.已知2x·2x·8=213,则x= .三、解答题(共26分)7.(8分)计算:(1)(-3)3·(-3)4·(-3).(2)a3·a2-a·(-a)2·a2.(3)(2m-n)4·(n-2m)3·(2m-n)6.(4)y·y n+1-2y n·y2.8.(8分)已知a x=5,a y=4,求下列各式的值:(1)a x+2. (2)a x+y+1.【拓展延伸】9.(10分)已知2a=3,2b=6,2c=12,试确定a,b,c之间的关系.答案解析1.【解析】选A.(-x)2·x3=x2·x3=x2+3=x5.2.【解析】选B.x4·x2=x4+2=x6,故①错误;x3·x3=x3+3=x6,故②错误;a5与a7不是同类项,不能合并,故③错误;(-a)2·(-a2)=a2·(-a2)=-a2·a2=-a2+2=-a4,故④正确;a4·a3=a4+3=a7,故⑤正确.3.【解析】选 B.A,D选项底数不相同,不是同底数幂的乘法,C选项不是乘法;(x+y)2(-x-y)=-(x+y)2(x+y)=-(x+y)3.4.【解析】根据同底数幂的乘法法则“同底数幂相乘,底数不变,指数相加”,所以a·a6=a1+6=a7. 答案:a75.【解析】因为2n-2×24=2n-2+4=2n+2,64=26,所以2n+2=26,即n+2=6,解得n=4.答案:46.【解析】因为2x·2x·8=2x·2x·23=2x+x+3,所以x+x+3=13,解得x=5.答案:57.【解析】(1)(-3)3·(-3)4·(-3)=(-3)3+4+1=(-3)8=38.(2)a3·a2-a·(-a)2·a2=a3+2-a·a2·a2=a5-a5=0.(3)(2m-n)4·(n-2m)3·(2m-n)6=(n-2m)4·(n-2m)3·(n-2m)6=(n-2m)4+3+6=(n-2m)13.(4)y·y n+1-2y n·y2=y n+1+1-2y n+2=y n+2-2y n+2=(1-2)y n+2=-y n+2.8.【解析】(1)a x+2=a x×a2=5a2.(2)a x+y+1=a x·a y·a=5×4×a=20a.9.【解析】方法一:因为12=3×22=6×2, 所以2c=12=3×22=2a×22=2a+2,即c=a+2,①又因为2c=12=6×2=2b×2=2b+1,所以c=b+1,②①+②得2c=a+b+3.方法二:因为2b=6=3×2=2a×2=2a+1,所以b=a+1,①又因为2c=12=6×2=2b×2=2b+1,所以c=b+1,②①-②得2b=a+c.多项式的乘法(第1课时)(30分钟50分)一、选择题(每小题4分,共12分)1.化简5(2x-3)+4(3-2x)的结果为( )A.2x-3B.2x+9C.8x-3D.18x-32.下列各式中计算错误的是( )A.2x-(2x3+3x-1)=4x4+6x2-2xB.b(b2-b+1)=b3-b2+bC.-x(2x2-2)=-x3+xD.x=x4-2x2+x3.今天数学课上,老师讲了单项式乘以多项式.放学后,小华回到家拿出课堂笔记,认真复习老师课上讲的内容,他突然发现一道题:-3xy·(4y-2x-1)=-12xy2+6x2y+ .空格的地方被钢笔水弄污了,你认为横线上应填写( )A.3xyB.-3xyC.-1D.1二、填空题(每小题4分,共12分)4.(-2x2)3·(x2+x2y2+y2)的结果中次数是10的项的系数是.5.当x=1,y=时,3x(2x+y)-2x(x-y)= .6.如图是在正方形网格中按规律填成的阴影,根据此规律,第n个图中的阴影部分小正方形的个数是.三、解答题(共26分)7.(8分)先化简,再求值.x(x2-6x-9)-x(x2-8x-15)+2x(3-x),其中x=-.8.(8分)如图,一长方形地块用来建造住宅、广场、商厦,求这块地的面积.【拓展延伸】9.(10分)阅读:已知x2y=3,求2xy(x5y2-3x3y-4x)的值.分析:考虑到x,y的可能值较多,不能逐一代入求解,故考虑整体思想,将x2y=3整体代入. 解:2xy(x5y2-3x3y-4x)=2x6y3-6x4y2-8x2y=2(x2y)3-6(x2y)2-8x2y=2×33-6×32-8×3=-24.你能用上述方法解决以下问题吗?试一试!已知ab=3,求(2a3b2-3a2b+4a)·(-2b)的值.答案解析1.【解析】选A.原式=10x-15+12-8x=(10x-8x)+(-15+12)=2x-3.2.【解析】选A.2x-(2x3+3x-1)=2x-2x3-3x+1=-2x3-x+1.3.【解析】选A.-3xy·(4y-2x-1)=-3xy·4y+(-3xy)·(-2x)+(-3xy)·(-1)=-12xy2+6x2y+3xy,所以应填写3xy.4.【解析】(-2x2)3·(x2+x2y2+y2)=-8x6·(x2+x2y2+y2)=-8x8-8x8y2-8x6y2,所以次数是10的项是-8x8y2,系数是-8.答案:-85.【解析】3x(2x+y)-2x(x-y)=6x2+3xy-2x2+2xy=4x2+5xy,当x=1,y=时,原式=4x2+5xy=4×12+5×1×=4+1=5.答案:56.【解析】根据图形可知:第一个图形中阴影部分小正方形个数为4=2+2=1×2+2,第二个图形中阴影部分小正方形个数为8=6+2=2×3+2,第三个图形中阴影部分小正方形个数为14=12+2=3×4+2,……所以第n个图形中阴影部分小正方形个数为n(n+1)+2= n2+n+2,故此题答案为n2+n+2. 答案:n2+n+27.【解析】x(x2-6x-9)-x(x2-8x-15)+2x(3-x)=x3-6x2-9x- x3+8x2+15x+6x-2x2=12x.当x=-时,原式=12×=-2.8.【解析】长方形地块的长为:(3a+2b)+(2a-b),宽为4a,这块地的面积为:4a·[(3a+2b)+(2a-b)]=4a·(5a+b)=4a·5a+4a·b=20a2+4ab.答:这块地的面积为20a2+4ab.9.【解析】(2a3b2-3a2b+4a)·(-2b)=-4a3b3+6a2b2-8ab=-4(ab)3+6(ab)2-8ab,当ab=3时,原式=-4×33+6×32-8×3=-108+54-24=-78.幂的乘方与积的乘方(30分钟50分)一、选择题(每小题4分,共12分)1.(2013·遵义中考)计算的结果是( )A.-a3b6B.-a3b5C.-a3b5D.-a3b62.(2013·泸州中考)下列各式计算正确的是( )A.(a7)2=a9B.a7·a2=a14C.2a2+3a3=5a5D.(ab)3=a3b33.如果(2a m b m+n)3=8a9b15成立,则m,n的值为( )A.m=3,n=2B.m=3,n=9C.m=6,n=2D.m=2,n=5二、填空题(每小题4分,共12分)4.若(x2)n=x8,则n= .5.若a n=3,b n=2,则(a3b2)n= .6.××(-1)2013= .三、解答题(共26分)7.(8分)比较3555,4444,5333的大小.8.(8分)计算:(1)(-a3b6)2-(-a2b4)3.(2)2(a n b n)2+(a2b2)n.【拓展延伸】9.(10分)阅读材料:一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log a N=b. 例如,因为54=625,所以log5625=4;因为32=9,所以log39=2.对数有如下性质:如果a>0,且a≠1,M>0,N>0,那么lo g a(MN)=log a M+log a N.完成下列各题:(1)因为,所以log28= .(2)因为,所以log216= .(3)计算:log2(8×16)= + = .答案解析1.【解析】选D.=·a3·(b2)3=-a3b6.2.【解析】选 D.根据幂的乘方法则,(a7)2=a7×2=a14,选项A错误;根据同底数幂相乘法则,a7·a2=a7+2=a9,选项B错误;2a2与3a3不是同类项,不能合并,选项C错误;选项D符合积的乘方的运算法则,是正确的,故选D.3.【解析】选A.因为(2a m b m+n)3=8a3m b3(m+n)=8a9b15,所以3m=9,3(m+n)=15,解得m=3,n=2.4.【解析】因为(x2)n=x2n=x8,所以2n=8,所以n=4.答案:45.【解析】(a3b2)n=a3n b2n=(a n)3(b n)2=33×22=27×4=108.答案:1086.【解析】原式=×=×=12013×=.答案:7.【解析】因为3555=3111×5=(35)111=243111,4444=4111×4=(44)111=256111,5333=5111×3=(53)111=125111,又因为125<243<256,所以125111<243111<256111,所以5333<3555<4444.8.【解析】(1)原式=a6b12-(-a6b12)=a6b12+a6b12= 2a6b12.(2)原式=2a2n b2n+a2n b2n=3a2n b2n.9.【解析】(1)因为23=8,所以log28=3.(2)因为24=16,所以log216=4.(3)log2(8×16)=log28+log216=3+4=7.答案:(1)23=8 3 (2)24=16 4 (3)log28 log216 7单项式的乘法(30分钟50分)一、选择题(每小题4分,共12分)1.(2013·绍兴中考)计算3a·2b的结果是( )A.3abB.6aC.6abD.5ab2.下列计算中,错误的是( )A.(2xy)3(-2xy)2=32x5y5B.(-2ab2)2(-3a2b)3=-108a8b7C.=x4y3D.=m4n43.某商场4月份售出某品牌衬衣b件,每件c元,营业额a元.5月份采取促销活动,售出该品牌衬衣3b件,每件打八折,则5月份该品牌衬衣的营业额比4月份增加( )A.1.4a元B.2.4a元C.3.4a元D.4.4a元二、填空题(每小题4分,共12分)4.(2013·泰州中考)计算:3a·2a2= .5.计算:= .6.光的速度约为3×105km/s,太阳光到达地球需要的时间约为5×102s,则地球与太阳间的距离约为km.三、解答题(共26分)7.(8分)计算:(1)4y3·(-2x2y).(2)x2y3·xyz.(3)(3x2y)3·(-4xy2).(4)(-xy2z3)4·(-x2y)3.8.(8分)有理数x,y满足条件|2x-3y+1|+(x+3y+5)2=0,求代数式(-2xy)2·(-y2)·6xy2的值.【拓展延伸】9.(10分)已知三角表示2ab c,方框表示(-3x zω)y,求×.答案解析1.【解析】选C.3a·2b=3×2a·b=6ab.2.【解析】选 D.选项A中,(2xy)3(-2xy)2=8x3y3×4x2y2=32x5y5,故此选项正确;选项B 中,(-2ab2)2(-3a2b)3=4a2b4×(-27)a6b3=-108a8b7,故此选项正确;选项C 中,=x2y2×x2y=x4y3,故此选项正确;选项D 中,=m2n×m2n4=m4n5,故此选项错误.3.【解析】选A.由题意知bc=a.因为5月份售出该品牌衬衣3b件,每件打八折,则每件为0.8c 元.所以5月份该品牌衬衣的营业额为:3b·0.8c=2.4bc=2.4a(元).所以5月份该品牌衬衣的营业额比4月份增加2.4a-a=1.4a(元).4.【解析】3a·2a2=6a3.答案:6a35.【解析】=(a·a2)(b2·b)=-a3b3.答案:-a3b36.【解析】(3×105)×(5×102)=(3×5)×(105×102)=15×107=1.5×108.答案:1.5×1087.【解析】(1)原式=[4×(-2)]x2·(y3·y)=-8x2y4.(2)原式=(x2·x)(y3·y)·z=x3y4z.(3)原式=27x6y3·(-4xy2)=[27×(-4)](x6·x)(y3·y2)=-108x7y5.(4)原式=x4y8z12·(-x6y3)=-(x4·x6)(y8·y3)z12=-x10y11z12.8.【解题指南】由|2x-3y+1|+(x+3y+5)2=0知,2x-3y+1=0,x+3y+5=0,建立方程组,解得x,y 后,代入代数式求值.【解析】由题意得可得所以(-2xy)2·(-y2)·6xy2=4x2y2·(-y2)·6xy2=-24x3y6.当x=-2,y=-1时,原式=-24×(-2)3×(-1)6=-24×(-8)=192.9.【解析】×=2mn3·(-3n5m)2=2mn3·9n10m2=18n13m3.多项式的乘法(第2课时)(30分钟50分)一、选择题(每小题4分,共12分)1.下列计算中,正确的有( )①(2a-3)(3a-1)=6a2-11a+3;②(m+n)(n+m)=m2+mn+n2;③(a-2)(a+3)=a2-6;④(1-a)(1+a)=1-a2.A.4个B.3个C.2个D.1个2.若(x+3)(x+m)=x2+kx-15,则m-k的值为( )A.-3B.5C.-2D.23.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A.2mnB.(m+n)2C.(m-n)2D.m2-n2二、填空题(每小题4分,共12分)4.当x=-7时,代数式(2x+5)(x+1)-(x-3)(x+1)的值为.5.已知(x2+px+8)(x2-3x+q)的展开式中不含x2项和x3项,则p+q的值为.6.若(x+a)(x+b)=x2-6x+8,则ab= .三、解答题(共26分)7.(8分)(1)化简(x+1)2-x(x+2).(2)先化简,再求值.(x+3)(x-3)-x(x-2),其中x=4.8.(8分)若(x-1)(x+1)(x+5)=x3+bx2+cx+d,求b+d的值.【拓展延伸】9.(10分)计算下列式子:(1)(x-1)(x+1)= .(2)(x-1)(x2+x+1)= .(3)(x-1)(x3+x2+x+1)= .(4)(x-1)(x4+x3+x2+x+1)= .用你发现的规律直接写出(x-1)(x n+x n-1+…+x+1)的结果.答案解析1.【解析】选C.因为(2a-3)(3a-1)=6a2-11a+3;(m+n)(n+m)=m2+2mn+n2;(a-2)(a+3)=a2+a-6;(1-a)(1+a)=1-a2,故正确的有2个.2.【解析】选A.因为(x+3)(x+m)=x2+(3+m)x+3m=x2+kx-15.所以m+3=k,3m=-15,解得m=-5,k=-2.所以m-k=-5-(-2)=-5+2=-3.3.【解析】选C.由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)2,又因为原矩形的面积为4mn,所以中间空的部分的面积=(m+n)2-4mn=(m-n)2.4.【解析】(2x+5)(x+1)-(x-3)(x+1)=(2x2+2x+5x+5)-(x2+x-3x-3)=x2+9x+8.把x=-7代入得:原式=(-7)2+9×(-7)+8=-6.答案:-65.【解析】因为(x2+px+8)(x2-3x+q)=x4-3x3+qx2+p x3-3px2+qpx+8x2-24x+8q= x4+(p-3)x3+(q-3p+8)x2+(qp-24)x+8q,又因为(x2+px+8)(x2-3x+q)的展开式中不含x2项和x3项,所以p-3=0,q-3p+8=0,所以p=3,q=1,所以p+q=4.答案:46.【解析】因为(x+a)(x+b)=x2+bx+ax+ab=x2+(a+b)x+ab,所以x2+(a+b)x+ab= x2-6x+8,所以ab=8.答案:87.【解析】(1)原式=(x+1)(x+1)-x(x+2)=x2+x+x+1-x2-2x=x2+2x+1-x2-2x=1.(2)原式=x2-3x+3x-9-x2+2x=2x-9.当x=4时,原式=2×4-9=-1.8.【解析】(x-1)(x+1)(x+5)=(x2-1)(x+5)=x3+5x2-x-5所以b=5,c=-1,d=-5.即b+d=5-5=0.9.【解析】(1)x2-1 (2)x3-1(3)x4-1 (4)x5-1(x-1)(x n+x n-1+…+x+1)=x n+1-1.平方差公式(30分钟50分)一、选择题(每小题4分,共12分)1.化简:(a+1)2-(a-1)2=( )A.2B.4C.4aD.2a2+22.下列各式计算正确的是( )A.(x+2)(x-2)=x2-2B.(2a+b)(-2a+b)=4a2-b2C.(2x+3)(2x-3)=2x2-9D.(3ab+1)(3ab-1)=9a2b2-13.下列运用平方差公式计算错误的是( )A.(a+b)(a-b)=a2-b2B.(x+1)(x-1)=x2-1C.(2x+1)(2x-1)=2x2-1D.(-a+2b)(-a-2b)=a2-4b2二、填空题(每小题4分,共12分)4.如果x+y=-4,x-y=8,那么代数式x2-y2的值是.5.计算:= .6.观察下列各式,探索发现规律:22-1=3=1×3;42-1=15=3×5;62-1=35=5×7;82-1=63=7×9;102-1=99=9×11;…用含正整数n的等式表示你所发现的规律为.三、解答题(共26分)7.(8分)(1)(2013·株洲中考)先化简,再求值:(x-1)(x+1)-x(x-3),其中x=3.8.(8分)(2013·义乌中考)如图1,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿着线段AB剪开,把剪成的两张纸片拼成如图2的等腰梯形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2,请直接用含a,b的代数式表示S1,S2.(2)请写出上述过程所揭示的乘法公式.【拓展延伸】9.(10分)阅读下列材料:某同学在计算3×(4+1)(42+1)时,把3写成4-1后,发现可以连续运用平方差公式计算:3×(4+1)(42+1)=(4-1)(4+1)(42+1)=(42-1)(42+1)=162-1.很受启发,后来在求(2+1)(22+1)(24+1)(28+1)…(21024+1)的值时,又改造此法,将乘积式前面乘以1,且把1写为2-1得(2+1)(22+1)(24+1)(28+1)…(21024+1)=(2-1)(2+1)(22+1)(24+1)(28+1)…(21024+1)=(22-1)(22+1)(24+1)(28+1)…(21024+1)=(24-1)(24+1)(28+1)…(21024+1)=…=(21024-1)(21024+1)=22048-1.回答下列问题:(1)请借鉴该同学的经验,计算:(3+1)(32+1)(34+1)(38+1).(2)借用上面的方法,再逆用平方差公式计算:….答案解析1.【解析】选C.(a+1)2-(a-1)2=[(a+1)-(a-1)]·[(a+1)+(a-1)]=2×2a=4a.2.【解析】选D.(x+2)(x-2)=x2-4≠x2-2;(2a+b)(-2a+b)=(b+2a)(b-2a)=b2-4a2≠4a2-b2;(2x+3)(2x-3)=4x2-9≠2x2-9;(3ab+1)(3ab-1)=9a2b2-1.3.【解析】选C.根据平方差得(2x+1)(2x-1)=4x2-1,所以C错误.而A,B,D符合平方差公式条件,计算正确.4.【解析】因为x+y=-4,x-y=8,所以x2-y2=(x+y)(x-y)=(-4)×8=-32.答案:-325.【解析】原式====1.答案:16.【解析】观察式子,每个式子中等号左边的被减数是偶数的平方,减数都是1,等号右边是此偶数前后两个连续奇数的乘积,所以用含正整数n的等式表示其规律为(2n)2-1=(2n-1)(2n+1).答案:(2n)2-1=(2n-1)(2n+1)7.【解析】原式=x2-1-(x2-3x)=x2-1-x2+3x=3x-1,当x=3时,原式=3×3-1=8.(2)解方程:(x-4)(x+3)+(2+x)(2-x)=4.【解析】去括号得x2-4x+3x-12+4-x2=4,移项得x2-4x+3x-x2=4+12-4,合并同类项得-x=12,系数化为1得x=-12.8.【解析】(1)图1中阴影部分面积为S1=a2-b2;图2中阴影部分面积为S2=(2b+2a)(a-b)=(a+b)(a-b).(2)(a+b)(a-b)=a2-b2.9.【解析】(1)(3+1)(32+1)(34+1)(38+1)=(32-1)(32+1)(34+1)(38+1)=(34-1)(34+1)(38+1)=(38-1)(38+1)=(316-1).(2)…=…=××××…××=×=.完全平方公式(30分钟50分)一、选择题(每小题4分,共12分)1.(2013·湘西州中考)下列运算正确的是( )A.a2-a4=a8B.(x-2)(x-3)=x2-6C.(x-2)2=x2-4D.2a+3a=5a2.若a+=7,则a2+的值为( )A.47B.9C.5D.513.如图是一个正方形,分成四部分,其面积分别是a2,ab,ab,b2,则原正方形的边长是( )A.a2+b2B.a+bC.a-bD.a2-b2二、填空题(每小题4分,共12分)4.(2013·晋江中考)若a+b=5,ab=6,则a-b= .5.(2013·泰州中考)若m=2n+1,则m2-4mn+4n2的值是.6.若=9,则的值为.三、解答题(共26分)7.(10分)(1)(2013·福州中考)化简:(a+3)2+a(4-a).(2)(2013·宁波中考)先化简,再求值:(1+a)(1-a)+(a-2)2,其中a=-3.8.(6分)利用完全平方公式计算:(1)482.(2)1052.【拓展延伸】9.(10分)如图所示,有四个同样大小的直角三角形,两条直角边分别为a,b,斜边为c,拼成一个正方形,但中间却留有一个小正方形,你能利用它们之间的面积关系,得到关于a,b,c的等式吗?答案解析1.【解析】选D.A.a2与a4不是同类项,不能合并,故本选项错误;B.(x-2)(x-3)=x2-5x+6,故本选项错误;C.(x-2)2=x2-4x+4,故本选项错误;D.2a+3a=5a,故本选项正确.2.【解析】选A.因为a+=7,所以=72,a2+2·a·+=49,a2+2+=49,所以a2+=47.3.【解析】选B.因为a2+2ab+b2=(a+b)2,所以边长为a+b.4.【解析】因为(a-b)2=(a+b)2-4ab=25-24=1,所以a-b=±1.答案:±15.【解析】因为m=2n+1,即m-2n=1,所以原式=(m-2n)2=1.答案:16.【解析】由=9,可得x2+2+=9.即x2+=7,=x2-2+=7-2=5.答案:57.【解析】(1)原式=a2+6a+9+4a-a2=10a+9.(2)原式=1-a2+a2-4a+4=-4a+5,当a=-3时,原式=12+5=17.8.【解析】(1)482=(50-2)2=2500-200+4=2304.(2)1052=(100+5)2=10000+1000+25=11025.9.【解析】因为小正方形的边长为b-a,所以它的面积为(b-a)2,所以大正方形的面积为4××a×b+(b-a)2. 又因为大正方形的面积为c2,所以4××a×b+(b-a)2=c2,即2ab+b2-2ab+a2=c2,得a2+b2=c2.运用乘法公式进行计算(30分钟50分)一、选择题(每小题4分,共12分)1.若a2+ab+b2+A=(a-b)2,则A式应为( )A.abB.-3abC.0D.-2ab2.计算(m-2n-1)(m+2n-1)的结果为( )A.m2-4n2-2m+1B.m2+4n2-2m+1C.m2-4n2-2m-1D.m2+4n2+2m-13.计算(2a+3b)2(2a-3b)2的结果是( )A.4a2-9b2B.16a4-72a2b2+81b4C.(4a2-9b2)2D.4a4-12a2b2+9b4二、填空题(每小题4分,共12分)4.计算(-3x+2y-z)(3x+2y+z)= .5.矩形ABCD的周长为24,面积为32,则其四条边的平方和为.6.已知a-b=3,则a(a-2b)+b2的值为.三、解答题(共26分)7.(8分)求代数式(a+2b)(a-2b)+(a+2b)2-4ab的值,其中a=1,b=.8.(8分)计算:(x+1)(x+2)(x+3)(x+4).【拓展延伸】9.(10分)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中的系数等等.。

湘教版数学七年级下册_《平方差公式》拓展训练

湘教版数学七年级下册_《平方差公式》拓展训练

《平方差公式》拓展训练一、选择题1.如图,边长为a的大正方形剪去一个边长为b的小正方形后,将剩余部分通过割补拼成新的图形.根据图形能验证的等式为()A.a2﹣b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2=a2+2ab+b22.下列各式:①(﹣a﹣2b)(a+2b);②(a﹣2b)(﹣a+2b);③(a﹣2b)(2b+a);④(a﹣2b)(﹣a﹣2b),其中能用平方差公式计算的是()A.①②B.①③C.②③D.③④3.若a2﹣b2=,a+b=,则a﹣b的值为()A.﹣B.C.1D.24.下列各式计算正确的是()A.(x+2)(x﹣5)=x2﹣2x﹣3B.(x+3)(x﹣)=x2+x﹣1C.(x﹣)(x+)=x2﹣x﹣D.(x﹣2)(﹣x﹣2)=x2﹣45.如图1,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是()A.(a+b)(a﹣b)=a2﹣b2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a(a﹣b)=a2﹣ab6.计算(1﹣)(1﹣)(1﹣)…(1﹣)=()A.B.C.D.7.化简(a﹣1)(a+1)(a2+1)﹣(a4﹣1)的结果为()A.0B.2C.﹣2D.2a48.若a2﹣4b2=12,a﹣2b=2,则a b的值为()A.4B.﹣4C.﹣D.9.下列计算正确是()A.(x+2)(2﹣x)=x2﹣4B.(2x+y2)(2x﹣y2)=4x2﹣y4C.(3x2+1)(3x2﹣1)=9x2﹣1D.(x+2)(x﹣3)=x2﹣610.如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”如(8=32﹣12,16=52﹣32,即8,16均为“和谐数”),在不超过2017的正整数中,所有的“和谐数”之和为()A.255054B.255064C.250554D.255024二、填空题11.计算:2008×2010﹣20092=.12.化简(2b+3a)(3a﹣2b)﹣(2b﹣3a)(2b+3a),当a=﹣1,b=2时,原式的值是.13.已知a为实数,若有整数b,m,满足(a+b)(a﹣b)=m2,则称a是b,m 的弦数.若a<15且a为整数,请写出一组a,b,m,使得a是b,m的弦数:.14.阅读材料后解决问题:计算:(2+1)(22+1)(24+1)(28+1).经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:(2+1)(22+1)(24+1)(28+1)=(2﹣1)(2+1)(22+1)(24+1)(28+1)=(22﹣1)(22+1)(24+1)(28+1)=(24﹣1)(24+1)(28+1)=(28﹣1)(28+1)=216﹣1请你根据以上解决问题的方法,试着解决:(3+1)(32+1)(34+1)(38+1)…(364+1)=15.先阅读后计算:为了计算4×(5+1)×(52+1)的值,小黄把4改写成5﹣1后,连续运用平方差公式得:4×(5+1)×(52+1)=(5﹣1)×(5+1)×(52+1)=(52﹣1)×(52+1)=252﹣1=624.请借鉴小黄的方法计算:(1+)××××××,结果是.三、解答题16.阅读下文件,寻找规律:已知x≠1,计算:(1﹣x)(1+x)=1﹣x2(1﹣x)(1+x+x2)=1﹣x3(1﹣x)(1+x+x2+x3)=1﹣x4(1﹣x)(1+x+x2+x3+x4)=1﹣x5…(1)观察上式猜想:(1﹣x)(1+x+x2+x3+…+x n)=.(2)根据你的猜想计算:①1+2+22+23+24+...+22018②214+215+ (2100)17.如图1所示,边长为a的正方形中有一个边长为b的小正方形,如图2中阴影部分剪裁后拼成的一个长方形.(1)设如图1中阴影部分面积为S1,如图2中阴影部分面积为S2,请直接用含a,b的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+118.(1)计算并观察下列各式:第1个:(a﹣b)(a+b)=;第2个:(a﹣b)(a2+ab+b2)=;第3个:(a﹣b)(a3+a2b+ab2+b3)=;……这些等式反映出多项式乘法的某种运算规律.(2)猜想:若n为大于1的正整数,则(a﹣b)(a n﹣1+a n﹣2b+a n﹣3b2+……+a2b n﹣3+ab n ﹣2+b n﹣1)=;(3)利用(2)的猜想计算:2n﹣1+2n﹣2+2n﹣3+……+23+22+1=.(4)拓广与应用:3n﹣1+3n﹣2+3n﹣3+……+33+32+1=.19.乘法公式的探究与应用:(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分面积是(写成两数平方差的形式)(2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是,宽是,面积是(写成多项式乘法的形式).(3)比较甲乙两图阴影部分的面积,可以得到公式(两个)公式1:公式2:(4)运用你所得到的公式计算:10.3×9.7.20.请先观察下列算式,再填空:32﹣12=8×1,52﹣32=8×2.①72﹣52=8×;②92﹣()2=8×4;③()2﹣92=8×5;④132﹣()2=8×;…(1)通过观察归纳,你知道上述规律的一般形式吗?请把你的猜想写出来.(2)你能运用本章所学的平方差公式来说明你的猜想的正确性吗?《平方差公式》拓展训练参考答案与试题解析一、选择题1.如图,边长为a的大正方形剪去一个边长为b的小正方形后,将剩余部分通过割补拼成新的图形.根据图形能验证的等式为()A.a2﹣b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2=a2+2ab+b2【分析】边长为a的大正方形剪去一个边长为b的小正方形后的面积=a2﹣b2,新的图形面积等于(a+b)(a﹣b),由于两图中阴影部分面积相等,即可得到结论.【解答】解:图中阴影部分的面积等于两个正方形的面积之差,即为a2﹣b2;剩余部分通过割补拼成的平行四边形的面积为(a+b)(a﹣b),∵前后两个图形中阴影部分的面积相等,∴a2﹣b2=(a+b)(a﹣b).故选:B.【点评】本题考查了利用几何方法验证平方差公式,解决问题的关键是根据拼接前后不同的几何图形的面积不变得到等量关系.2.下列各式:①(﹣a﹣2b)(a+2b);②(a﹣2b)(﹣a+2b);③(a﹣2b)(2b+a);④(a﹣2b)(﹣a﹣2b),其中能用平方差公式计算的是()A.①②B.①③C.②③D.③④【分析】利用平方差公式的结构特征判断即可.【解答】解:①(﹣a﹣2b)(a+2b)=﹣(a+2b)2=﹣a2﹣4ab﹣4b2;②(a﹣2b)(﹣a+2b)=﹣(a﹣2b)2=﹣a2+4ab﹣4b2;③(a﹣2b)(2b+a)=a2﹣4b2;④(a﹣2b)(﹣a﹣2b)=4b2﹣a2,故选:D.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.3.若a2﹣b2=,a+b=,则a﹣b的值为()A.﹣B.C.1D.2【分析】根据a2﹣b2=(a+b)(a﹣b)=,a+b=即可求得a﹣b的值.【解答】解:∵a2﹣b2=(a+b)(a﹣b)=,a+b=,∴a﹣b=÷=,故选:B.【点评】本题主要考查平方差公式,解题的关键是掌握平方差公式的结构特点.4.下列各式计算正确的是()A.(x+2)(x﹣5)=x2﹣2x﹣3B.(x+3)(x﹣)=x2+x﹣1C.(x﹣)(x+)=x2﹣x﹣D.(x﹣2)(﹣x﹣2)=x2﹣4【分析】利用多项式乘多项式法则,以及平方差公式判断即可.【解答】解:A、原式=x2﹣3x﹣10,不符合题意;B、原式=x2+x﹣1,不符合题意;C、原式=x2﹣x﹣,符合题意;D、原式=4﹣x2,不符合题意,故选:C.【点评】此题考查了平方差公式,以及多项式乘多项式,熟练掌握运算法则及公式是解本题的关键.5.如图1,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是()A.(a+b)(a﹣b)=a2﹣b2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a(a﹣b)=a2﹣ab【分析】分别计算出两个图形中阴影部分的面积即可.【解答】解:图1阴影部分面积:a2﹣b2,图2阴影部分面积:(a+b)(a﹣b),由此验证了等式(a+b)(a﹣b)=a2﹣b2,故选:A.【点评】此题主要考查了平方差公式的几何背景,运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.6.计算(1﹣)(1﹣)(1﹣)…(1﹣)=()A.B.C.D.【分析】直接利用平方差公式将原式变形进而计算得出答案.【解答】解:原式(1+)(1﹣)(1+)(1﹣)(1+)(1﹣)…(1+)(1﹣)=××××××…××=.故选:C.【点评】此题主要考查了平方差公式,正确应用公式是解题关键.7.化简(a﹣1)(a+1)(a2+1)﹣(a4﹣1)的结果为()A.0B.2C.﹣2D.2a4【分析】先把前面两项利用平方差公式计算得原式=(a2﹣1)(a2+1)﹣a4+1,然后再利用平方差公式展开,最后合并即可.【解答】解:原式=(a2﹣1)(a2+1)﹣a4+1=a4﹣1﹣a4+1=0.【点评】本题考查了平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差,即(a+b)(a﹣b)=a2﹣b2.8.若a2﹣4b2=12,a﹣2b=2,则a b的值为()A.4B.﹣4C.﹣D.【分析】已知第一个等式左边利用平方差公式化简,将第二个等式代入计算即可求出所求的值.【解答】解:∵a2﹣4b2=(a+2b)(a﹣2b)=12,a﹣2b=2①,∴a+2b=6②,联立①②,解得:a=4,b=1,则原式=4,故选:A.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.9.下列计算正确是()A.(x+2)(2﹣x)=x2﹣4B.(2x+y2)(2x﹣y2)=4x2﹣y4C.(3x2+1)(3x2﹣1)=9x2﹣1D.(x+2)(x﹣3)=x2﹣6【分析】根据平方差公式和多项式乘以多项式法则求出每个式子的值,再判断即可.【解答】解:A、结果是4﹣x2,故本选项不符合题意;B、结果是4x2﹣y4,故本选项符合题意;C、结果是9x4﹣1,故本选项不符合题意;D、结果是x2﹣x﹣6,故本选项不符合题意;故选:B.【点评】本题考查了平方差公式和多项式乘以多项式法则,能正确求出每个式子的值是解此题的关键.10.如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”如(8=32﹣12,16=52﹣32,即8,16均为“和谐数”),在不超过2017的正整数中,所有的“和谐数”之和为()A.255054B.255064C.250554D.255024【分析】由(2n+1)2﹣(2n﹣1)2=8n≤2017,解得n≤252,可得在不超过2017的正整数中,“和谐数”共有252个,依此列式计算即可求解.【解答】解:由(2n+1)2﹣(2n﹣1)2=8n≤2017,解得n≤252,则在不超过2017的正整数中,所有的“和谐数”之和为32﹣12+52﹣32+ (5052)5032=5052﹣12=255024.故选:D.【点评】此题考查了平方差公式,弄清题中“和谐数”的定义是解本题的关键.二、填空题11.计算:2008×2010﹣20092=﹣1.【分析】先变形,再根据平方差公式进行计算,最后求出即可.【解答】解:原式=(2009﹣1)×(2009+1)﹣20092=20092﹣1﹣20092=﹣1,故答案为:﹣1.【点评】本题考查了平方差公式,能灵活运用平方差公式进行计算是解此题的关键.12.化简(2b+3a)(3a﹣2b)﹣(2b﹣3a)(2b+3a),当a=﹣1,b=2时,原式的值是﹣14.【分析】先利用平方差公式化简计算,合并同类项后再代入数据计算即可.【解答】解:(2b+3a)(3a﹣2b)﹣(2b﹣3a)(2b+3a),=(3a)2﹣(2b)2﹣(2b)2+(3a)2,=2×9a2﹣2×4b2,=18a2﹣8b2.当a=﹣1,b=2时,原式=18×(﹣1)2﹣8×22=﹣14.【点评】本题考查了平方差公式,熟练掌握公式并灵活运用是解题的关键,计算时,要注意符号的处理.13.已知a为实数,若有整数b,m,满足(a+b)(a﹣b)=m2,则称a是b,m 的弦数.若a<15且a为整数,请写出一组a,b,m,使得a是b,m的弦数:5,4,3.【分析】根据题中弦数的定义判断即可.【解答】解:∵(5+4)×(5﹣4)=9×1=32,∴5是4,3的弦数,故答案为:5,4,3【点评】此题考查了平方差公式,弄清题中的新定义是解本题的关键.14.阅读材料后解决问题:计算:(2+1)(22+1)(24+1)(28+1).经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:(2+1)(22+1)(24+1)(28+1)=(2﹣1)(2+1)(22+1)(24+1)(28+1)=(22﹣1)(22+1)(24+1)(28+1)=(24﹣1)(24+1)(28+1)=(28﹣1)(28+1)=216﹣1请你根据以上解决问题的方法,试着解决:(3+1)(32+1)(34+1)(38+1)…(364+1)=【分析】直接利用平方差公式将原式变形进而得出答案.【解答】解:(3+1)(32+1)(34+1)(38+1)…(364+1)=(3﹣1)(3+1)(32+1)(34+1)(38+1)…(364+1)=(32﹣1)(32+1)(34+1)(38+1)…(364+1)=.故答案为:.【点评】此题主要考查了平方差公式,正确将原式变形是解题关键.15.先阅读后计算:为了计算4×(5+1)×(52+1)的值,小黄把4改写成5﹣1后,连续运用平方差公式得:4×(5+1)×(52+1)=(5﹣1)×(5+1)×(52+1)=(52﹣1)×(52+1)=252﹣1=624.请借鉴小黄的方法计算:(1+)××××××,结果是2﹣.【分析】在前面乘一个2×(1﹣),然后再连续利用平方差公式进行计算即可.【解答】解:原式=2×(1﹣)×(1+)××××××=2×(1﹣)××××××=2×(1﹣)×××××…=2×(1﹣)×(1+)=2×(1﹣)=2﹣故答案为:2﹣.【点评】此题主要考查了平方差公式的运用,正确应用公式是解题关键.对形如两数和与这两数差相乘的算式,都可以运用这个公式计算,且会比用多项式乘以多项式法则简便.三、解答题16.阅读下文件,寻找规律:已知x≠1,计算:(1﹣x)(1+x)=1﹣x2(1﹣x)(1+x+x2)=1﹣x3(1﹣x)(1+x+x2+x3)=1﹣x4(1﹣x)(1+x+x2+x3+x4)=1﹣x5…(1)观察上式猜想:(1﹣x)(1+x+x2+x3+…+x n)=.1﹣x n+1(2)根据你的猜想计算:①1+2+22+23+24+...+22018②214+215+ (2100)【分析】(1)依据变化规律,即可得到(1﹣x)(1+x+x2+x3+…+x n)=1﹣x n+1.(2)①依据(1)中的规律,即可得到1+2+22+23+24+…+22018的值;②将214+215+…+2100写成(1+2+22+23+24+…+2100)﹣(1+2+22+23+24+…+213),即可运用①中的方法得到结果.【解答】解:(1)由题可得,(1﹣x)(1+x+x2+x3+…+x n)=1﹣x n+1.故答案为:1﹣x n+1;(2)①1+2+22+23+24+ (22018)=﹣(1﹣2)(1+2+22+23+24+ (22018)=﹣(1﹣22019)=22019﹣1;②214+215+…+2100=(1+2+22+23+24+...+2100)﹣(1+2+22+23+24+ (213)=﹣(1﹣2)(1+2+22+23+24+...+2100)+(1﹣2)(1+2+22+23+24+ (213)=﹣(1﹣2101)+(1﹣214)=2101﹣214.【点评】此题考查了平方差公式,认真观察、仔细思考,善用联想,弄清题中的规律是解决这类问题的方法.17.如图1所示,边长为a的正方形中有一个边长为b的小正方形,如图2中阴影部分剪裁后拼成的一个长方形.(1)设如图1中阴影部分面积为S1,如图2中阴影部分面积为S2,请直接用含a,b的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1【分析】(1)根据两个图形的面积相等,即可写出公式;(2)根据面积相等可得(a+b)(a﹣b)=a2﹣b2;(3)从左到右依次利用平方差公式即可求解.【解答】解:(1)∵图1中阴影部分面积为S1,图2中阴影部分面积为S2,∴S1=a2﹣b2,S2=(a+b)(a﹣b);(2)依据阴影部分的面积相等,可得(a+b)(a﹣b)=a2﹣b2;(3)原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1=(22﹣1)(22+1)(24+1)(28+1)+1=(24﹣1)(24+1)(28+1)+1=(28﹣1)(28+1)+1=(216﹣1)+1=216.【点评】本题考查了平方差的几何背景以及平方差公式的应用,正确理解平方差公式的结构是关键.18.(1)计算并观察下列各式:第1个:(a﹣b)(a+b)=a2﹣b2;第2个:(a﹣b)(a2+ab+b2)=a3﹣b3;第3个:(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4;……这些等式反映出多项式乘法的某种运算规律.(2)猜想:若n为大于1的正整数,则(a﹣b)(a n﹣1+a n﹣2b+a n﹣3b2+……+a2b n﹣3+ab n﹣2+b n﹣1)=a n﹣b n;(3)利用(2)的猜想计算:2n﹣1+2n﹣2+2n﹣3+……+23+22+1=2n﹣1.(4)拓广与应用:3n﹣1+3n﹣2+3n﹣3+……+33+32+1=.【分析】(1)根据多项式乘多项式的乘法计算可得;(2)利用(1)中已知等式得出该等式的结果为a、b两数n次幂的差;(3)将原式变形为2n﹣1+2n﹣2+2n﹣3+……+23+22+1═(2﹣1)(2n﹣1+2n﹣2+2n﹣3+……+23+22+1),再利用所得规律计算可得;(4)将原式变形为3n﹣1+3n﹣2+3n﹣3+……+33+32+1=×(3﹣1)(3n﹣1+3n﹣2+3n﹣3+……+33+32+1),再利用所得规律计算可得.【解答】解:(1)第1个:(a﹣b)(a+b)=a2﹣b2;第2个:(a﹣b)(a2+ab+b2)=a3﹣b3;第3个:(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4;故答案为:a2﹣b2、a3﹣b3、a4﹣b4;(2)若n为大于1的正整数,则(a﹣b)(a n﹣1+a n﹣2b+a n﹣3b2+……+a2b n﹣3+ab n﹣2+b n ﹣1)=a n﹣b n,故答案为:a n﹣b n;(3)2n﹣1+2n﹣2+2n﹣3+……+23+22+1==(2﹣1)(2n﹣1+2n﹣2+2n﹣3+……+23+22+1)=2n﹣1n=2n﹣1,故答案为:2n﹣1.(4)3n﹣1+3n﹣2+3n﹣3+……+33+32+1=×(3﹣1)(3n﹣1+3n﹣2+3n﹣3+……+33+32+1)=×(3n﹣1n)=,故答案为:.【点评】本题考查了多项式乘以多项式,观察等式发现规律是解题关键.19.乘法公式的探究与应用:(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分面积是a2﹣b2(写成两数平方差的形式)(2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是a+b,宽是a﹣b,面积是(a+b)(a﹣b)(写成多项式乘法的形式).(3)比较甲乙两图阴影部分的面积,可以得到公式(两个)公式1:(a+b)(a﹣b)=a2﹣b2公式2:a2﹣b2=(a+b)(a﹣b)(4)运用你所得到的公式计算:10.3×9.7.【分析】(1)中的面积=大正方形的面积﹣小正方形的面积=a2﹣b2;(2)中的长方形,宽为a﹣b,长为a+b,面积=长×宽=(a+b)(a﹣b);(3)中的答案可以由(1)、(2)得到(a+b)(a﹣b)=a2﹣b2;反过来也成立;(4)把10.3×9.7写成(10+0.3)(10﹣0.3),利用公式求解即可.【解答】解:(1)阴影部分的面积=大正方形的面积﹣小正方形的面积=a2﹣b2;(2)长方形的宽为a﹣b,长为a+b,面积=长×宽=(a+b)(a﹣b);故答案为:a+b,a﹣b,(a+b)(a﹣b);(3)由(1)、(2)得到,公式1:(a+b)(a﹣b)=a2﹣b2;公式2:a2﹣b2=(a+b)(a﹣b)故答案为:(a+b)(a﹣b),a2﹣b2=(a+b)(a﹣b);(4)10.3×9.7=(10+0.3)(10﹣0.3)=102﹣0.32=100﹣0.09=99.91.【点评】本题考查了平方差公式的几何表示,利用不同的方法表示图形的面积是解题的关键.20.请先观察下列算式,再填空:32﹣12=8×1,52﹣32=8×2.①72﹣52=8×3;②92﹣(7)2=8×4;③(11)2﹣92=8×5;④132﹣(11)2=8×6;…(1)通过观察归纳,你知道上述规律的一般形式吗?请把你的猜想写出来.(2)你能运用本章所学的平方差公式来说明你的猜想的正确性吗?【分析】(1)从上式中可以发现等式左边:两数的平方差,前一个数比后一个数大2;等式右边:前一个因数是8,后一个是等式左边两数的和除4,所以可写成:(2n+1)2﹣(2n﹣1)2=8n;(2)运用平方差公式计算此式,证明它成立.【解答】解:①3;②7;③11;④11,6.(1)(2n+1)2﹣(2n﹣1)2=8n;(2)原式可变为(2n+1+2n﹣1)(2n+1﹣2n+1)=8n.【点评】(1)题的关键是找出各数之间的关系.(2)题的关键是利用平方差公式计算此式,证明它成立.。

湘教版数学七年级下册_《平方差公式》提高训练

湘教版数学七年级下册_《平方差公式》提高训练

《平方差公式》提高训练一、选择题1.如图,从边长为(a+2)cm的正方形纸片中剪去一个边长为(a﹣1)cm的小正方形(a>1),剩余部分沿虚线又剪拼一个长方形(不重叠无缝隙),则该长方形的周长为()A.(4a+4)cm B.(4a+6)cm C.(4a+8)cm D.(8a+4)cm 2.若(2﹣x)(2+x)(4+x2)=16﹣x n,则n的值等于()A.6B.4C.3D.23.计算(2+1)(22+1)(24+1)(28+1)+1的值是()A.1024B.28+1C.216+1D.2164.若(x+1)(x﹣1)(x2+1)(x4+1)=x n﹣1,则n等于()A.16B.8C.6D.45.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,再将剩下的阴影部分剪开,拼成右边的长方形.根据图形的变化过程可以验证下列哪一个等式成立()A.(a﹣b)2=a2﹣2ab+b2B.a(a+b)=a2+abC.(a+b)2=a2+2ab+b2D.(a﹣b)(a+b)=a2﹣b2二、填空题6.计算:(3a﹣b)(﹣3a﹣b)=.7.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形,分别计算这两个图形的阴影部分的面积,验证了公式.8.如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”,例如,3=22﹣12,5=32﹣22,7=42﹣32,8=32﹣12…,因此3,5,7,8…都是“智慧数”在正整数中,从1开始,第2018个智慧数是.9.已知2a+b=2,2a﹣b=﹣4,则4a2﹣b2=.10.已知m+n=2019,m﹣n=,则m2﹣n2的值为.三、解答题11.计算:(a+1)(a﹣1)(a2﹣2)12.如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个小长方形.拿掉边长为n的小正方形纸板后,再将剩下的三块拼成一个新长方形.(1)用含m和n的代数式表示拼成的新长方形的周长;(2)根据两个图形的面积关系,得到一个数学公式,请你写出这个数学公式.13.观察下列等式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1(x﹣1)(x4+x3+x2+x+1)=x5﹣1;……(1)猜想(x﹣1)(x n+x n﹣1+x n﹣2+…+x+1)=.运用上述规律,试求:(2)219+218+217+…+23+22+2+1.(3)52018+52017+52016+…+53+52+5+1.14.计算:(1)12502﹣1248×1252(用公式计算)(2)(﹣1)8×(0.2)5×(0.6)6×(﹣5)4 15.观察后填空①(x﹣1)(x+1)=x2﹣1②(x﹣1)(x2+x+1)=x3﹣1③(x﹣1)(x3+x2+x+1)=x4﹣1(1)填空:(x﹣1)(x99+x98+x97+…+x+1)=.(2)请利用上面的结论计算①(﹣2)50+(﹣2)49+(﹣2)48+…+(﹣2)+1②若x3+x2+x+1=0,求x2016的值.《平方差公式》提高训练参考答案与试题解析一、选择题1.如图,从边长为(a+2)cm的正方形纸片中剪去一个边长为(a﹣1)cm的小正方形(a>1),剩余部分沿虚线又剪拼一个长方形(不重叠无缝隙),则该长方形的周长为()A.(4a+4)cm B.(4a+6)cm C.(4a+8)cm D.(8a+4)cm 【分析】先根据图形求出长方形的长和宽,再求出周长即可.【解答】解:长方形的宽为(a+2)﹣(a﹣1)=3cm,长为(a+2)+(a﹣1)=(2a+1)cm,所以长方形的周长为2(2a+1+3)=(4a+8)cm.故选:C.【点评】本题考查了平方差公式的应用,能正确根据图形表示出采访中的长和宽是解此题的关键.2.若(2﹣x)(2+x)(4+x2)=16﹣x n,则n的值等于()A.6B.4C.3D.2【分析】把等号左边利用平方差公式进行计算,再根据x的指数相等求解.【解答】解:(2﹣x)(2+x)(4+x2)=(4﹣x2)(4+x2)=16﹣x4,∵(2﹣x)(2+x)(4+x2)=16﹣x n,∴16﹣x4=16﹣x n,则n=4,故选:B.【点评】本题主要考查平方差公式,解题的关键是掌握平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差.即(a+b)(a﹣b)=a2﹣b2.3.计算(2+1)(22+1)(24+1)(28+1)+1的值是()A.1024B.28+1C.216+1D.216【分析】原式前面配上(2﹣1)这个因数,再依次利用平方差公式计算可得.【解答】解:原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1=(22﹣1)(22+1)(24+1)(28+1)+1=(24﹣1)(24+1)(28+1)+1=(28﹣1)(28+1)+1=216﹣1+1=216,故选:D.【点评】本题主要考查平方差公式,解题的关键是掌握平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差.即(a+b)(a﹣b)=a2﹣b2.4.若(x+1)(x﹣1)(x2+1)(x4+1)=x n﹣1,则n等于()A.16B.8C.6D.4【分析】根据平方差公式计算(x+1)(x﹣1)=x2﹣1,(x2﹣1)(x2+1)=x4﹣1,(x4﹣1)(x4+1)=x8﹣1,即可得到答案.【解答】解:(x+1)(x﹣1)=x2﹣1,(x2﹣1)(x2+1)=x4﹣1,(x4﹣1)(x4+1)=x8﹣1=x n﹣1,即n=8,故选:B.【点评】本题考查平方差公式,正确掌握平方差公式是解题的关键.5.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,再将剩下的阴影部分剪开,拼成右边的长方形.根据图形的变化过程可以验证下列哪一个等式成立()A.(a﹣b)2=a2﹣2ab+b2B.a(a+b)=a2+abC.(a+b)2=a2+2ab+b2D.(a﹣b)(a+b)=a2﹣b2【分析】根据面积相等,列出关系式即可.【解答】解:由题意这两个图形的面积相等,∴a2﹣b2=(a+b)(a﹣b),故选:D.【点评】本题主要考查对平方差公式的知识点的理解和掌握,能根据根据在边长为a的大正方形中剪去一个边长为b的小正方形是解此题的关键.二、填空题6.计算:(3a﹣b)(﹣3a﹣b)=﹣9a2+b2.【分析】平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差.依此即可求解.【解答】解:(3a﹣b)(﹣3a﹣b)=﹣9a2+b2.故答案为:﹣9a2+b2.【点评】考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.7.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形,分别计算这两个图形的阴影部分的面积,验证了公式a2﹣b2=(a+b)(a﹣b).【分析】利用正方形的面积公式和矩形的面积公式分别表示出阴影部分的面积,然后根据面积相等列出等式即可.【解答】解:第一个图形阴影部分的面积是a2﹣b2,第二个图形的面积是(a+b)(a﹣b).则a2﹣b2=(a+b)(a﹣b).故答案为:a2﹣b2=(a+b)(a﹣b).【点评】本题考查了平方差公式的几何背景,正确用两种方法表示阴影部分的面积是解决问题的关键.8.如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”,例如,3=22﹣12,5=32﹣22,7=42﹣32,8=32﹣12…,因此3,5,7,8…都是“智慧数”在正整数中,从1开始,第2018个智慧数是2693.【分析】如果一个数是智慧数,就能表示为两个正整数的平方差,设这两个数分别m、n,设m>n,即智慧数=m2﹣n2=(m+n)(m﹣n),因为m,n是正整数,因而m+n和m﹣n就是两个自然数.要判断一个数是否是智慧数,可以把这个数分解因数,分解成两个整数的积,看这两个数能否写成两个正整数的和与差.【解答】解:1不能表示为两个正整数的平方差,所以1不是“智慧数”.对于大于1的奇正整数2k+1,有2k+1=(k+1)2﹣k2(k=1,2,…).所以大于1的奇正整数都是“智慧数”.对于被4整除的偶数4k,有4k=(k+1)2﹣(k﹣1)2(k=2,3,…).即大于4的被4整除的数都是“智慧数”,而4不能表示为两个正整数平方差,所以4不是“智慧数”.对于被4除余2的数4k+2(k=0,1,2,3,…),设4k+2=x2﹣y2=(x+y)(x﹣y),其中x,y为正整数,当x,y奇偶性相同时,(x+y)(x﹣y)被4整除,而4k+2不被4整除;当x,y奇偶性相异时,(x+y)(x﹣y)为奇数,而4k+2为偶数,总得矛盾.所以不存在自然数x,y使得x2﹣y2=4k+2.即形如4k+2的数均不为“智慧数”.因此,在正整数列中前四个正整数只有3为“智慧数”,此后,每连续四个数中有三个“智慧数”.因为2017=(1+3×672),4×(672+1)=2692,所以2693是第2018个“智慧数”,故答案为:2693.【点评】本题主要考查了平方差公式,有一定的难度,主要是对题中新定义的理解与把握.9.已知2a+b=2,2a﹣b=﹣4,则4a2﹣b2=﹣8.【分析】根据平方差公式即可求出答案.【解答】解:当2a+b=2,2a﹣b=﹣4时,原式=(2a+b)(2a﹣b)=﹣8故答案为:﹣8【点评】本题考查平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.10.已知m+n=2019,m﹣n=,则m2﹣n2的值为2018.【分析】直接利用平方差公式将原式变形进而得出答案.【解答】解:∵m+n=2019,m﹣n=,∴m2﹣n2=(m+n)(m﹣n)=2019×=2018.故答案为:2018.【点评】此题主要考查了平方差公式,正确将原式变形是解题关键.三、解答题11.计算:(a+1)(a﹣1)(a2﹣2)【分析】直接利用平方差公式以及多项式乘法运算法则计算得出答案.【解答】解:原式=(a2﹣1)(a2﹣2)=a4﹣a2﹣2a2+2=a4﹣3a2+2.【点评】此题主要考查了整式的乘法运算,正确掌握相关运算法则是解题关键.12.如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个小长方形.拿掉边长为n的小正方形纸板后,再将剩下的三块拼成一个新长方形.(1)用含m和n的代数式表示拼成的新长方形的周长;(2)根据两个图形的面积关系,得到一个数学公式,请你写出这个数学公式.【分析】(1)根据题意和矩形的性质列出代数式解答即可.(2)根据阴影部分的面积相等,即可得到平方差公式.【解答】解:(1)新长方形的周长=2[(m+n)+(m﹣n)]=4m.(2)由题意:m2﹣n2=(m+n)(m﹣n).【点评】本题考查平方差公式、长方形的面积等知识,解题的关键是理解题意,学会利用面积法解决实际问题.13.观察下列等式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1(x﹣1)(x4+x3+x2+x+1)=x5﹣1;……(1)猜想(x﹣1)(x n+x n﹣1+x n﹣2+…+x+1)=x n+1﹣1.运用上述规律,试求:(2)219+218+217+…+23+22+2+1.(3)52018+52017+52016+…+53+52+5+1.【分析】(1)根据已知算式得出的规律求出即可;(2)先变形,再根据已知算式得出的规律求出即可;(3)先变形,再根据已知算式得出的规律求出即可.【解答】解:(1)(x﹣1)(x n+x n﹣1+x n﹣2+…+x+1)=x n+1﹣1,故答案为:x n+1﹣1;(2)219+218+217+…+23+22+2+1=(2﹣1)×(219+218+217+…+23+22+2+1)=220﹣1;(3)52018+52017+52016+…+53+52+5+1=(5﹣1)×(52018+52017+52016+…+53+52+5+1)×=(52019﹣1).【点评】本题考查了平方差公式、数字的变化类、多项式乘以多项式等知识点,能灵活运用规律进行计算是解此题的关键.14.计算:(1)12502﹣1248×1252(用公式计算)(2)(﹣1)8×(0.2)5×(0.6)6×(﹣5)4【分析】(1)先利用平方差公式的计算1248×1252,再计算即可;(2)根据积的乘方的逆用,直接计算即可.【解答】解:(1)12502﹣1248×1252=12502﹣(1250﹣2)×(1250+2)=12502﹣(12502﹣22)=12502﹣12502+22=4;(2)()8×(0.2)5×(0.6)6×(﹣5)4=()8×()5×()6×54=()2×=.【点评】本题主要考查平方差公式及积的乘方,解决此类计算题熟记公式是关键.15.观察后填空①(x﹣1)(x+1)=x2﹣1②(x﹣1)(x2+x+1)=x3﹣1③(x﹣1)(x3+x2+x+1)=x4﹣1(1)填空:(x﹣1)(x99+x98+x97+…+x+1)=x100﹣1.(2)请利用上面的结论计算①(﹣2)50+(﹣2)49+(﹣2)48+…+(﹣2)+1②若x3+x2+x+1=0,求x2016的值.【分析】(1)根据题意给出的规律即可求出答案.(2)①根据(x﹣1)(x50+x49+……+x+1)=x51﹣1,令x=﹣2代入即可求出答案.②根据条件可求出x4=1,从而可求出答案.【解答】解:(1)由题意给出的规律可知:x100﹣1(2)①由给出的规律可知:(x﹣1)(x50+x49+……+x+1)=x51﹣1∴令x=﹣2,∴(﹣2)50+(﹣2)49+(﹣2)48+…+(﹣2)+1=,②∵x3+x2+x+1=0,∴(x﹣1)(x3+x2+x+1)=x4﹣1=0,∴x4=1,∴x2016=(x4)504=1【点评】本题考查规律型问题,解题的关键是根据题意找出规律,本题属于中等题型.。

七年级数学下册2.2乘法公式活用“平方差公式”解数字运算题素材湘教版(new)

活用“平方差公式"解数字运算题平方差公式(a+b )(a -b)=a 2-b 2,不但是研究整式运算的基础,而且在许多的数字运算中也有广泛地运用.不少数字计算题看似与平方差公式无缘,但若根据数字的结构特点,灵活巧妙地运用平方差公式,常可以使运算变繁为简,化难为易.现举例说明.例1 计算:12009200720082+⨯. 分析:由于数字较大,直接运算较繁,但考虑分母中的2007×2009可写成(2008-1)(2008+1),这样就可以直接运用平方差公式求解.解:原式=()()1120081200820082++-=112008200822+-=2220082008=1 说明 对于数字较大而相差有一定规律的数字计算,你不妨考虑运用平方差公式. 例2 计算:12-22+32-42+…+992-1002,分析 观察式中的各数特点,可逆用平方差公式直接算出其结果.解:12-22+32-42+…+992-1002=(1-2) (1+2)+(3-4) (3+4)+…(99-100) (99+100)=-(1+2+3+4+…+99+100)=-(1+100)×50=-5050说明 对于两个因数或因式是平方差的形式都可以考虑逆用平方差公式.例3 计算:.10114113112112222⎪⎭⎫ ⎝⎛-⋅⋅⋅⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛- 分析:本例若直接计算则较繁,由数字特点可连续逆用平方差公式. 解:原式=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⋅⋅⋅⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-10111011411411311311211211 =.20111011211011109454334322321=⨯=⨯⋅⋅⋅⨯⨯⨯⨯⨯ 尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。

平方差公式练习题精选(含答案)

平方差公式1、利用平方差公式计算:(1)(m+2) (m-2)(2)(1+3a) (1-3a)(3) (x+5y)(x-5y)(4)(y+3z) (y-3z)2、利用平方差公式计算(1)(5+6x)(5-6x)(2)(x-2y)(x+2y)(3)(-m+n)(-m-n)3利用平方差公式计算(1)(1)(-41x-y)(-41x+y)(2)(ab+8)(ab-8)(3)(m+n)(m-n)+3n 24、利用平方差公式计算(1)(a+2)(a-2)(2)(3a+2b)(3a-2b)(3)(-x+1)(-x-1)(4)(-4k+3)(-4k-3)5、利用平方差公式计算(1)803×797(2)398×4027.下列多项式的乘法中,可以用平方差公式计算的是( )A .(a+b )(b+a )B .(-a+b )(a -b )C .(13a+b )(b -13a ) D .(a 2-b )(b 2+a ) 8.下列计算中,错误的有( )①(3a+4)(3a -4)=9a 2-4;②(2a 2-b )(2a 2+b )=4a 2-b 2;③(3-x )(x+3)=x 2-9;④(-x+y )·(x+y )=-(x -y )(x+y )=-x 2-y 2.A .1个B .2个C .3个D .4个9.若x 2-y 2=30,且x -y=-5,则x+y 的值是( )A .5B .6C .-6D .-510.(-2x+y )(-2x -y )=______.11.(-3x 2+2y 2)(______)=9x 4-4y 4.12.(a+b -1)(a -b+1)=(_____)2-(_____)2.13.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.14.计算:(a+2)(a 2+4)(a 4+16)(a -2).完全平方公式1利用完全平方公式计算:(1)(21x+32y)2 (2)(-2m+5n)2(3)(2a+5b)2(4)(4p-2q)2 2利用完全平方公式计算:(1)(21x-32y 2)2 (2)(1.2m-3n)2(3)(-21a+5b)2 (4)(-43x-32y)23 (1)(3x-2y)2+(3x+2y)2 (2)4(x-1)(x+1)-(2x+3)2(a+b)2-(a-b)2 (4)(a+b-c)2(5)(x-y+z)(x+y+z) (6)(mn-1)2—(mn-1)(mn+1)4先化简,再求值:(x+y)2-4xy,其中x=12,y=9。

2017春七年级数学下册 2.2.1 平方差公式习题 (新版)湘教版

2.2 乘法公式2.2.1 平方差公式基础题知识点1 平方差公式1.计算(x -2)(2+x)的结果是(A)A .x 2-4B .4-x 2C .x 2+4x +4D .x 2-4x +42.下列计算中,不能用平方差公式计算的是(C)A .(x +y)(x -y)B .(-x -y)(-x +y)C .(x -y)(-x +y)D .(-x -y)(y -x)3.下列运用平方差公式计算,错误的是(C)A .(x +y)(x -y)=x 2-y 2B .(x +1)(x -1)=x 2-1C .(2x +1)(2x -1)=2x 2-1D .(-x +y)(-x -y)=x 2-y 24.下列各式中,计算结果为81-x 2的是(D)A .(x +9)(x -9)B .(x +9)(-x -9)C .(-x +9)(-x -9)D .(-x -9)(x -9)5.如果(2x -3y)·M =4x 2-9y 2,那么M 表示的式子为(D)A .-2x +3yB .2x -3yC .-2x -3yD .2x +3y6.计算:(1)(2a +1)(2a -1)=4a 2-1; (2)(s -3t)(s +3t)=s 2-9t 2;(3)(2a +3b)(2a -3b)=4a 2-9b 2;(4)(ab +4b)(ab -4b)=a 2b 2-16b 2.7.计算:(1)(2m +3n)(3n -2m);解:原式=9n 2-4m 2.(2)(-12x -13y)(13y -12x); 解:原式=14x 2-19y 2.(3)(-3x 2+12)(-3x 2-12). 解:原式=9x 4-14.知识点2 平方差公式的运用8.对于任意的整数n ,能整除(n +2)(n -2)-(n +3)(n -3)的整数是(D)A .2B .3C .4D .59.若三角形的底边长为2a +1,底边上的高为2a -1,则此三角形的面积为(D) A .4a 2-1 B .4a 2-4a +1C .4a 2+4a +1D .2a 2-1210.(衡阳中考)已知a +b =3,a -b =-1,则a 2-b 2的值为-3.11.计算:(1)197×203;解:原式=(200-3)(200+3)=2002-32=40 000-9=39 991.(2)99.8×100.2.解:原式=(100-0.2)×(100+0.2)=1002-0.22=10 000-0.04=9 999.96.12.(湘西中考)先化简,再求值:(a +b)(a -b)-b(a -b),其中a =-2,b =1.解:原式=a 2-b 2-ab +b 2=a 2-ab.当a =-2,b =1时,原式=(-2)2-(-2)×1=6.中档题13.已知(-3a +m)(4b +n)=16b 2-9a 2,则m ,n 的值分别为(C)A .m =-4b ,n =3aB .m =4b ,n =-3aC .m =4b ,n =3aD .m =3a ,n =4b14.从图1到图2的变化过程可以发现的代数结论是(A)A .(a +b)(a -b)=a 2-b 2B .a 2-b 2=(a +b)(a -b)C .(a +b)2=a 2+2ab +b 2D .a 2+2ab +b 2=(a +b)215.计算:(1)(x +y)(x -y)+(x +2y)(-x +2y);解:原式=x 2-y 2+4y 2-x 2=3y 2.(2)(-a +12b)(-a -12b)-(3a -2b)(3a +2b).解:原式=a 2-14b 2-9a 2+4b 2=-8a 2+154b 2.16.已知(a +b -1)(a +b +1)=8,求a +b 的值.解:(a +b -1)(a +b +1)=[(a +b)-1][(a +b)+1]=(a +b)2-1=8,所以(a +b)2=9.所以a +b =±3.17.利用平方差公式计算:(1)6023×5913; 解:原式=(60+23)×(60-23) =3 600-49=3 59959. (2) 2 0182 0182-2 019×2 017. 解:原式=2 0182 0182-(2 018+1)×(2018-1) = 2 0182 0182-2 0182+1=2 018.18.小明家有一块边长为a 米的正方形土地租给了养殖户刘杰.今年小明的爸爸对刘杰说:“我把这块地一组对边减少1米,另外一组对边增加1米,租金不变,继续租给你,你看如何?”养殖户刘杰一听,就答应了.你认为养殖户刘杰吃亏了吗?为什么?解:养殖户刘杰吃亏了.理由:因为原正方形的面积为a 2平方米,改变边长后面积为(a +1)(a -1)=a 2-1(平方米),因为a 2>a 2-1,所以,养殖户刘杰吃亏了.19.若(2x +y -1)2+|x -2y -3|=0,求代数式(2x +y)(2x -y)-(x +2y)(x -2y)-1的值.解:根据题意,得⎩⎪⎨⎪⎧x -2y -3=0,2x +y -1=0.解得⎩⎪⎨⎪⎧x =1,y =-1. 所以,原式=3x 2+3y 2-1=3×12+3×(-1)2-1=5.综合题20.先观察下面的解题过程,然后解答问题:题目:化简:(2+1)(22+1)(24+1).解:(2+1)(22+1)(24+1)=(2-1)(2+1)(22+1)(24+1)=(22-1)(22+1)(24+1)=(24-1)(24+1)=28-1.问题:化简:(3+1)(32+1)(34+1)(38+1)…(364+1).解:原式=12(3-1)(3+1)(32+1)(34+1)(38+1)…(364+1) =12(32-1)(32+1)(34+1)(38+1)…(364+1) =12(34-1)(34+1)(38+1)…(364+1) =12(38-1)(38+1)…(364+1) =12(316-1)…(364+1)=12(364-1)(364+1) =12(3128-1).。

七年级数学下册2.18 平方差公式解决几何问题(专项练习)(湘教版)

专题2.18 平方差公式解决几何问题(专项练习)一、单选题1.(2021八上·丹江口期末)从边长为a的正方形中剪掉一个边长为b的正方形(如图1所示),然后将剩余部分拼成一个长方形(如图2所示).根据图形的变化过程,写出的一个正确的等式是()图1图2A.(a−b)2=a2−2ab+b2B.a(a−b)=a2−abC.b(a−b)=ab−b2D.a2−b2=(a+b)(a−b)2.(2020八上·渝北月考)如图,边长为a的正方形中剪去一个边长为b的小正方形,剩下部分正好拼成一个等腰梯形,利用这两幅图形面积,能验证怎样的数学公式?()A.a2−b2=(a+b)(a−b)B.(a+b)2-(a−b)2=4abC.(a+b)2=a2+2ab+b2D.(a-b)2=a2-2ab+b23.(2020八上·重庆月考)将图甲中阴影部分的小长方形变换到图乙位置,从图形的面积关系得到的数学公式是()A.(a+b)(a−b)=a2−b2B.(a+b)2=a2+2ab+b2C.(a−b)2=a2−2ab+b2D.a2−ab=a(a−b)4.(2020八上·朔城月考)在边长为a的正方形中挖掉一个边长为b(a>b)的小正方形,把余下的部分剪拼成一个长方形(如图),通过计算图形(阴影部分)的面积,验证了一个等式,这个等式是()A.a2−b2=(a+b)(a−b)B.(a+b)2=a2+2ab+b2C.(a−b)2=a2−2ab+b2D.a2−ab=a(a−b)5.(2020八上·城厢期中)如图(1)所示在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把拿下的部分剪拼成一个矩形如图(2)所示,通过计算两个图形阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab﹣2b26.(2020八上·长春月考)从下图的变形中验证了我们学习的公式()A.a2−b2=(a−b)2B.(a+b)2=a2+2ab+b2C.(a−b)2=a2−2ab+b2D.a2−b2=(a+b)(a−b)7.(2020八上·广西月考)把剩下的部分拼成一个矩形,通过计算两处图形的面积,验证了一个等式,此等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab+b28.(2020·郴州)如图1,将边长为x的大正方形剪去一个边长为1的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示长方形.这两个图能解释下列哪个等式()A.x2−2x+1=(x−1)2B.x2−1=(x+1)(x−1)C.x2+2x+1=(x+1)2D.x2−x=x(x−1)9.(2020八下·宝安月考)如图,在边长为6.75cm的正方形纸片上,剪去一个边长为3.25cm 的小正方形,则图中阴影部分的面积为()A.3.5cm2B.12.25cm2C.27cm2D.35cm210.(2020七下·涡阳月考)如图①,边长为a的大正方形中四个边长均为b的小正方形,小华将阴影部分拼成一个长方形,(如图①)则这个长方形的面积为()A.(a+2b)(a−2b)B.(a+b)(a−b)C.(a+2b)(a−b) D.(a+b)(a−2b)11.(2020七下·哈尔滨月考)如图是用4个相同的小矩形与1个小正方形密铺而成的正方形图案,已知大正方形的面积为49,小正方形的面积为4,若用x,y(其中x>y)表示小矩形的长与宽,请观察图案,指出以下关系式中错误的是()A.x+y=7B.x﹣y=2C.x2﹣y2=4D.4xy+4=4912.(2020七下·长兴期中)如图,大正方形的边长为m,小正方形的边长为n,x,y表示四个相同长方形的两边长(x>y),则①x-y=n;①xy= m 2−n24;①x2-y2=mn;①x2+y2= m2−n22中,正确的是()A.①①①B.①①①C.①①①D.①①①①13.(2020·迁安模拟)通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是()A.(a-b)2=a2-2ab+b2B.(a+b)2=a2+2ab+b²C.2a(a+b)=2a2+2abD.(a+b)(a-b)=a2-b²14.(2020八下·襄阳开学考)如图通过将左图裁剪、用两块梯形拼接成右图,体现了什么数学公式()A.a2﹣b2=(a+b)(a﹣b)B.(a﹣b)2=a2﹣2ab+b2C.a(a+b)=a2+abD.(a+b)2=a2+2ab+b215.(2020八上·绵阳期末)如图所示,在边长为a 的正方形中挖去一个边长为b 的小正方形(a > b) ,再把剩余的部分剪拼成一个矩形,通过计算图形(阴影部分)的面积,验证了一个等式是()A.a2- b2= (a + b)(a - b)B.(a + b) 2= a2 + 2ab + b2C.(a - b) 2= a2- 2ab + b2D.(a + 2b)(a - b) = a2 + ab - 2b216.(2020八上·德城期末)在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一个矩形(如图),通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.a2-b2=(a+b)(a-b)B.(a+b)2=a2+2ab+b2C.(a-b)2=a2-2ab+b2D.a2-ab=a(a-b)17.(2020七下·天府新期末)如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b).把余下的部分剪拼成一个长方形,通过计算阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣2ab+b2=(a﹣b)2B.a2﹣ab=a(a﹣b)C.a2﹣b2=(a﹣b)2D.a2﹣b2=(a+b)(a﹣b)18.(2020七下·泗辖期中)我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图①可以用来解释(a+b)2-(a-b)2=4ab.那么通过图①中阴影部分面积的计算验证了一个恒等式,此等式是()A.a2-b2=(a+b)(a-b)B.(a-b)2=a2-2ab+b2C.(a+b)2=a2+2ab+b2D.(a-b)(a+2b)=a2+ab-b219.(2020七下·福田期中)如图,边长为a的大正方形剪去一个边长为b的小正方形后,将剩余部分通过割补拼成新的图形.根据图形能验证的等式为()A.a2−b2=(a−b)2B.a2−b2=(a+b)(a−b)C.(a−b)2=a2−2ab+b2D.(a+b)2=a2+2ab+b220.(2020七下·太仓期中)将图甲中阴影部分的小长方形变换到图乙位置,能根据图形的面积关系得到的关系式是()A.(a+b)(a−b)=a2−b2B.(a−b)2=a2−b2C.b(a−b)=ab−b2D.ab−b2=b(a−b)二、填空题(共22题;共25分)21.(2020七下·天桥期末)如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).①图2中的阴影部分的面积为________;①观察图2请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是________;,则(x﹣y)2=________;①根据(2)中的结论,若x+y=5,x•y= 94①实际上通过计算图形的面积可以探求相应的等式.如图3,你发现的等式是________.22.(2019八上·黄梅月考)将边长分别为1、2、3、4……19、20的正方形置于直角坐标系第一象限,如图中方式叠放,则按图示规律排列的所有阴影部分的面积之和为________.23.(2020七上·平山期中)如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则另一边长是________.24.(2020七下·太原期中)如图,利用图①和图①的阴影面积相等,写出一个正确的等式________.25.(2020七下·高新期中)如图,大正方形的边长为m,小正方形的边长为n,若用x,y表示四个小长方形两边长(x>y),观察图案以下关系式正确的是________. (填序号)① xy=m2−n24;① x+y=m;① x2−y2=m⋅n;① x2+y2=m2+n2226.(2020八上·通辽期末)如图,从边长为a的大正方形中去掉一个边长为b的小正方形,然后将剩部分剪后拼成一个长方形,这个操作过程能验证的等式是________27.(2020八上·丰台期末)如图,从边长为a+4的正方形纸片中剪去一个边长为a的正方形(a>0),剩余部分沿虚线剪开,拼成一个长方形(不重叠无缝隙),则长方形的面积为________.28.(2019八上·孝感月考)如图,从边长为a+5的正方形纸片中剪去一个边长为a+2的正方形(a>0),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则长方形的面积为________ m2.29.(2019八上·江汉期中)如图,边长为n的正方形纸片剪出一个边长为n -3的正方形之后,剩余部分可剪拼成一个长方形,若该长方形一边的长为3,则另一边的长为________.30.(2019七下·萧县期末)在边长为a的正方形纸片中剪去一个边长为b的小正方形(a>b)(如图(1)),把余下的部分沿虚线剪开,拼成一个矩形(如图(2)),分别计算这两个图形阴影部分的面积,可以验证的乘法公式是________.(用字母表示)31.(2019七下·北区期末)如图1,把一个边长为(a+b)的大正方形切成4个全等的长方形和1个小正方形,大正方形的面积是49,中间小正方形的面积为16.图2中两个正方形的边长分别为a、b,则阴影部分的面积为________.32.(2019七下·即墨期末)如图,有两个大小不同的正方形A和B,现将A、B并列放置后构造新的正方形得到图①,其阴影部分的面积为16;将B放在A的内部得到图①,其阴影部分(正方形)的面积为4,则正方形A、B的面积之差为________.33.(2019·北京模拟)如图,从一个边长为a的正方形的一角上剪去一个边长为b(a>b)的正方形,则剩余(阴影)部分正好能够表示一个乘法公式,则这个乘法公式是________(用含a,b的等式表示).34.(2019·平谷模拟)如图,从边长为a的大正方形中去掉一个边长为b的小正方形,然后将剩部分剪后拼成一个长方形,这个操作过程能验证的等式是________.35.(2019七下·西安期中)如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是________.36.(2018七下·长春月考)从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为________.37.(2017·孝感)如图所示,图1是一个边长为a的正方形剪去一个边长为1的小正方形,图2是一个边长为(a﹣1)的正方形,记图1,图2中阴影部分的面积分别为S1,S2,可化简为________.则S1S238.(2017七下·大石桥期末)如图所示,把三张边长均为2√5cm的正方形卡片A,B,C叠放在一个底面为正方形的盒底上,若底面未被卡片覆盖(阴影部分)的面积为5cm²,则盒底的边长是________.39.(2017·顺义模拟)如图的四边形均为矩形或正方形,根据图形的面积,写出一个正确的等式:________.40.(2018八上·黑龙江期末)在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),由两个图形中阴影部分的面积相等,可以验证________(填写序号).① (a+b)2=a2+2ab+b2① (a−b)2=a2−2ab+b2① a2−b2=(a+b)(a−b)① (a+2b)(a−b)=a2+ab−2b241.(2018八上·兴义期末)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形,分别计算这两个图形的阴影部分的面积,验证了公式________42.(2017七下·昌平期末)如图1,将边长为a的大正方形剪去一个边长为b的小正方形,并沿图中的虚线剪开,拼接后得到图2,这种变化可以用含字母a,b的等式表示为________三、综合题(共8题;共75分)43.(2020七下·溧水期末)如图①是由边长为a的大正方形纸片剪去一个边长为b的小正方形后余下的图形.我们把纸片剪开后,拼成一个长方形(如图①).(1)探究:上述操作能验证的等式的序号是________.① a2+ab=a(a+b)① a2-2ab+b2=(a-b)2 ① a2-b2=(a+b)(a-b)(2)应用:利用你从(1)中选出的等式,完成下列各题:①已知4x2-9y2=12,2x+3y=4,求2x-3y的值;①计算(1-12)×(1-13)×(1-14)×(1-15)×⋯×(1-1100)44.(2020七下·肃州期末)如图1,边长为a的大正方形有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示)(1)如图1,可以求出阴影部分的面积是________(写成平方差的形式)(2)如图2,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是________,长是________,面积是________.(写成多项式乘法形式)(3)比较左、右两图的阴影部分面积,可以得到公式________.(4)请应用这个公式完成下列各题:①已知4m2−n2=12,2m+n=4,则2m−n=________.①计算:20202−2018×2022________①计算:(1−12)(1−13)(1−14)⋯(1−12019)(1−12020)________45.(2020七下·北京期末)如图,有足够多的边长为a的小正方形(A类)、长为a宽为b的长方形(B类)以及边长为b的大正方形(C类),发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式.比如图①可以解释为:(a+2b)(a+b)=a2+3ab+2b2(1)取图①中的若干个(三种图形都要取到)拼成一个长方形,使其面积为(2a+b)(a+2b),在虚框中画出图形....,并根据图形回答(2a+b)(a+2b)=________(2)若取其中的若干个(三种图形都要取到)拼成一个长方形,使其面积为a2+5ab+6b2.根据你画的长方形,可得到恒等式________(3)如图①,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个矩形的两边长(x>y),观察图案,指出以下正确的关系式___________填写选项).A.xy = m2−n24B.x+y=mC.x2-y2=m·nD.x2+y2 = m2+n2246.(2020七下·新昌期末)某同学利用若干张正方形纸片进行以下操作:(1)从边长为a的正方形纸片中减去一个边长为b的小正方形,如图1,再沿线段AB把纸片剪开,最后把剪成的两张纸片拼成如图2的等腰梯形,这一过程所揭示的公式是________.(2)先剪出一个边长为a的正方形纸片和一个边长为b的正方形纸片,再剪出两张边长分别为a和b的长方形纸片,如图3,最后把剪成的四张纸片拼成如图4的正方形.这一过程你能发现什么代数公式?(3)先剪出两个边长为a的正方形纸片和一个边长为b的正方形纸片,再剪出三张边长分别为a和占的长方形纸片,如图5,你能否把图5中所有纸片拼成一个长方形?如果可以,请画出草图,并写出相应的等式.如果不能,请说明理由.参考答案一、单选题1.【考点】平方差公式的几何背景【解析】【解答】解:第一个图形阴影部分的面积是a2−b2,第二个图形的面积是(a+b)(a−b),则a2−b2=(a+b)(a−b).故答案为:D.【分析】利用正方形的面积公式和长方形的面积公式分别表示出阴影部分的面积,然后根据面积相等列出等式即可.2.【考点】完全平方公式的几何背景,平方差公式的几何背景【解析】【解答】解:①左边阴影面积为a2−b2=(a+b)(a−b)右边梯形面积为(2a+2b)(a−b)2① a2−b2=(a+b)(a−b)故答案为:A.(上底+【分析】由第一个图可知,S阴影部分=S大正方形-S小正方形,由第二个图可知,S梯形=12下底)高,由题意可得S阴影部分=S梯形,整理即可判断求解.3.【考点】平方差公式的几何背景【解析】【解答】解:左边图形的面积可以表示为:(a+b)(a−b),右边图形的面积可以表示为:(a−b)b+a(a−b),①左边图形的面积=右边图形的面积,①(a+b)(a−b)=(a−b)b+a(a−b)= a2−b2,即:(a+b)(a−b)=a2−b2.故答案为:A.【分析】观察图形,分别表示两个图形的面积,然后根据两个图形的面积相等即可判断求解.4.【考点】平方差公式的几何背景【解析】【解答】解:左图阴影部分的面积=大正方形的面积−小正方形的面积=a2−b2;右图中矩形的长=a+b,宽=a−b,右图的面积=(a+b)(a−b).所以a2−b2=(a+b)(a−b).故答案为:A.【分析】由于左图阴影部分的面积=大正方形的面积−小正方形的面积=a2−b2;右图长方形的长=a+b,宽=a−b,可得长方形的面积=长×宽(a+b)(a−b),由于阴影面积相等,即可得出结论.5.【考点】平方差公式及应用【解析】【解答】解:由题可得:a2﹣b2=(a﹣b)(a+b).故答案为:A.【分析】由图(1)得阴影部分的面积为a2﹣b2=,由图(2)得阴影部分的面积为(a﹣b)(a+b),根据阴影部分的面积相等即得结论.6.【考点】平方差公式的几何背景【解析】【解答】解:左边正方形中有颜色部分的面积为a2-b2,右边长方形的面积为(a+b)(a-b),根据正方形中有颜色部分的面积=长方形的面积可得a2-b2=(a+b)(a-b),故答案为:D.【分析】根据正方形中有颜色部分的面积=长方形的面积可得.7.【考点】平方差公式的几何背景【解析】【解答】解:第一个图形剩下的部分面积为a2−b2,第二个图形的矩形面积为(a+b)(a−b),则有a2−b2=(a+b)(a−b),故答案为:A.【分析】第一个图形剩下的部分面积等于大正方形面积减去小正方形面积,再根据其与第二个图形的矩形面积相等即可得.8.【考点】列式表示数量关系,平方差公式的几何背景【解析】【解答】第一个图形空白部分的面积是x2-1,第二个图形的面积是(x+1)(x-1).则x2-1=(x+1)(x-1).故答案为:B.【分析】利用大正方形的面积减去小正方形的面积得到空白部分的面积,然后根据面积相等列出等式即可.9.【考点】平方差公式及应用,正方形的性质【解析】【解答】图中阴影部分的面积S=大正方形的面积﹣小正方形的面积,即S=6.752﹣3.252=(6.75+3.25)×(6.75﹣3.25)=10×3.5=35cm2故答案为:D.【分析】根据图中阴影部分的面积S=大正方形的面积﹣小正方形的面积分析即可得出答案.10.【考点】平方差公式的几何背景【解析】【解答】解:由图可知,长方形的长为a+2b,宽为a−2b,因此其面积为(a+2b)(a−2b).故答案为:A.【分析】根据图形,求出长方形的长和宽的表达式即可求出面积.11.【考点】平方差公式的几何背景【解析】【解答】A、因为正方形图案的边长7,同时还可用(x+y)来表示,故此选项不符合题意;B、中间小正方形的边长为2,同时根据长方形长宽也可表示为x-y,故此选项不符合题意;C、根据A、B可知x+y=7,x-y=2,则x2-y2=(x+y)(x-y)=14,故此选项符合题意;D、因为正方形图案面积从整体看是49,从组合来看,可以是(x+y)2,还可以是(4xy+4),即4xy+4=49,故此选项不符合题意;故答案为:C.【分析】分别根据大正方形边长、小正方形边长的不同表示可判断A、B,由A、B结论利用平方差公式可判断C,根据大正方形面积的整体与组合的不同表示可判断D.12.【考点】平方差公式及应用【解析】【解答】解:小正方形边长为n;小正方形边长又可以为x-小长方形的宽,即x-y;①x-y=n;故①正确;S大正方形=m2,S大正方形=S小正方形+4S小长方形=n2+4xy①m2=n2+4xy即xy=m2−n2;4故①正确;x2-y2 =(x+y)(x-y)x+y为大正方形的边长m;x-y为小正方形的边长n;①x2-y2 =mn;故①正确;x2+y2=m2−n2;2m2-n2=2(x2+y2)①S大正方形-S小正方形=4xy;故①错误;故答案为:A.【分析】根据大正方形的面积=小正方形的面积+4个长方形的面积和平方差公式可以判断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课标2017-2018学年湘教版七年级数学下册
2.2.1 平方差公式
要点感知两个数的__________与这两个数的__________的等于这两个数的平方差,即(a+b)(a-b)=__________.
预习练习计算:
(1)(2a+1)(2a-1)=__________;
(2)(s-3t)(s+3t)=__________;
(3)(2a+3b)(2a-3b)=__________;
(4)(ab+4b)(ab-4b)=__________.
知识点1 平方差公式
1.下列计算中,不能用平方差公式计算的是( )
A.(x+y)(x-y)B.(-x-y)(-x+y)C.(x-y)(-x+y)D.(-x-y)(y-x)
2.下列各式计算正确的是( )
A.(x+3)(x-3)=x2-3
B.(2x+3)(2x-3)=2x2-9
C.(2x+3)(x-3)=2x2-9
D.(5ab+1)(5ab-1)=25a2b2-1
3.如果(2x-3y)·M=4x2-9y2,那么M表示的式子为( )
A.-2x+3y
B.2x-3y
C.-2x-3y
D.2x+3y
4.下列各式:①(x-2y)(2y+x);②(x-2y)(-x-2y);③(-x-2y)(x+2y);④(x-2y)(-x+2y).其中能用平方差公式计算的是( )
A.①②
B.①③
C.②③
D.②④
5.计算:(1)(3x-y)(3x+y)=__________;(2)(-x-1)(x-1)=__________.
6.当x=3,y=1时,代数式(x+y)(x-y)+y2的值是__________.
7.计算:
(1)(2m+3n)(3n-2m); (2)(-1
2x-1
3
y)(1
3
y-1
2
x);
(3)(-3x2+1
2)(-3x2-1
2
).
知识点2 平方差公式的应用
8.若a2-b2=12,a+b=6,则a-b的值是( )
A.1
B.2
C.3
D.4
9.对于任意的整数n,能整除(n+2)(n-2)-(n+3)(n-3)的整数是( )
A.2
B.3
C.4
D.5
10.如果(x+y-3)2+(x-y+5)2=0,那么x2-y2=__________.
11.计算:
(1)197×203; (2)99.8×100.2.
12.如图1,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿着线段AB 剪开,把剪成的两张纸片拼成如图2的等腰梯形.
(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2,请直接用含a,b的代数式表示S1,S2;
(2)请写出上述过程所揭示的乘法公式.
13.下列各式能用平方差公式计算的是( )
A.(3a+b)(a-b)
B.(-3a-b)(-3a+b)
C.(3a+b)(-3a-b)
D.(-3a+b)(3a-b)
14.计算2 011×2 013-2 0122的结果是( )
A.1
B.-1
C.2
D.-2
15.观察等式:①9-1=2×4;②25-1=4×6;③49-1=6×8…按照这种规律写出第n个等式____________________.
16.计算:
(1)(-3x+5y)(-5y-3x); (2)(x+y)(x-y)+(x+2y)(-x+2y);
(3)(-a+1
2b)(-a-1
2
b)-(3a-2b)(3a+2b);
(4)(x+2y)(x-2y)-(x-4y)(x+4y)+(6y-5x)(5x+6y).
17.已知(a+b-1)(a+b+1)=8,求a+b的值.
18.利用平方差公式计算:
(1)602
3×591
3
; (2)
2
2014
201420152013
-⨯
.
19.小明家有一块边长为a米的正方形土地租给了养殖户刘杰.今年小明的爸爸对刘杰说:“我把这块地一组对边减少1米,另外一组对边增加1米,租金不变,继续租给你,你看如何?”养殖户刘杰一听,就答应了.你认为养殖户刘杰吃亏了吗?为什么?
20.若(2x+y-1)2+|x-2y-3|=0,求代数式(2x+y)(2x-y)-(x+2y)(x-2y)-1的值.
21.先观察下面的解题过程,然后解答问题:
题目:化简:(2+1)(22+1)(24+1).
解:
(2+1)(22+1)(24+1)=(2-1)(2+1)(22+1)(24+1)=(22-1)(22+1)(24+1)=(24-1)(24+1)=28-1. 问题:化简:(3+1)(32+1)(34+1)(38+1)…(364+1).
参考答案
要点感知和差积a2-b2
预习练习(1)4a2-1 (2)s2-9t2(3)4a2-9b2(4)a2b2-16b2
1.C
2.D
3.D
4.A
5.(1)9x2-y2(2)1-x2
6.9
7.(1)原式=9n2-4m2.
(2)原式=1
4x2-1
9
y2.
(3)原式=9x4-1
4
.
8.B 9.D 10.-15
11.(1)原式=(200-3)(200+3)=2002-32=40 000-9=39 991.
(2)原式=(100-0.2)×(100+0.2)=1002-0.22=10 000-0.04=9 999.96.
12.(1)S1=a2-b2,S2=1
2
(2b+2a)(a-b)=(a+b)(a-b).
(2)(a+b)(a-b)=a2-b2.
13.B 14.B 15.(2n+1)2-12=2n(2n+2)
16.(1)原式=(-3x+5y)(-3x-5y)=(-3x)2-(5y)2=9x2-25y2.
(2)原式=x2-y2+4y2-x2=3y2.
(3)原式=a2-1
4b2-9a2+4b2=-8a2+15
4
b2.
(4)原式=x 2-4y 2-x 2+16y 2+36y 2-25x 2=48y 2-25x 2. 17.(a+b-1)(a+b+1)=[(a+b)-1][(a+b)+1]=(a+b)2-1=8, 所以(a+b)2=9, 所以a+b=±3. 18.(1)原式=(60+23)×(60-23)=3 600-49=3 59959
. (2)原式=
()2
2014
201420141201(41)
-+⨯-=222014201420141-+=2 014. 19.养殖户刘杰吃亏了.
理由:因为原正方形的面积为a 2平方米,改变边长后面积为(a+1)(a-1)=a 2-1(平方米),因为a 2>a 2-1,所以,养殖户刘杰吃亏了.
20.根据题意,得230,210.x y x y --=+-=⎧⎨⎩解得1,
1.x y ==-⎧⎨⎩
所以,原式=3x 2+3y 2-1=3×12+3×(-1)2-1=5. 21.原式=
1
2
(3-1)(3+1)(32+1)(34+1)(38+1)…(364+1) =1
2(32-1)(32+1)(34+1)(38+1)…(364+1) =12(34-1)(34+1)(38+1)…(364+1) =12(38-1)(38+1)…(364+1) =12(316-1)…(364+1) =12(364-1)(364+1) =12
(3128-1).。

相关文档
最新文档