2013年上海市春季高考数学试卷答案与解析

合集下载

2013高考试题解析分类汇编解答题-推荐下载

2013高考试题解析分类汇编解答题-推荐下载

1 2

6 2
,故
,2
18


,


0
x



35 5
,其中,



0,
.
6, 2
x
6 2 .

6 2 .
6, 2
6 2 ,
y


1 2
,
2

3
5 5

x2 3..(2013 年普通高等学校招生统一考试山东数学(理)试题(含答案))椭圆 C : a2

(x1 1)(x2 1) y1 y2 x1x2 (x1 x2 ) 1 k 2 (x1 1)(x2 1) (k 2 1)x1x2 (k 2 1)(x1 x2 ) k 2 1 7k2 1 0 ,
2k 2 1
解得 k 2 1 ,即 k


的轨迹方程是 10 y
1
x2


y

3 2
22
,即
1 ,则


22

6 2k 2 1,
x
3x2

y


18

3x2
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2013年上海市高考数学试卷(文科)答案与解析

2013年上海市高考数学试卷(文科)答案与解析

2013年上海市高考数学试卷(文科)参考答案与试题解析一、填空题(本大题共有14题,满分56分),考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分1.(4分)(2013•上海)不等式<0的解为0<x<.考点:其他不等式的解法.专题:不等式的解法及应用.分析:根据两数相除商为负,得到x与2x﹣1异号,将原不等式化为两个一元一次不等式组,求出不等式组的解集即可得到原不等式的解集.解答:解:原不等式化为或,解得:0<x<,故答案为:0<x<点评:此题考查了其他不等式的解法,利用了转化的思想,是一道基本试题.2.(4分)(2013•上海)在等差数列{a n}中,若a1+a2+a3+a4=30,则a2+a3=15.考点:等差数列的性质;等差数列的通项公式.专题:等差数列与等比数列.分析:根据给出的数列是等差数列,由等差数列的性质可得a1+a4=a2+a3,结合已知条件可求a2+a3.解答:解:因为数列{a n}是等差数列,根据等差数列的性质有:a1+a4=a2+a3,由a1+a2+a3+a4=30,所以,2(a2+a3)=30,则a2+a3=15.故答案为:15.点评:本题考查了等差中项概念,在等差数列中,若m,n,p,q,t∈N*,且m+n=p+q=2t,则a m+a n=a p+a q=2a t,此题是基础题.3.(4分)(2013•上海)设m∈R,m2+m﹣2+(m2﹣1)i是纯虚数,其中i是虚数单位,则m=﹣2.考点:复数的基本概念.专题:计算题.分析:根据纯虚数的定义可得m2﹣1=0,m2﹣1≠0,由此解得实数m的值.解答:解:∵复数z=(m2+m﹣2)+(m﹣1)i为纯虚数,∴m2+m﹣2=0,m2﹣1≠0,解得m=﹣2,故答案为:﹣2.点评:本题主要考查复数的基本概念,得到m2+m﹣2=0,m2﹣1≠0,是解题的关键,属于基础题.4.(4分)(2013•上海)已知,,则y=1.考点:二阶行列式的定义.专题:计算题.分析:利用二阶行列式的运算法则,由写出的式子化简后列出方程,直接求解y即可.解答:解:由已知,,所以x﹣2=0,x﹣y=1所以x=2,y=1.故答案为:1.点评:本题考查了二阶行列式的展开式,考查了方程思想,是基础题.5.(4分)(2013•上海)已知△ABC的内角A,B,C所对的边分别是a,b,c,若a2+ab+b2﹣c2=0,则角C的大小是.考点:余弦定理.专题:解三角形.分析:利用余弦定理表示出cosC,将已知等式变形后代入求出cosC的值,由C为三角形的内角,利用特殊角的三角函数值即可求出C的度数.解答:解:∵a2+ab+b2﹣c2=0,即a2+b2﹣c2=﹣ab,∴cosC===﹣,∵C为三角形的内角,∴C=.故答案为:点评:此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.6.(4分)(2013•上海)某学校高一年级男生人数占该年级学生人数的40%,在一次考试中,男,女平均分数分别为75、80,则这次考试该年级学生平均分数为78.考点:众数、中位数、平均数.专题:概率与统计.分析:设该年级男生有x人,女生有y人,这次考试该年级学生平均分数为a,根据“平均成绩×人数=总成绩”分别求出男生的总成绩和女生的总成绩以及全班的总成绩,进而根据“男生的总成绩+女生的总成绩=全班的总成绩”列出方程,结合高一年级男生人数占该年级学生人数的40%,即可求出这次考试该年级学生平均分数.解答:解:设该班男生有x人,女生有y人,这次考试该年级学生平均分数为a.根据题意可知:75x+80y=(x+y)×a,且=40%.所以a=78,则这次考试该年级学生平均分数为78.故答案为:78.点评:本题主要考查了平均数.解答此题的关键:设该班男生有x人,女生有y人,根据平均数的意义即平均成绩、人数和总成绩三者之间的关系列出方程解决问题.7.(4分)(2013•上海)设常数a∈R,若的二项展开式中x7项的系数为﹣10,则a=﹣2.考点:二项式系数的性质.专题:计算题.分析:利用二项展开式的通项公式求得二项展开式中的第r+1项,令x的指数为7求得x7的系数,列出方程求解即可.解答:解:的展开式的通项为T r+1=C5r x10﹣2r()r=C5r x10﹣3r a r令10﹣3r=7得r=1,∴x7的系数是aC51∵x7的系数是﹣10,∴aC51=﹣10,解得a=﹣2.故答案为:﹣2.点评:本题主要考查了二项式系数的性质.二项展开式的通项公式是解决二项展开式的特定项问题的工具.8.(4分)(2013•上海)方程的实数解为log34.考点:函数的零点.专题:函数的性质及应用.分析:用换元法,可将方程转化为一个二次方程,然后利用一元二次方程根,即可得到实数x的取值.解答:解:令t=3x(t>0)则原方程可化为:(t﹣1)2=9(t>0)∴t﹣1=3,t=4,即x=log34可满足条件即方程的实数解为log34.故答案为:log34.点评:本题考查的知识点是根的存在性,利用换元法将方程转化为一个一元二次方程是解答本题的关键,但在换元过程中,要注意对中间元取值范围的判断.9.(4分)(2013•上海)若cosxcosy+sinxsiny=,则cos(2x﹣2y)=﹣.考点:两角和与差的余弦函数;二倍角的余弦.专题:三角函数的求值.分析:已知等式左边利用两角和与差的余弦函数公式化简,求出cos(x﹣y)的值,所求式子利用二倍角的余弦函数公式化简后,将cos(x﹣y)的值代入计算即可求出值.解答:解:∵cosxcosy+sinxsiny=cos(x﹣y)=,∴cos(2x﹣2y)=cos2(x﹣y)=2cos2(x﹣y)﹣1=﹣.故答案为:﹣.点评:此题考查了两角和与差的余弦函数公式,二倍角的余弦函数公式,熟练掌握公式是解本题的关键.10.(4分)(2013•上海)已知圆柱Ω的母线长为l,底面半径为r,O是上底面圆心,A,B 是下底面圆周上两个不同的点,BC是母线,如图,若直线OA与BC所成角的大小为,则=.考点:异面直线及其所成的角.专题:空间角.分析:过A作与BC平行的母线AD,由异面直线所成角的概念得到∠OAD为.在直角三角形ODA中,直接由得到答案.解答:解:如图,过A作与BC平行的母线AD,连接OD,则∠OAD为直线OA与BC所成的角,大小为.在直角三角形ODA中,因为,所以.则.故答案为点评:本题考查了异面直线所成的角,考查了直角三角形的解法,是基础题.11.(4分)(2013•上海)盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意抽取两个,则这两个球的编号之积为偶数的概率是(结果用最简分数表示)考点:古典概型及其概率计算公式.专题:概率与统计.分析:从7个球中任取2个球共有=21种,两球编号之积为偶数包括均为偶数、一奇一偶两种情况,有=15种取法,利用古典概型的概率计算公式即可求得答案.解答:解:从7个球中任取2个球共有=21种,所取两球编号之积为偶数包括均为偶数、一奇一偶两种情况,共有=15种取法,所以两球编号之积为偶数的概率为:=.故答案为:.点评:本题考查古典概型的概率计算公式,属基础题,其计算公式为:P(A)=,其中n(A)为事件A所包含的基本事件数,m为基本事件总数.12.(4分)(2013•上海)设AB是椭圆Γ的长轴,点C在Γ上,且∠CBA=,若AB=4,BC=,则Γ的两个焦点之间的距离为.考点:椭圆的标准方程;椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由题意画出图形,设椭圆的标准方程为,由条件结合等腰直角三角形的边角关系解出C的坐标,再根据点C在椭圆上求得b值,最后利用椭圆的几何性质计算可得答案.解答:解:如图,设椭圆的标准方程为,由题意知,2a=4,a=2.∵∠CBA=,BC=,∴点C的坐标为C(﹣1,1),因点C在椭圆上,∴,∴b2=,∴c2=a2﹣b2=4﹣=,c=,则Γ的两个焦点之间的距离为.故答案为:.点评:本题考查椭圆的定义、解三角形,以及椭圆的简单性质的应用.13.(4分)(2013•上海)设常数a>0,若9x+对一切正实数x成立,则a的取值范围为[,+∞).考点:基本不等式.专题:综合题;压轴题;转化思想.分析:由题设数a>0,若9x+对一切正实数x成立可转化为(9x+)min≥a+1,利用基本不等式判断出9x+≥6a,由此可得到关于a的不等式,解之即可得到所求的范围解答:解:常数a>0,若9x+≥a+1对一切正实数x成立,故(9x+)min≥a+1,又9x+≥6a,当且仅当9x=,即x=时,等号成立故必有6a≥a+1,解得a≥故答案为[,+∞)点评:本题考查函数的最值及利用基本不等式求最值,本题是基本不等式应用的一个很典型的例子14.(4分)(2013•上海)已知正方形ABCD的边长为1,记以A为起点,其余顶点为终点的向量分别为;以C为起点,其余顶点为终点的向量分别为,若i,j,k,l∈{1,2,3},且i≠j,k≠l,则的最小值是﹣5.考点:平面向量数量积的运算.专题:压轴题;平面向量及应用.分析:如图建立直角坐标系.不妨记以A为起点,其余顶点为终点的向量分别为,,,以C为起点,其余顶点为终点的向量分别为,,.再分类讨论当i,j,k,l取不同的值时,利用向量的坐标运算计算的值,从而得出的最小值.解答:解:不妨记以A为起点,其余顶点为终点的向量分别为,,,以C为起点,其余顶点为终点的向量分别为,,.如图建立坐标系.(1)当i=1,j=2,k=1,l=2时,则=[(1,0)+(1,1)]•[((﹣1,0)+(﹣1,﹣1)]=﹣5;(2)当i=1,j=2,k=1,l=3时,则=[(1,0)+(1,1)]•[((﹣1,0)+(0,﹣1)]=﹣3;(3)当i=1,j=2,k=2,l=3时,则=[(1,0)+(1,1)]•[((﹣1,﹣1)+(0,﹣1)]=﹣4;(4)当i=1,j=3,k=1,l=2时,则=[(1,0)+(0,1)]•[((﹣1,0)+(﹣1,﹣1)]=﹣3;同样地,当i,j,k,l取其它值时,=﹣5,﹣4,或﹣3.则的最小值是﹣5.故答案为:﹣5.点评:本小题主要考查平面向量坐标表示、平面向量数量积的运算等基本知识,考查考查分类讨论、化归以及数形结合等数学思想方法,考查分析问题、解决问题的能力.二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分15.(5分)(2013•上海)函数f(x)=x2﹣1(x≥0)的反函数为f﹣1(x),则f﹣1(2)的值是()A.B.C.1+D.1﹣考点:反函数;函数的值.专题:函数的性质及应用.分析:根据反函数的性质,求f﹣1(2)的问题可以变为解方程2=x2﹣1(x≥0).解答:解:由题意令2=x2﹣1(x≥0),解得x=所以f﹣1(2)=.故选A.点评:本题考查反函数的定义,解题的关键是把求函数值的问题变为解反函数的方程问题.16.(5分)(2013•上海)设常数a∈R,集合A={x|(x﹣1)(x﹣a)≥0},B={x|x≥a﹣1},若A∪B=R,则a的取值范围为()A.(﹣∞,2)B.(﹣∞,2]C.(2,+∞)D.[2,+∞)考点:集合关系中的参数取值问题;并集及其运算;一元二次不等式的解法.专题:不等式的解法及应用;集合.分析:当a>1时,代入解集中的不等式中,确定出A,求出满足两集合的并集为R时的a 的范围;当a=1时,易得A=R,符合题意;当a<1时,同样求出集合A,列出关于a的不等式,求出不等式的解集得到a的范围.综上,得到满足题意的a范围.解答:解:当a>1时,A=(﹣∞,1]∪[a,+∞),B=[a﹣1,+∞),若A∪B=R,则a﹣1≤1,∴1<a≤2;当a=1时,易得A=R,此时A∪B=R;当a<1时,A=(﹣∞,a]∪[1,+∞),B=[a﹣1,+∞),若A∪B=R,则a﹣1≤a,显然成立,∴a<1;综上,a的取值范围是(﹣∞,2].故选B.点评:此题考查了并集及其运算,二次不等式,以及不等式恒成立的条件,熟练掌握并集的定义是解本题的关键.17.(5分)(2013•上海)钱大姐常说“好货不便宜”,她这句话的意思是:“好货”是“不便宜”的()A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件考点:必要条件、充分条件与充要条件的判断.专题:压轴题;规律型.分析:“好货不便宜”,其条件是:此货是好货,结论是此货不便宜,根据充要条件的定义进行判断即可,解答:解:若p⇒q为真命题,则命题p是命题q的充分条件;“好货不便宜”,其条件是:此货是好货,结论是此货不便宜,由条件⇒结论.故“好货”是“不便宜”的充分条件.故选A点评:本题考查了必要条件、充分条件与充要条件的判断,属于基础题.18.(5分)(2013•上海)记椭圆围成的区域(含边界)为Ωn(n=1,2,…),当点(x,y)分别在Ω1,Ω2,…上时,x+y的最大值分别是M1,M2,…,则M n=()A.0B.C.2D.2考点:数列的极限;椭圆的简单性质.专题:压轴题;圆锥曲线的定义、性质与方程.分析:先由椭圆得到这个椭圆的参数方程为:(θ为参数),再由三角函数知识求x+y的最大值,从而求出极限的值.解答:解:把椭圆得,椭圆的参数方程为:(θ为参数),∴x+y=2cosθ+sinθ,∴(x+y)max==.∴M n==2.故选D.点评:本题考查数列的极限,椭圆的参数方程和最大值的求法,解题时要认真审题,注意三角函数知识的灵活运用.三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤19.(12分)(2013•上海)如图,正三棱锥O﹣ABC的底面边长为2,高为1,求该三棱锥的体积及表面积.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:根据题意画出图形,结合正三棱锥O﹣ABC的底面边长为2,高为1,由此入手,能够求出此三棱锥的体积及表面积.解答:解:∵O﹣ABC是正三棱锥,其底面三角形ABC是边长为2的正三角形,其面积为,∴该三棱锥的体积==;设O′是正三角形ABC的中心,则OO′⊥平面ABC,延长AO′交BC于D.则AD=,O′D=,又OO′=1,∴三棱锥的斜高OD=,∴三棱锥的侧面积为×=2,∴该三棱锥的表面积为.点评:本题考查三棱锥的体积、表面积的求法,解题时要认真审题,注意合理地化立体问题为平面问题.20.(14分)(2013•上海)甲厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每一小时可获得的利润是100(5x+1﹣)元.(1)求证:生产a千克该产品所获得的利润为100a(5+)元;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.考点:函数模型的选择与应用;二次函数在闭区间上的最值.专题:应用题;函数的性质及应用.分析:(1)由题意可得生产a千克该产品所用的时间是小时,由于每一小时可获得的利润是100(5x+1﹣)元,即可得到生产a千克该产品所获得的利润;(2)利用(1)的结论可得生产1千克所获得的利润为90000(5+),1≤x≤10.进而得到生产900千克该产品获得的利润,利用二次函数的单调性即可得出.解答:解:(1)生产a千克该产品所用的时间是小时,∵每一小时可获得的利润是100(5x+1﹣)元,∴获得的利润为100(5x+1﹣)×元.因此生产a千克该产品所获得的利润为100a(5+)元.(2)生产900千克该产品获得的利润为90000(5+),1≤x≤10.设f(x)=,1≤x≤10.则f(x)=,当且仅当x=6取得最大值.故获得最大利润为=457500元.因此甲厂应以6千克/小时的速度生产,可获得最大利润457500元.点评:正确理解题意和熟练掌握二次函数的单调性是解题的关键.21.(14分)(2013•上海)已知函数f(x)=2sin(ωx),其中常数ω>0(1)令ω=1,判断函数F(x)=f(x)+f(x+)的奇偶性,并说明理由;(2)令ω=2,将函数y=f(x)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象,对任意a∈R,求y=g(x)在区间[a,a+10π]上零点个数的所有可能值.考点:函数y=Asin(ωx+φ)的图象变换;函数奇偶性的判断;根的存在性及根的个数判断.专题:综合题;三角函数的图像与性质.分析:(1)特值法:ω=1时,写出f(x)、F(x),求出F()、F(﹣),结合函数奇偶性的定义可作出正确判断;(2)根据图象平移变换求出g(x),令g(x)=0可得g(x)可能的零点,而[a,a+10π]恰含10个周期,分a是零点,a不是零点两种情况讨论,结合图象可得g(x)在[a,a+10π]上零点个数的所有可能值;解答:解:(1)f(x)=2sinx,F(x)=f(x)+f(x+)=2sinx+2sin(x+)=2(sinx+cosx),F()=2,F(﹣)=0,F(﹣)≠F(),F(﹣)≠﹣F(),所以,F(x)既不是奇函数,也不是偶函数.(2)f(x)=2sin2x,将y=f(x)的图象向左平移个单位,再向上平移1个单位后得到y=2sin2(x+)+1的图象,所以g(x)=2sin2(x+)+1.令g(x)=0,得x=kπ+或x=kπ+(k∈z),因为[a,a+10π]恰含10个周期,所以,当a是零点时,在[a,a+10π]上零点个数21,当a不是零点时,a+kπ(k∈z)也都不是零点,区间[a+kπ,a+(k+1)π]上恰有两个零点,故在[a,a+10π]上有20个零点.综上,y=g(x)在[a,a+10π]上零点个数的所有可能值为21或20.点评:本题考查函数y=Asin(ωx+φ)的图象变换、函数的奇偶性、根的存在性及根的个数的判断,考查数形结合思想,结合图象分析是解决(2)问的关键22.(16分)(2013•上海)已知函数f(x)=2﹣|x|,无穷数列{a n}满足a n+1=f(a n),n∈N*(1)若a1=0,求a2,a3,a4;(2)若a1>0,且a1,a2,a3成等比数列,求a1的值(3)是否存在a1,使得a1,a2,…,a n,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.考点:等差关系的确定;数列的函数特性;等比关系的确定.专题:综合题;压轴题;等差数列与等比数列.分析:(1)由题意代入式子计算即可;(2)把a2,a3表示为a1的式子,通过对a1的范围进行讨论去掉绝对值符号,根据a1,a2,a3成等比数列可得关于a1的方程,解出即可;(3)假设这样的等差数列存在,则a1,a2,a3成等差数列,即2a2=a1+a3,亦即2﹣a1+|2﹣|a1||=2|a1|(*),分情况①当a1>2时②当0<a1≤2时③当a1≤0时讨论,由(*)式可求得a1进行判断;③当a1≤0时,由公差d>2可得矛盾;解答:解:(1)由题意,代入计算得a2=2,a3=0,a4=2;(2)a2=2﹣|a1|=2﹣a1,a3=2﹣|a2|=2﹣|2﹣a1|,①当0<a1≤2时,a3=2﹣(2﹣a1)=a1,所以,得a1=1;②当a1>2时,a3=2﹣(a1﹣2)=4﹣a1,所以,得(舍去)或.综合①②得a 1=1或.(3)假设这样的等差数列存在,那么a2=2﹣|a1|,a3=2﹣|2﹣|a1||,由2a2=a1+a3得2﹣a1+|2﹣|a1||=2|a1|(*),以下分情况讨论:①当a1>2时,由(*)得a1=0,与a1>2矛盾;②当0<a1≤2时,由(*)得a1=1,从而a n=1(n=1,2,…),所以{a n}是一个等差数列;③当a1≤0时,则公差d=a2﹣a1=(a1+2)﹣a1=2>0,因此存在m≥2使得a m=a1+2(m﹣1)>2,此时d=a m+1﹣a m=2﹣|a m|﹣a m<0,矛盾.综合①②③可知,当且仅当a1=1时,a1,a2,…,a n,…成等差数列.点评:本题考查数列的函数特性、等差关系等比关系的确定,考查分类讨论思想,考查学生逻辑推理能力、分析解决问题的能力,综合性强,难度较大.23.(18分)(2013•上海)如图,已知双曲线C1:,曲线C2:|y|=|x|+1,P是平面内一点,若存在过点P的直线与C1,C2都有公共点,则称P为“C1﹣C2型点”(1)在正确证明C1的左焦点是“C1﹣C2型点“时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1﹣C2型点”;(3)求证:圆x2+y2=内的点都不是“C1﹣C2型点”考点:直线与圆锥曲线的关系;点到直线的距离公式;双曲线的简单性质.专题:压轴题;新定义;圆锥曲线的定义、性质与方程.分析:(1)由双曲线方程可知,双曲线的左焦点为(),当过左焦点的直线的斜率不存在时满足左焦点是“C1﹣C2型点”,当斜率存在时,要保证斜率的绝对值大于等于该焦点与(0,1)连线的斜率;(2)由直线y=kx与C2有公共点联立方程组有实数解得到|k|>1,分过原点的直线斜率不存在和斜率存在两种情况说明过远点的直线不可能同时与C1和C2有公共点;(3)由给出的圆的方程得到圆的图形夹在直线y=x±1与y=﹣x±1之间,进而说明当|k|≤1时过圆内的点且斜率为k的直线与C2无公共点,当|k|>1时,过圆内的点且斜率为k的直线与C2有公共点,再由圆心到直线的距离小于半径列式得出k的范围,结果与|k|>1矛盾.从而证明了结论.解答:(1)解:C1的左焦点为(),写出的直线方程可以是以下形式:或,其中.(2)证明:因为直线y=kx与C2有公共点,所以方程组有实数解,因此|kx|=|x|+1,得.若原点是“C1﹣C2型点”,则存在过原点的直线与C1、C2都有公共点.考虑过原点与C2有公共点的直线x=0或y=kx(|k|>1).显然直线x=0与C1无公共点.如果直线为y=kx(|k|>1),则由方程组,得,矛盾.所以直线y=kx(|k|>1)与C1也无公共点.因此原点不是“C1﹣C2型点”.(3)证明:记圆O:,取圆O内的一点Q,设有经过Q的直线l与C1,C2都有公共点,显然l不与x轴垂直,故可设l:y=kx+b.若|k|≤1,由于圆O夹在两组平行线y=x±1与y=﹣x±1之间,因此圆O也夹在直线y=kx±1与y=﹣kx±1之间,从而过Q且以k为斜率的直线l与C2无公共点,矛盾,所以|k|>1.因为l与C1由公共点,所以方程组有实数解,得(1﹣2k2)x2﹣4kbx﹣2b2﹣2=0.因为|k|>1,所以1﹣2k2≠0,因此△=(4kb)2﹣4(1﹣2k2)(﹣2b2﹣2)=8(b2+1﹣2k2)≥0,即b2≥2k2﹣1.因为圆O的圆心(0,0)到直线l的距离,所以,从而,得k2<1,与|k|>1矛盾.因此,圆内的点不是“C1﹣C2型点”.点评:本题考查了双曲线的简单几何性质,考查了点到直线的距离公式,考查了直线与圆锥曲线的关系,直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法.属难题.。

2013年上海高考数学试题(理科)解析

2013年上海高考数学试题(理科)解析

4 2013年上海市秋季高考理科数学2•设R , m 2・m-2 • (m 2-1)i 是纯虚数,其中■ ■ 2m m -2 二 0—2 二 m = —2m 2-1 = 0【解答】x 2 y 2 = -2xy= x y = 0 .2 2 24.已知△ ABC 的内角A 、B 、C 所对应边分别为 a 、b 、c ,若3a - 2ab - 3b -3c = 0 ,则角C 的 大小是 _______________ (结果用反三角函数值表示)2 2 2 2 2 22 11 【解答】3a 2ab 3b -3c =0= c 二 a b ab ,故 cosC ,C-= -arccox .3 33f a f5 .设常数a E R ,若.x 2十一 I 的二项展开式中x 7项的系数为—10,则a = __________I x 丿 【解答】下 1 =c 5(x 2)5」(a )r ,2(5-r )-r =7二 r =1, 故 C s a = -10n a = -2 .x316.方程 ------ +丄=3乂」的实数解为 _________3x -1 3【解答】原方程整理后变为 32x -2 3x -8 =0= 3x =4= x = log 34 .7 .在极坐标系中,曲线 P =COS 日+1与卩COS 。

=1的公共点到极点的距离为 ____________1 + \!51 + xf 5【解答】联立方程组得 「(『-1)=1=『--—,又]_ 0 ,故所求为 --------- .228. ____________________________ 盒子中装有编号为 1, 2, 3, 4, 5, 6,乙8, 9的九个球,从中任意取出两个,则这两个球的编 号之积为偶数的概率是 (结果用最简分数表示)C 213【解答】9个数5个奇数,4个偶数,根据题意所求概率为1 -电=13 .C| 189. 设AB 是椭圆-的长轴,点C 在-上,且• CBA ,若AB=4 , BC 二 2 ,则】的两个焦点1.计算:lim n +2° =n—F 3n 13一、填空题【解答】根据极限运算法则,2 2x yx x若 -1 1 = y -y3 • lim^20 J J :3n 13 3i 是虚数单位,则 m = _________【解答】之间的距离为__________4110.设非零常数 d 是等差数列X | ,X 2, X 3,| |(, X !9的公差,随机变量■等可能地取值X | ,X 2, X 3,| |(,捲9 ,【解答】E =x 10,D 「d (9282 川 12 02 12 川 92) = • 30|d |.V 191 211.若 cosxcosy sinxsiny ,sin 2x sin2y,贝U sin(x y)二2 2 ,sin2x sin2y = 2sin(x y)cos(x - y) ,故 sin(x y)=332二f(x)是定义在 R 上的奇函数,当 X .0时,f(x)=9x ・^・7,若xf (x) _ a T 对一切x _0成立,则a 的取值范围为2a【解答】f(0)=0,故 0 亠 a1=a_-1 ;当 x 0 时,f(x)=9x 7_a1x8 即 6|a|_a 8,又 a_-1,故 a 岂 72 213.在xOy 平面上,将两个半圆弧(x-1) y =1(x^1)和29(x -3) y =1(x_3)、两条直线y=1和y - -1围成的封 闭图形记为D ,如图中阴影部分•记 D 绕y 轴旋转一周而成 的几何体为 门,过(0, y)(| y 任1)作门的水平截面,所得截面面积为4二'...1 -y 2• 8二,试利用祖暅原理、 一个平放的圆 柱和一个长方体,得出 Q 的体积值为 ____________【解答】根据提示,一个半径为1,高为2二的圆柱平放,一个高为 2,底面面积8二的长方体,这两个几何体与 门放在一起,根据祖暅原理,每个平行水平面的截面面积都相等,故它们的体积相等, 即门的体积值为二12 2二,2 8二-2二2 *16二. 14.对区间I 上有定义的函数g(x),记g( I) = {y | y = g(x), I},已知定义域为[0,3]的函数y 二 f (x)有反函数 y 二 f '(X ),且 f 4([0,1)) =[1,2), f _1((2,4]) =[0,1),若方程 f (x)-x = 0 有解 X 0,贝V X 。

上海市春季高考数学试卷答案与解析

上海市春季高考数学试卷答案与解析

2013年上海市春季高考数学试卷参考答案与试题解析一、填空题(本大题满分36分)本大题共有12题,要求直接填写结果,每题填对得3分,否则一律得0分.1.(3分)(2013•上海)函数y=log2(x+2)的定义域是(﹣2,+∞).2.(3分)(2013•上海)方程2x=8的解是3.3.(3分)(2013•上海)抛物线y2=8x的准线方程是x=﹣2.=2,可得=24.(3分)(2013•上海)函数y=2sinx的最小正周期是2π.=5.(3分)(2013•上海)已知向量,.若,则实数k=.,得﹣故答案为:,则6.(3分)(2013•上海)函数y=4sinx+3cosx的最大值是5.(sinx+cosx==7.(3分)(2013•上海)复数2+3i(i是虚数单位)的模是.,代入计算即可得出复数=故答案为:8.(3分)(2013•上海)在△ABC中,角A,B,C所对边长分别为a,b,c,若a=5,c=8,B=60°,则b=7.9.(3分)(2013•上海)正方体ABCD﹣A1B1C1D1中,异面直线A1B与B1C所成角的大小为60°.10.(3分)(2013•上海)从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为(结果用数值表示).人中只有男同学或只有女同学的概率为:,﹣.故答案为:.11.(3分)(2013•上海)若等差数列的前6项和为23,前9项和为57,则数列的前n项和S n=.,,12.(3分)(2013•上海)36的所有正约数之和可按如下方法得到:因为36=22×32,所以36的所有正约数之和为(1+3+32)+(2+2×3+2×32)+(22+22×3+22×32)=(1+2+22)(1+3+32)=91,参照上述方法,可求得2000的所有正约数之和为4836.二.选择题(本大题满分36分)本大题共有12题,每题都给出四个结论,其中有且只有一个结论是正确的.考生必须把真确结论的代码写在题后的括号内,选对得3分,否则一律得0分.B解:根据由题意得,﹣1的反函数,的反函数,,即可得到它的一个方向向量(k=,=)16.(3分)(2013•上海)函数f(x)=的大致图象是()...D.解:因为﹣<B=,∴18.(3分)(2013•上海)若复数z 1,z2满足z1=,则z1,z2在复数平面上对应的点Z1,,则10••)上是减函数,在(根据球的表面积公式算出它们的表面积之比为= =,由此结合球的体积公式即可算出这两个球的体积之比.==,解之得(舍负)因此,这两个球的体积之比为=)23.(3分)(2013•上海)已知a,b,c∈R,“b2﹣4ac<0”是“函数f(x)=ax2+bx+c的图象恒24.(3分)(2013•上海)已知A,B为平面内两定点,过该平面内动点M作直线AB的垂线,垂足为N.若,其中λ为常数,则动点M的轨迹不可能是(),三、解答题(本大题满分78分)本大题共有7题,解答下列各题必须写出必要的步骤.25.(7分)(2013•上海)如图,在正三棱柱ABC﹣A1B1C1中,AA1=6,异面直线BC1与AA1所成角的大小为,求该三棱柱的体积.C=C=.×=2,=3,×6=1826.(7分)(2013•上海)如图,某校有一块形如直角三角形ABC的空地,其中∠B为直角,AB长40米,BC长50米,现欲在此空地上建造一间健身房,其占地形状为矩形,且B为矩形的一个顶点,求该健身房的最大占地面积.,求得﹣﹣27.(8分)(2013•上海)已知数列{a n}的前n项和为S,数列{b n}满足b,求.时,=公比为=.28.(13分)(2013•上海)已知椭圆C的两个焦点分别为F1(﹣1,0)、F2(1,0),短轴的两个端点分别为B1,B2(1)若△F1B1B2为等边三角形,求椭圆C的方程;(2)若椭圆C的短轴长为2,过点F2的直线l与椭圆C相交于P,Q两点,且,求直线l的方程.系写出两个交点的横坐标的和,把的方程为.根据题意知,解得的方程为的方程为由因为,所以,即===,解得的方程为29.(12分)(2013•上海)已知抛物线C:y2=4x 的焦点为F.(1)点A,P满足.当点A在抛物线C上运动时,求动点P的轨迹方程;(2)在x轴上是否存在点Q,使得点Q关于直线y=2x的对称点在抛物线C上?如果存在,求所有满足条件的点Q的坐标;如果不存在,请说明理由.的坐标,由,所以,,解得,解得或)和(30.(13分)(2013•上海)在平面直角坐标系xOy中,点A在y轴正半轴上,点P n在x轴上,其横坐标为x n,且{x n} 是首项为1、公比为2的等比数列,记∠P n AP n+1=θn,n∈N*.(1)若,求点A的坐标;(2)若点A的坐标为(0,8),求θn的最大值及相应n的值.,知==,解得=≥,当且仅当,)上为增函数,最大,其最大值为31.(18分)(2013•上海)已知真命题:“函数y=f(x)的图象关于点P(a,b)成中心对称图形”的充要条件为“函数y=f(x+a)﹣b 是奇函数”.(1)将函数g(x)=x3﹣3x2的图象向左平移1个单位,再向上平移2个单位,求此时图象对应的函数解析式,并利用题设中的真命题求函数g(x)图象对称中心的坐标;(2)求函数h(x)=图象对称中心的坐标;(3)已知命题:“函数y=f(x)的图象关于某直线成轴对称图象”的充要条件为“存在实数a 和b,使得函数y=f(x+a)﹣b 是偶函数”.判断该命题的真假.如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明).==由不等式=。

上海市春季高考数学试卷(含答案)

上海市春季高考数学试卷(含答案)

2013 年上海市一般高等学校春天招生考试数学试卷一 . 填空题(本大题满分 36 分)本大题共有 12 题, 要求直接填写结果 , 每题填对得3 分 , 不然一律得 0 分。

[根源 : ZXXK]1.函数 y log 2 (x 2) 的定义域是2.方程 2x8 的解是3.抛物线 y 2 8x 的准线方程是4.函数 y2sin x 的最小正周期是r, r(9,kr r5.已知向量 a, b6) 。

若 a // b, 则实数k(1 k)6.函数 y 4sin x 3cos x 的最大值是7.复数 2 3i ( i 是虚数单位)的模是8ABCA B C a b c a ,,60 o , 则b=中 , 角 , 若 5 b 8 B.在、、 所对边长分别为 、、9.在如下图的正方体 ABCDA 1B 1C 1D 1 中, 异面直线 A 1B 与 B 1C 所成角的大小为D 1C 11AB 1DCAB10.从 4 名男同学和 6 名女同学中随机选用 3 人参加某社团活动 , 选出的3 人中男女同学都有的概率为 (结果用数值表示) 。

.若等差数列的前 6 项和为 23,前 9 项和为57,则数列的前 n 项和S n =。

1112. 36 的全部正约数之和可按如下方法获得:因为 36=2 2 32, 所以 36 的全部正约数之和为(1 3 32)(223232)(2222 3 22 32) (1 2 22()1 3 32) 91参照上述方法 , 可求得 2000 的全部正约数之和为二.选择题(本大题满分 36 分)本大题共有 12 题, 每题都给出四个结论 , 此中有且只有一个结论是正确的。

考生一定把真确结论的代码写在题后的括号内, 选 对得 3分, 不然一律得 0 分。

13.睁开式为ad-bc)的队列式是 (a b a c a d b a ( A )d c(B)b d(C)b c(D)d c14f-1(x)为函数 f (x)x 的反函数,以下结论正确的选项是().设(A)f1(2)2(B)f1 (2)4(C)f1(4)2(D)f1(4)415.直线2x3y10 的一个方向向量是()(A)(2, 3)(B)(2,3)(C)( 3,2)(D)(3,2)116.函数f ( x)x 2的大概图像是()y y y yA x 0B x0x0xC D17.假如a b 0 ,那么以下不等式建立的是()(A)11(B)ab b2(C)ab a2(D)11a b a b18.若复数z1、z2知足z1z2,则z1、z2在复数平面上对应的点Z1、Z2()(A)对于 x 轴对称(B) 对于y轴对称(C)对于原点对称(D) 对于直线y x 对称19.(1 x)10的二项睁开式中的一项为哪一项()(A )45x( B)90x2(C)120x3( D)252x420.既是偶函数又在区间(0, ) 上单一递减的函数是()(A )y sin x (B)y cos x( C)y sin 2 x (D) y cos 2 x21.若两个球的表面积之比为1: 4则这两个球的体积之比为(),(A )1: 2(B)1: 4(C)1:8( D)1:16 22.设全集U R ,以下会合运算结果为 R 的是()(A )Z U e u N(B)NI e u N (C)痧u( u)( D)e u{0}23a、b、c R ,“b 4ac 0”是“函数f (x) ax bx c的图像恒在x 轴上方”.已知22的()(A )充足非必需条件( B)必需非充足条件(C)充要条件(D )既非充足又非必需条件24.已知A、B为平面内两定点, 过该平面内动点M作直线AB的垂线 , 垂足为N . 若uuuur 2uuur uuur为常数 , 则动点M的轨迹不行能是(MN AN NB,此中)(A )圆( B)椭圆( C)抛物线( D )双曲线三、解答题(本大题满分78 分)本大题共有 7 题, 解答以下各题一定写出必需的步骤。

2013年 上海市 春季高考数学 试卷及解析

2013年 上海市 春季高考数学 试卷及解析

2013年上海市春季高考数学试卷一、填空题(本大题满分36分)本大题共有12题,要求直接填写结果,每题填对得3分,否则一律得0分.1.(3分)函数y=log2(x+2)的定义域是.2.(3分)方程2x=8的解是.3.(3分)抛物线y2=8x的准线方程是.4.(3分)函数y=2sinx的最小正周期是.5.(3分)已知向量,.若,则实数k=.6.(3分)函数y=4sinx+3cosx的最大值是.7.(3分)复数2+3i(i是虚数单位)的模是.8.(3分)在△ABC中,角A,B,C所对边长分别为a,b,c,若a=5,c=8,B=60°,则b=.9.(3分)正方体ABCD﹣A1B1C1D1中,异面直线A1B与B1C所成角的大小为.10.(3分)从4名男同学和6名女同学中随机选取3人参加某社团活动,选出1的3人中男女同学都有的概率为(结果用数值表示).11.(3分)若等差数列的前6项和为23,前9项和为57,则数列的前n项和S n=.12.(3分)36的所有正约数之和可按如下方法得到:因为36=22×32,所以36的所有正约数之和为(1+3+32)+(2+2×3+2×32)+(22+22×3+22×32)=(1+2+22)(1+3+32)=91,参照上述方法,可求得2000的所有正约数之和为.二.选择题(本大题满分36分)本大题共有12题,每题都给出四个结论,其中有且只有一个结论是正确的.考生必须把真确结论的代码写在题后的括号内,选对得3分,否则一律得0分.13.(3分)展开式为ad﹣bc的行列式是()A.B.C.D.14.(3分)设f﹣1(x)为函数f(x)=的反函数,下列结论正确的是()A.f﹣1(2)=2 B.f﹣1(2)=4 C.f﹣1(4)=2 D.f﹣1(4)=415.(3分)直线2x﹣3y+1=0的一个方向向量是()A.(2,﹣3)B.(2,3) C.(﹣3,2)D.(3,2)16.(3分)函数f(x)=的大致图象是()2A .B .C .D .17.(3分)如果a<b<0,那么下列不等式成立的是()A .B.ab<b2C.﹣ab<﹣a2D .18.(3分)若复数z1,z2满足z1=,则z1,z2在复数平面上对应的点Z1,Z2()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线y=x对称19.(3分)(1+x)10的二项展开式中的一项是()A.45x B.90x2 C.120x3D.252x420.(3分)既是偶函数又在区间(0,π)上单调递减的函数是()A.y=sinx B.y=cosx C.y=sin2x D.y=cos2x21.(3分)若两个球的表面积之比为1:4,则这两个球的体积之比为()A.1:2 B.1:4 C.1:8 D.1:1622.(3分)设全集U=R,下列集合运算结果为R的是()A.Z∪∁U N B.N∩∁U N C.∁U(∁u∅)D.∁U{0}323.(3分)已知a,b,c∈R,“b2﹣4ac<0”是“函数f(x)=ax2+bx+c的图象恒在x轴上方”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件24.(3分)已知A,B为平面内两个定点,过该平面内动点m作直线AB的垂线,垂足为N .若=λ•,其中λ为常数,则动点m的轨迹不可能是()A.圆B.椭圆C.双曲线D.抛物线三、解答题(本大题满分78分)本大题共有7题,解答下列各题必须写出必要的步骤.25.(7分)如图,在正三棱柱ABC﹣A1B1C1中,AA1=6,异面直线BC1与AA1所成角的大小为,求该三棱柱的体积.26.(7分)如图,某校有一块形如直角三角形ABC的空地,其中∠B为直角,AB长40米,BC长50米,现欲在此空地上建造一间健身房,其占地形状为矩形,且B为矩形的一个顶点,求该健身房的最大占地面积.427.(8分)已知数列{a n}的前n项和为S,数列{b n}满足b,求.28.(13分)已知椭圆C的两个焦点分别为F1(﹣1,0)、F2(1,0),短轴的两个端点分别为B1,B2(1)若△F1B1B2为等边三角形,求椭圆C的方程;(2)若椭圆C的短轴长为2,过点F2的直线l与椭圆C相交于P,Q 两点,且,求直线l的方程.29.(12分)已知抛物线C:y2=4x 的焦点为F.(1)点A,P 满足.当点A在抛物线C上运动时,求动点P的轨迹方程;(2)在x轴上是否存在点Q,使得点Q关于直线y=2x的对称点在抛物线C上?如果存在,求所有满足条件的点Q的坐标;如果不存在,请说明理由.30.(13分)在平面直角坐标系xOy中,点A在y轴正半轴上,点P n在x轴上,其横坐标为x n,且{x n}是首项为1、公比为2的等比数列,记∠P n AP n+1=θn,n ∈N*.(1)若,求点A的坐标;(2)若点A的坐标为(0,8),求θn的最大值及相应n的值.531.(18分)已知真命题:“函数y=f(x)的图象关于点P(a,b)成中心对称图形”的充要条件为“函数y=f(x+a)﹣b 是奇函数”.(1)将函数g(x)=x3﹣3x2的图象向左平移1个单位,再向上平移2个单位,求此时图象对应的函数解析式,并利用题设中的真命题求函数g(x)图象对称中心的坐标;(2)求函数h(x)=图象对称中心的坐标;(3)已知命题:“函数y=f(x)的图象关于某直线成轴对称图象”的充要条件为“存在实数a和b,使得函数y=f(x+a)﹣b 是偶函数”.判断该命题的真假.如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明).62013年上海市春季高考数学试卷参考答案与试题解析一、填空题(本大题满分36分)本大题共有12题,要求直接填写结果,每题填对得3分,否则一律得0分.1.(3分)函数y=log2(x+2)的定义域是(﹣2,+∞).【分析】要使函数有意义,只需令x+2>0即可.【解答】解:欲使函数有意义,须有x+2>0,解得x>﹣2,所以函数的定义域为(﹣2,+∞).故答案为:(﹣2,+∞).【点评】本题考查函数定义域的求法,属基础题.2.(3分)方程2x=8的解是3.【分析】由已知条件2x=8=23,可得x=3,由此可得此方程的解.【解答】解:由2x=8=23,可得x=3,即此方程的解为3,故答案为3.【点评】本题主要考查指数方程的解法,属于基础题.73.(3分)抛物线y2=8x 的准线方程是x=﹣2.【分析】根据抛物线方程的标准形式,可得抛物线以原点为顶点,开口向右,由2p=8算出=2,即可得到抛物线的准线方程.【解答】解:∵抛物线的方程为y2=8x∴抛物线以原点为顶点,开口向右.由2p=8,可得=2,可得抛物线的焦点为F(2,0),准线方程为x=﹣2故答案为:x=﹣2【点评】本题给出抛物线的标准方程,求抛物线的准线方程,着重考查了抛物线的标准方程与简单几何性质等知识,属于基础题.4.(3分)函数y=2sinx的最小正周期是2π.【分析】根据函数y=2sinωx的最小正周期是,运算可得结果.【解答】解:函数y=2sinx的最小正周期是==2π,故答案为2π.【点评】本题主要考查三角函数的周期性及求法,属于基础题.85.(3分)已知向量,.若,则实数k=.【分析】根据向量平行的充要条件可得关于k的方程,解出即可.【解答】解:由,得1×(k﹣6)﹣9k=0,解得k=﹣,故答案为:.【点评】本题考查向量共线的充要条件,若,则⇔x1y2﹣x2y1=0.6.(3分)函数y=4sinx+3cosx的最大值是5.【分析】利用辅助角公式把所给的函数解析式化为y=5sin(x+∅),再根据正弦函数的值域,求得它的最大值.【解答】解:∵函数y=4sinx+3cosx=5(sinx+cosx)=5sin(x+∅),(其中,cos ∅=,sin∅=)故函数的最大值为5,故答案为5.【点评】本题主要考查辅助角公式的应用,正弦函数的值域,属于中档题.7.(3分)复数2+3i(i是虚数单位)的模是.9【分析】利用模长公式|z|=,代入计算即可得出复数2+3i(i是虚数单位)的模.【解答】解:∵复数2+3i,∴2+3i的模=.故答案为:.【点评】本题考查复数的概念及模长计算公式,是一道基础题.8.(3分)在△ABC中,角A,B,C所对边长分别为a,b,c,若a=5,c=8,B=60°,则b=7.【分析】根据余弦定理b2=a2+c2﹣2accosB,代入题中的数据得b2=25+64﹣2×5×8×cos60°=49,解之即可得到b=7.【解答】解:∵在△ABC中,a=5,c=8,B=60°,∴根据余弦定理,得b2=a2+c2﹣2accosB=25+64﹣2×5×8×cos60°=49解之得b=7(舍负)故答案为:7【点评】本题给出△ABC两条边长及其夹角大小,求第三边的长度.着重考查了利用余弦定理解三角形的知识,属于基础题.109.(3分)正方体ABCD﹣A1B1C1D1中,异面直线A1B与B1C所成角的大小为60°.【分析】连接A1D,根据正方体的几何特征及异面直线夹角的定义,我们可得∠BA1D即为异面直线A1B与B1C所成的角,连接BD后,解三角形BA1D即可得到异面直线A1B与B1C所成的角.【解答】解:连接A1D,由正方体的几何特征可得:A1D∥B1C,则∠BA1D即为异面直线A1B与B1C所成的角,连接BD,易得:BD=A1D=A1B故∠BA1D=60°故答案为:60°【点评】本题考查的知识点是异面直线及其所成的角,其中根据正方体的几何特征及异面直线夹角的定义判断出∠BA1D即为异面直线A1B与B1C所成的角,是解答本题的关键.10.(3分)从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为(结果用数值表示).11【分析】先求对立事件“选出的3人中只有男同学或只有女同学”的概率,然后根据对立事件的概率和为1可得答案.【解答】解:从10人中选出的3人中只有男同学或只有女同学的概率为:=,则选出的3人中男女同学都有的概率为:1﹣=.故答案为:.【点评】本题考查古典概型及其概率计算公式,属基础题.11.(3分)若等差数列的前6项和为23,前9项和为57,则数列的前n项和S n=.【分析】设等差数列的前n项和S n=an2+bn,则由题意可得,解得a、b的值,即可求得数列的前n项和S n的解析式.【解答】解:设等差数列的前n项和S n=an2+bn ,则由题意可得,解得,故数列的前n项和S n=,故答案为.12【点评】本题主要考查等差数列的前n项和公式的结构特征,用待定系数法函数的解析式,属于基础题.12.(3分)36的所有正约数之和可按如下方法得到:因为36=22×32,所以36的所有正约数之和为(1+3+32)+(2+2×3+2×32)+(22+22×3+22×32)=(1+2+22)(1+3+32)=91,参照上述方法,可求得2000的所有正约数之和为4836.【分析】这是一个类比推理的问题,在类比推理中,参照上述方法,2000的所有正约数之和可按如下方法得到:因为2000=24×53,所以2000的所有正约数之和为(1+2+22+23+24)(1+5+52+53),即可得出答案.【解答】解:类比36的所有正约数之和的方法,有:2000的所有正约数之和可按如下方法得到:因为2000=24×53,所以2000的所有正约数之和为(1+2+22+23+24)(1+5+52+53)=4836.可求得2000的所有正约数之和为4836.故答案为:4836.【点评】类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).二.选择题(本大题满分36分)本大题共有12题,每题都给出四个结论,其中有且只有一个结论是正确的.考生必须把真确结论的代码写在题后的括号内,选对得3分,否则一律得0分.13.(3分)展开式为ad﹣bc的行列式是()13A .B .C .D .【分析】根据叫做二阶行列式,它的算法是:ad﹣bc,再根据所给的式子即可得出答案.【解答】解:根据叫做二阶行列式,它的算法是:ad﹣bc,由题意得,=ad﹣bc.故选:B.【点评】本题考查的是二阶行列式与逆矩阵,根据题意二阶行列式的意义得出所求代数式是解答此题的关键.14.(3分)设f﹣1(x)为函数f(x)=的反函数,下列结论正确的是()A.f﹣1(2)=2 B.f﹣1(2)=4 C.f﹣1(4)=2 D.f﹣1(4)=4【分析】本题的关键是求函数f(x)=的反函数,欲求原函数的反函数,即从原函数式f(x)=中反解出x,后再进行x,y互换,即得反函数的解析式.【解答】解:∵f﹣1(x)为函数f(x)=的反函数,∴f﹣1(x)=x2,(x≥0),∴f﹣1(2)=4,f﹣1(4)=16,故选:B.14【点评】本题考查反函数的求法及不等关系,属于基础题目,要会求一些简单函数的反函数,掌握互为反函数的函数图象间的关系.15.(3分)直线2x﹣3y+1=0的一个方向向量是()A.(2,﹣3)B.(2,3) C.(﹣3,2)D.(3,2)【分析】题意可得首先求出直线的斜率为:k=,即可得到它的一个方向向量(1,k),再利用平面向量共线(平行)的坐标表示即可得出答案.【解答】解:由题意可得:直线2x﹣3y+1=0的斜率为k=,所以直线2x﹣3y+1=0的一个方向向量=(1,),或(3,2)故选:D.【点评】本题主要考查直线的方向向量,以及平面向量共线(平行)的坐标表示,是基础题.16.(3分)函数f(x)=的大致图象是()A .B .C .15D .【分析】筛选法:利用幂函数的性质及函数的定义域进行筛选即可得到答案.【解答】解:因为﹣<0,所以f(x)在(0,+∞)上单调递减,排除选项B、C;又f(x)的定义域为(0,+∞),故排除选项D,故选:A.【点评】本题考查幂函数的图象及性质,属基础题,筛选法是解决选择题的常用技巧,要掌握.17.(3分)如果a<b<0,那么下列不等式成立的是()A .B.ab<b2C.﹣ab<﹣a2D .【分析】由于a<b<0,不妨令a=﹣2,b=﹣1,代入各个选项检验,只有D正确,从而得出结论.【解答】解:由于a<b<0,不妨令a=﹣2,b=﹣1,可得=﹣1,∴,故A不正确.可得ab=2,b2=1,∴ab>b2,故B不正确.16可得﹣ab=﹣2,﹣a2=﹣4,∴﹣ab>﹣a2,故C不正确.故选:D.【点评】本题主要考查不等式与不等关系,利用特殊值代入法比较几个式子在限定条件下的大小关系,是一种简单有效的方法,属于基础题.18.(3分)若复数z1,z2满足z1=,则z1,z2在复数平面上对应的点Z1,Z2()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线y=x对称【分析】由题意可得z1,z2的实部相等,虚部互为相反数,故z1,z2在复数平面上对应的点Z1,Z2关于x轴对称.【解答】解:若复数z1,z2满足z1=,则z1,z2的实部相等,虚部互为相反数,故z1,z2在复数平面上对应的点Z1,Z2关于x轴对称,故选:A.【点评】本题主要考查共轭复数的定义,复数与复平面内对应点间的关系,属于基础题.19.(3分)(1+x)10的二项展开式中的一项是()A.45x B.90x2 C.120x3D.252x4【分析】根据(1+x)10的二项展开式的通项公式为T r=•x r,即可得出结论.+117【解答】解:(1+x)10的二项展开式的通项公式为T r=•x r,故当r=3时,此+1项为120x3,故选:C.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中的某一项,属于中档题.20.(3分)既是偶函数又在区间(0,π)上单调递减的函数是()A.y=sinx B.y=cosx C.y=sin2x D.y=cos2x【分析】根据函数的奇偶性排除A、C,再根据函数的单调性排除D,经检验B 中的函数满足条件,从而得出结论.【解答】解:由于函数y=sinx和y=sin2x都是奇函数,故排除A、C.由于函数y=cosx是偶函数,周期等于2π,且在(0,π)上是减函数,故满足条件.由于函数y=cos2x是偶函数,周期等于π,在(0,)上是减函数,在(,π)上是增函数,故不满足条件.故选:B.【点评】本题主要考查余弦函数的奇偶性和单调性,属于中档题.21.(3分)若两个球的表面积之比为1:4,则这两个球的体积之比为()18A.1:2 B.1:4 C.1:8 D.1:16【分析】设两个球的半径分别为r1、r2,根据球的表面积公式算出它们的表面积之比为=,解之得=,由此结合球的体积公式即可算出这两个球的体积之比.【解答】解:设两个球的半径分别为r1、r2,根据球的表面积公式,可得它们的表面积分别为S1=4,S2=4∵两个球的表面积之比为1:4,∴===,解之得=(舍负)因此,这两个球的体积之比为==()3=即两个球的体积之比为1:8故选:C.【点评】本题给出两个球的表面积之比,求它们的体积之比.着重考查了球的表面积公式和体积公式等知识,属于基础题.22.(3分)设全集U=R,下列集合运算结果为R的是()A.Z∪∁U N B.N∩∁U N C.∁U(∁u∅)D.∁U{0}19【分析】根据题目中条件“全集U=R”,对各个选项一一进行集合的运算,即可得出答案.【解答】解:∵全集U=R,∴Z∪∁U N=R,N∩∁U N=∅,∁U(∁u∅)=∅,∁U{0}={x∈R|x≠0}.故选:A.【点评】本题主要考查了交、并、补集的混合运算,属于基础题.23.(3分)已知a,b,c∈R,“b2﹣4ac<0”是“函数f(x)=ax2+bx+c的图象恒在x轴上方”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件【分析】根据充要条件的定义可知,只要看“b2﹣4ac<0”与“函数f(x)=ax2+bx+c 的图象恒在x轴上方”能否相互推出即可.【解答】解:若a≠0,欲保证函数f(x)=ax2+bx+c的图象恒在x轴上方,则必须保证抛物线开口向上,且与x轴无交点;则a>0且△=b2﹣4ac<0.但是,若a=0时,如果b=0,c>0,则函数f(x)=ax2+bx+c=c的图象恒在x轴上方,不能得到△=b2﹣4ac<0;反之,“b2﹣4ac<0”并不能得到“函数f(x)=ax2+bx+c的图象恒在x轴上方”,如a<0时.20从而,“b2﹣4ac<0”是“函数f(x)=ax2+bx+c的图象恒在x轴上方”的既非充分又非必要条件.故选:D.【点评】本题考查的是必要条件、充分条件与充要条件的判断,二次函数的性质,难度一般.学生要熟记二次函数的性质方能得心应手的解题.24.(3分)已知A,B为平面内两个定点,过该平面内动点m作直线AB的垂线,垂足为N .若=λ•,其中λ为常数,则动点m的轨迹不可能是()A.圆B.椭圆C.双曲线D.抛物线【分析】建立直角坐标系,设出A、B坐标,以及M坐标,通过已知条件求出M 的方程,然后判断选项.【解答】解:以AB所在直线为x轴,AB中垂线为y轴,建立坐标系,设M(x,y),A(﹣a,0)、B(a,0);因为=λ•,所以y2=λ(x+a)(a﹣x),即λx2+y2=λa2,当λ=1时,轨迹是圆.当λ>0且λ≠1时,是椭圆的轨迹方程;当λ<0时,是双曲线的轨迹方程.当λ=0时,是直线的轨迹方程;21综上,方程不表示抛物线的方程.故选:D.【点评】本题考查曲线轨迹方程的求法,轨迹方程与轨迹的对应关系,考查分类讨论思想、分析问题解决问题的能力以及计算能力.三、解答题(本大题满分78分)本大题共有7题,解答下列各题必须写出必要的步骤.25.(7分)如图,在正三棱柱ABC﹣A1B1C1中,AA1=6,异面直线BC1与AA1所成角的大小为,求该三棱柱的体积.【分析】因为CC1∥AA1.根据异面直线所成角的定义得∠BC1C为异面直线BC1与AA1所成的角,从而∠BC1C=.在Rt△BC1C中,求得BC,从而求出S△ABC,最后利用柱体的体积公式即可求出该三棱柱的体积.【解答】解:因为CC1∥AA1.所以∠BC1C为异面直线BC1与AA1所成的角,即∠BC1C=.在Rt△BC1C中,BC=CC1tan∠BC1C=6×=2,22从而S==3,△ABC因此该三棱柱的体积为V=S×AA1=3×6=18.△ABC【点评】本题考查三棱柱体积的计算,考查学生分析解决问题的能力,属于中档题.26.(7分)如图,某校有一块形如直角三角形ABC的空地,其中∠B为直角,AB长40米,BC长50米,现欲在此空地上建造一间健身房,其占地形状为矩形,且B为矩形的一个顶点,求该健身房的最大占地面积.【分析】设出矩形的边FP的边长,利用三角形相似求出矩形的宽,表示出矩形面积,利用二次函数的最值求解即可.【解答】解:如图,设矩形为EBFP,FP长为x米,其中0<x<40,健身房占地面积为y平方米.因为△CFP∽△CBA,以,,求得BF=50﹣,从而y=BF•FP=(50﹣)•x=﹣23=﹣≤500.当且仅当x=20时,等号成立.答:该健身房的最大占地面积为500平方米.【点评】本题考查函数的实际应用,表示出函数的表达式是解题的关键,考查分析问题解决问题的能力.27.(8分)已知数列{a n}的前n项和为S,数列{b n}满足b,求.【分析】先由S n求出a n,进而得到b n,由b n的表达式可判断数列{b n}是无穷等比数列,从而可得答案.【解答】解:当n≥2时,=﹣2n+2,且a1=S1=0,所以a n=﹣2n+2.因为=,所以数列{b n}是首项为1、公比为的无穷等比数列.24故==.【点评】本题考查数列的极限、等差数列的前n项和,解答本题的关键是根据S n与a n的关系求出a n.28.(13分)已知椭圆C的两个焦点分别为F1(﹣1,0)、F2(1,0),短轴的两个端点分别为B1,B2(1)若△F1B1B2为等边三角形,求椭圆C的方程;(2)若椭圆C的短轴长为2,过点F2的直线l与椭圆C相交于P,Q 两点,且,求直线l的方程.【分析】(1)由△F1B1B2为等边三角形可得a=2b,又c=1,集合a2=b2+c2可求a2,b2,则椭圆C的方程可求;(2)由给出的椭圆C的短轴长为2,结合c=1求出椭圆方程,分过点F2的直线l的斜率存在和不存在讨论,当斜率存在时,把直线方程和椭圆方程联立,由根与系数关系写出两个交点的横坐标的和,把转化为数量积等于0,代入坐标后可求直线的斜率,则直线l的方程可求.【解答】解:(1)设椭圆C 的方程为.根据题意知,解得,故椭圆C 的方程为.25(2)由2b=2,得b=1,所以a2=b2+c2=2,得椭圆C 的方程为.当直线l的斜率不存在时,其方程为x=1,不符合题意;当直线l的斜率存在时,设直线l的方程为y=k(x﹣1).由,得(2k2+1)x2﹣4k2x+2(k2﹣1)=0.设P(x1,y1),Q(x2,y2),则,因为,所以,即===,解得,即k=.故直线l 的方程为或.【点评】本题考查了椭圆的标准方程,考查了数量积的坐标运算,考查了直线和圆锥曲线的关系,考查了分类讨论的数学思想方法和数学转化思想方法,训练了26根与系数关系,属有一定难度题目.29.(12分)已知抛物线C:y2=4x 的焦点为F.(1)点A,P 满足.当点A在抛物线C上运动时,求动点P的轨迹方程;(2)在x轴上是否存在点Q,使得点Q关于直线y=2x的对称点在抛物线C上?如果存在,求所有满足条件的点Q的坐标;如果不存在,请说明理由.【分析】(1)设出动点P和A的坐标,求出抛物线焦点F 的坐标,由得出P点和A点的关系,由代入法求动点P的轨迹方程;(2)设出点Q的坐标,在设出其关于直线y=2x的对称点Q′的坐标,由斜率关系及中点在y=2x上得到两对称点坐标之间的关系,再由点Q′在抛物线上,把其坐标代入抛物线方程即可求得Q点的坐标.【解答】解:(1)设动点P的坐标为(x,y),点A的坐标为(x A,y A),则,因为F的坐标为(1,0),所以,由,得(x﹣x A,y﹣y A)=﹣2(x A﹣1,y A).即,解得代入y2=4x,得到动点P的轨迹方程为y2=8﹣4x.(2)设点Q的坐标为(t,0).点Q关于直线y=2x的对称点为Q′(x,y),27则,解得.若Q′在C上,将Q′的坐标代入y2=4x,得4t2+15t=0,即t=0或.所以存在满足题意的点Q,其坐标为(0,0)和().【点评】本题考查了轨迹方程,考查了直线和圆锥曲线间的关系,考查了代入法求曲线方程,考查了存在性问题的求解方法,属中档题.30.(13分)在平面直角坐标系xOy中,点A在y轴正半轴上,点P n在x轴上,其横坐标为x n,且{x n}是首项为1、公比为2的等比数列,记∠P n AP n+1=θn,n ∈N*.(1)若,求点A的坐标;(2)若点A的坐标为(0,8),求θn的最大值及相应n的值.【分析】(1)利用{x n}是首项为1、公比为2的等比数列,确定通项,利用差角的正切公式,建立方程,即可求得A的坐标;(2)表示出tanθn=tan(∠OAP n+1﹣∠OAP n),利用基本不等式,结合正切函数的单调性,即可求得结论.28【解答】解:(1)设A(0,t)(t>0),根据题意,x n=2n﹣1.由,知,而tanθ3=tan(∠OAP4﹣∠OAP3)==,所以,解得t=4或t=8.故点A的坐标为(0,4)或(0,8).(2)由题意,点P n的坐标为(2n﹣1,0),tan∠OAP n =.∴tanθn=tan(∠OAP n+1﹣∠OAP n)==.因为≥,所以tanθn ≤=,当且仅当,即n=4时等号成立.∵0<θn <,y=tanx在(0,)上为增函数,∴当n=4时,θn 最大,其最大值为.【点评】本题考查等比数列,考查差角的正切函数,考查基本不等式的运用,正确运用差角的正切公式是关键.2931.(18分)已知真命题:“函数y=f(x)的图象关于点P(a,b)成中心对称图形”的充要条件为“函数y=f(x+a)﹣b 是奇函数”.(1)将函数g(x)=x3﹣3x2的图象向左平移1个单位,再向上平移2个单位,求此时图象对应的函数解析式,并利用题设中的真命题求函数g(x)图象对称中心的坐标;(2)求函数h(x)=图象对称中心的坐标;(3)已知命题:“函数y=f(x)的图象关于某直线成轴对称图象”的充要条件为“存在实数a和b,使得函数y=f(x+a)﹣b 是偶函数”.判断该命题的真假.如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明).【分析】(1)先写出平移后图象对应的函数解析式为y=(x+1)3﹣3(x+1)2+2,整理得y=x3﹣3x,由于函数y=x3﹣3x是奇函数,利用题设真命题知,函数g(x)图象对称中心.(2)设h(x)=的对称中心为P(a,b),由题设知函数h(x+a)﹣b 是奇函数,从而求出a,b的值,即可得出图象对称中心的坐标.(3)此命题是假命题.举反例说明:函数f(x)=x的图象关于直线y=﹣x成轴对称图象,但是对任意实数a和b,函数y=f(x+a)﹣b,即y=x+a﹣b总不是偶函数.修改后的真命题:“函数y=f(x)的图象关于直线x=a成轴对称图象”的充要条件是“函数y=f(x+a)是偶函数”.【解答】解:(1)平移后图象对应的函数解析式为y=(x+1)3﹣3(x+1)2+2,整理得y=x3﹣3x,30由于函数y=x3﹣3x是奇函数,由题设真命题知,函数g(x)图象对称中心的坐标是(1,﹣2).(2)设h(x)=的对称中心为P(a,b),由题设知函数h(x+a)﹣b是奇函数.设f(x)=h(x+a)﹣b,则f(x)=﹣b,即f(x)=.由不等式的解集关于原点对称,则﹣a+(4﹣a)=0,得a=2.此时f(x)=﹣b,x∈(﹣2,2).任取x∈(﹣2,2),由f(﹣x)+f(x)=0,得b=1,所以函数h(x)=图象对称中心的坐标是(2,1).(3)此命题是假命题.举反例说明:函数f(x)=x的图象关于直线y=﹣x成轴对称图象,但是对任意实数a和b,函数y=f(x+a)﹣b,即y=x+a﹣b总不是偶函数.修改后的真命题:“函数y=f(x)的图象关于直线x=a成轴对称图象”的充要条件是“函数y=f(x+a)是偶函数”.【点评】本小题主要考查命题的真假判断与应用,考查函数单调性的应用、函数奇偶性的应用、函数的对称性等基础知识,考查运算求解能力,考查化归与转化31思想.属于中档题.32。

2013年高考理科数学上海卷-答案

2013年高考理科数学上海卷-答案

【解析】复数【解析】22 11x y= -【提示】利用行列式的定义,可得等式,配方即可得到结论【考点】二阶行列式的定义【解析】232a ab+1arccos3-,故答案为2.7x的系数是【提示】利用二项展开式的通项公式求得二项展开式中的第方程求解即可.x-=,即2380,CBA∠=43b-=-3322x y【解析】cos cosx,sin2sinx+276a x x -=面积相等,故它们的体积相等,即Ω的体积为22π12π28π2π16π+=+,故答案为2π16π+.【考点】进行简单的合情推理 14.【答案】2【解析】因为(){|(),}g I y y g x x I ==∈,1([0,1))[1,2)f -=,1((2,4])[0,1)f -=,所以对于函数()f x ,当[0,1)x ∈时,()(2,4]f x ∈,所以方程()0f x x -=即()f x x =无解;当[1,2)x ∈时,()[0,1)f x ∈,所以方程()0f x x -=即()f x x =无解;所以当[0,2)x ∈时方程()0f x x -=即()f x x =无解,又因为方程()0f x x -=有解x 0,且定义域为[0,3],故当[2,3]x ∈时,()f x 的取值应属于集合(,0)[1,2](4,)-∞+∞,故若00()f x x =,只有02x =,故答案为2.【提示】根据互为反函数的两函数定义域、值域互换可判断:当[0,1)x ∈时,[1,2)x ∈时()f x 的值域,进而可判断此时()f x x =无解;由()f x 在定义域[0,3]上存在反函数可知:[2,3]x ∈时,()f x 的取值集合,再根据方程()f x x =有解即可得到x 0的值. 【考点】反函数,函数的零点 二、选择题 15.【答案】B【解析】当1a >时,(,1][,)A a =-∞+∞,[1,)B a =-+∞,若A B =R ,则11a -≤,12a ∴<≤;当1a =时,易得A =R ,此时AB =R ;当1a <时,(,][1,)A a =-∞+∞,[1,)B a =-+∞,若A B =R ,则1a a -≤,显然成立,1a ∴<;综上,a 的取值范围是(,2]-∞,故选B .【提示】当1a >时,代入解集中的不等式中,确定出A ,求出满足两集合的并集为R 时的a 的范围;当1a =时,易得A =R ,符合题意;当1a <时,同样求出集合A ,列出关于a 的不等式,求出不等式的解集得到a 的范围.综上,得到满足题意的a 范围.【考点】集合关系中的参数取值问题,并集及其运算,一元二次不等式的解法 16.【答案】B【解析】“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.所以“好货”⇒“不便宜”,所以“不便宜”是“好货”的必要条件,故选B .【提示】因为“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.再据命题的真假与条件的关系判定出“不便宜”是“好货”的必要条件. 【考点】必要条件,充分条件与充要条件的判断 17.【答案】A【解析】该矩阵的第i 行第j 列的元素(1,2,,7;1,2,,12)i j ==……,当且仅当i j m n +=+时,ij mna a =(,1,2,,7;,1,2,,12)i m j n ==……,因此该矩阵元素能取到的不同数值为i j +的所有不同和,其和为2,3,…,i j i a a a a ++为起点,其余顶点为终点的向量分别为1a 、2a 、3a 、4a 、5a ;以D 顶点为终点的向量分别为1d 、2d 、3d 、4d 、5d ,∴利用向量的数量积公式,可知只有0AF DE AB DC =>,,m ()()i j k r s t a a a d d d ++++的最小值、最大值,m ∴【提示】利用向量的数量积公式,可知只有0AF DE AB DC =>,其余数量积均小于等于【考点】平面向量数量积的运算,进行简单的合情推理 13222223=,所以的一个法向量为(,,)n u v w =,则由n D A '⊥,n D C '⊥,可得0n D A '⊥=,0n D C '⊥=.(1,0,1)D A '=,(0,2,1)D C '=令1v =,可得,可得(2,1,2)n =-由于(1,0,BC '=-0n BC '∴=-,故有n BC '⊥内,可得直线BC '平行于平面D AC '. 由于(1,0,0)CB =,可得点B 到平面D 的距离|||2||n CB d n ⨯==的距离,设为h ,再利用等体积法求得h 的一个法向量为(2,1,2)n =-,再根据0n BC '=-,可得n BC '⊥,可得直线||||n BC n '的值,即为直线【考点】点、线、面间的距离计算,直线与平面平行的判定110x ≤≤(2)设利润为110≤≤x故甲厂应以【提示】()函数11 / 11③若1a c ≥-,则由1n a a ≥得到1()8n n n a f a a c +==++,从而{}n a 为无穷等差数列,符合要求. 综上可知:a 1的取值范围为{8}[,)c c ---+∞.【提示】(1)对于分别取1n =,2,1()n n a f a +=,*n ∈N .去掉绝对值符合即可得出;(2)由已知可得8,()338,48,4x c x c f x x c c x c x c x c ++≥-⎧⎪=++--≤<-⎨⎪---<--⎩,分三种情况讨论即可证明; (3)由(2)及0c >,得1n n a a +≥,即{}n a 为无穷递增数列.分以下三种情况讨论:当14a c <--时,当14c a c --≤<-时,当1a c ≥-时.即可得出a 1的取值范围.【考点】数列的函数特性,等差关系的确定,数列与函数的综合。

2013年上海市高考数学试卷(文科)-含答案详解

2013年上海市高考数学试卷(文科)-含答案详解

第1页,共13页………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2013年普通高等学校招生全国统一考试(上海卷)数学(文科)副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx题号 一 二 三 总分 得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I 卷(选择题)一、单选题(本大题共4小题,共20.0分。

在每小题列出的选项中,选出符合题目的一项)1. 函数f(x)= x 2−1(x ≥0)的反函数为f −1(x),则f −1(2)的值是( ) A.B.C.D.2. 设常数a ∈R ,集合A ={x|(x −1)(x −a)≥0},B ={x|x ≥a −1},若A ∪B =R ,则a 的取值范围为( )A. ( −∞,2)B. ( −∞,2]C. ( 2,+∞ )D. [2,+∞ )3. 钱大姐常说“好货不便宜”,她这句话的意思是“好货”是“不便宜”的( ) A. 充分条件 B. 必要条件C. 充分必要条件D. 既非充分又非必要条件4. 记椭圆=1围成的区域(含边界)为Ωn (n =1,2,…),当点(x ,y)分别在Ω 1,Ω 2,…上时,x + y 的最大值分别是M 1,M 2,…,则=( ) A. 0 B. ‘ C. 2 D.第II 卷(非选择题)第2页,共13页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………二、填空题(本大题共14小题,共56.0分)5. 不等式<0的解为______.6. 在等差数列{a n }中,若a 1+ a 2+ a 3+ a 4=30,则a 2+ a 3=______.7. 设m R ,m 2+ m −2+(m 2−1)i 是纯虚数,其中i 是虚数单位,则m =______. 8. 已知=0,=1,则y =______.9. 已知△ ABC 的内角A 、B 、C 所对的边分别是a 、b 、c.若a 2+ ab + b 2− c 2=0,则角C 的大小是______.10. 某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别为75、80,则这次考试该年级学生平均分数为______.11. 设常数a R.若的二项展开式中x 7项的系数为−10,则a =______.12. 方程=3 x 的实数解为______.13. 若cos x cos y +sin x sin y =,则cos(2x −2 y)=______.14. 已知圆柱Ω的母线长为l ,底面半径为r ,O 是上底面圆心,A 、B 是下底面圆周上两个不同的点,BC 是母线,如图.若直线OA 与BC 所成角的大小为,则=______.15. 盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是______(结果用最简分数表示).16. 设AB 是椭圆Γ的长轴,点C 在Γ上,且∠ CBA =.若AB =4,BC =,则Γ的两个焦点之间的距离为______.17. 设常数a >0.若9 x +≥ a +1对一切正实数x 成立,则a 的取值范围为______.第3页,共13页………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………○…………内…………○…………装…………○…………订…………○…………线…………○…………18. 已知正方形ABCD 的边长为1.记以A 为起点,其余顶点为终点的向量分别为a 1、a 2、a 3;以C 为起点,其余顶点为终点的向量分别为c 1、c 2、c 3.若i ,j ,k ,l {1,2,3}且i ≠ j ,k ≠ l ,则(a i + a j )·( c k + c l )的最小值是______.三、解答题(本大题共5小题,共74.0分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年上海市春季高考数学试卷
参考答案与试题解析
一、填空题(本大题满分36分)本大题共有12题,要求直接填写结果,每题填对得3分,否则一律得0分.
1.(3分)(2013•上海)函数y=log2(x+2)的定义域是(﹣2,+∞).
2.(3分)(2013•上海)方程2x=8的解是3.
3.(3分)(2013•上海)抛物线y2=8x的准线方程是x=﹣2.
=2,可得=2
4.(3分)(2013•上海)函数y=2sinx的最小正周期是2π.
=
5.(3分)(2013•上海)已知向量,.若,则实数k=

,得﹣
故答案为:
,则6.(3分)(2013•上海)函数y=4sinx+3cosx的最大值是5.
(sinx+cosx==
7.(3分)(2013•上海)复数2+3i(i是虚数单位)的模是.
,代入计算即可得出复数
=
故答案为:
8.(3分)(2013•上海)在△ABC中,角A,B,C所对边长分别为a,b,c,若a=5,c=8,B=60°,则b=7.
9.(3分)(2013•上海)正方体ABCD﹣A1B1C1D1中,异面直线A1B与B1C所成角的大小为60°.
10.(3分)(2013•上海)从4名男同学和6名女同学中随机选取3人参加某社团活动,选
出的3人中男女同学都有的概率为(结果用数值表示).
人中只有男同学或只有女同学的概率为:,
﹣.
故答案为:.
11.(3分)(2013•上海)若等差数列的前6项和为23,前9项和为57,则数列的前n项和
S n=.


12.(3分)(2013•上海)36的所有正约数之和可按如下方法得到:因为36=22×32,所以36的所有正约数之和为(1+3+32)+(2+2×3+2×32)+(22+22×3+22×32)=(1+2+22)(1+3+32)=91,参照上述方法,可求得2000的所有正约数之和为4836.
二.选择题(本大题满分36分)本大题共有12题,每题都给出四个结论,其中有且只有一个结论是正确的.考生必须把真确结论的代码写在题后的括号内,选对得3分,否则一律得0分.
B
解:根据
由题意得,
﹣1
的反函数,
的反函数,
15.(3分)(2013•上海)直线2x﹣3y+1=0的一个方向向量是()
,即可得到它的一个方向向量(
k=,
=)
16.(3分)(2013•上海)函数f(x)=的大致图象是()...D.
解:因为﹣<
B
=,∴
18.(3分)(2013•上海)若复数z 1,z2满足z1=,则z1,z2在复数平面上对应的点Z1,
,则
10


)上是减函数,在(
根据球的表面积公式算出它们的表面积之比为= =,由此结合球的体积公式即可算出这两个球的体积之比.
==,解之得(舍负)
因此,这两个球的体积之比为=)
23.(3分)(2013•上海)已知a,b,c∈R,“b2﹣4ac<0”是“函数f(x)=ax2+bx+c的图象恒
24.(3分)(2013•上海)已知A,B为平面内两定点,过该平面内动点M作直线AB的垂线,垂足为N.若,其中λ为常数,则动点M的轨迹不可能是()

三、解答题(本大题满分78分)本大题共有7题,解答下列各题必须写出必要的步骤.25.(7分)(2013•上海)如图,在正三棱柱ABC﹣A1B1C1中,AA1=6,异面直线BC1与AA1所成角的大小为,求该三棱柱的体积.
C=
C=.
×=2,
=3,
×6=18
26.(7分)(2013•上海)如图,某校有一块形如直角三角形ABC的空地,其中∠B为直角,AB长40米,BC长50米,现欲在此空地上建造一间健身房,其占地形状为矩形,且B为矩形的一个顶点,求该健身房的最大占地面积.
,求得﹣

27.(8分)(2013•上海)已知数列{a n}的前n项和为S,数列{b n}满足b,求.
时,
=公比为
=.
28.(13分)(2013•上海)已知椭圆C的两个焦点分别为F1(﹣1,0)、F2(1,0),短轴的两个端点分别为B1,B2
(1)若△F1B1B2为等边三角形,求椭圆C的方程;
(2)若椭圆C的短轴长为2,过点F2的直线l与椭圆C相交于P,Q两点,且,求直线l的方程.
系写出两个交点的横坐标的和,把
的方程为.
根据题意知,解得
的方程为
的方程为

因为,所以,即
=
=
=,解得
的方程为
29.(12分)(2013•上海)已知抛物线C:y2=4x 的焦点为F.
(1)点A,P满足.当点A在抛物线C上运动时,求动点P的轨迹方程;
(2)在x轴上是否存在点Q,使得点Q关于直线y=2x的对称点在抛物线C上?如果存在,求所有满足条件的点Q的坐标;如果不存在,请说明理由.
的坐标,由
,所以,
,解得
,解得

)和(
30.(13分)(2013•上海)在平面直角坐标系xOy中,点A在y轴正半轴上,点P n在x轴上,其横坐标为x n,且{x n} 是首项为1、公比为2的等比数列,记∠P n AP n+1=θn,n∈N*.
(1)若,求点A的坐标;
(2)若点A的坐标为(0,8),求θn的最大值及相应n的值.
,知
==
,解得
=
≥,
当且仅当
,)上为增函数,
最大,其最大值为
31.(18分)(2013•上海)已知真命题:“函数y=f(x)的图象关于点P(a,b)成中心对称图形”的充要条件为“函数y=f(x+a)﹣b 是奇函数”.
(1)将函数g(x)=x3﹣3x2的图象向左平移1个单位,再向上平移2个单位,求此时图象对应的函数解析式,并利用题设中的真命题求函数g(x)图象对称中心的坐标;
(2)求函数h(x)=图象对称中心的坐标;
(3)已知命题:“函数y=f(x)的图象关于某直线成轴对称图象”的充要条件为“存在实数a 和b,使得函数y=f(x+a)﹣b 是偶函数”.判断该命题的真假.如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明).
=
=
由不等式
=。

相关文档
最新文档