ch7-3空间曲线与曲面的参数方程
大学课件高等数学空间曲线及其方程

2 2
a
2
4
O
圆柱面(如图) 交线为蓝色部分(如图)
x
y
4
空间曲线及其方程
二、空间曲线的参数方程
x x(t ) y y(t ) z z(t )
空间曲线的参数方程
当给定 t t 1时 ,
就得到曲线上的一个点
( x 1 , y 1 , z 1 ),
: 0 0
t
x
上升的高度与转过的角度成正比. 即
z:
A
M
y
b 0 b 0 b
2 ,
上升的高度 h 2 b 螺距
7
空间曲线及其方程
三、空间曲线在坐标面上的投影
F ( x, y, z) 0 设空间曲线C的一般方程: G ( x , y , z ) 0
13
想一想 在xOz平面上的投影呢?
空间曲线及其方程
选择题
1.曲线
2 2 x2 y z 1 16 4 5 x 2z 3 0
在xOy面上的投影柱面方程是(A ).
( A ) x 20 y 24 x 116 0
2 2
( B ) 4 y 4 z 12 z 7 0
1 z 2 x 0 | y | 3 2
11
空间曲线及其方程
与平面 x 2 y 例 求椭圆抛物面 的交线在三个坐标面上的投影曲线方程.
y z x 解 交线方程为 x 2y z 0
2 2
y z x
2 2
z 0
(1) (2) (3)
第四节
空间曲线及其方程
第四节-空间曲线及其方程

目录 上页 下页 返回 结束
P51 题 7
z
z
O
ay x xz20y2 ax
O
ay x
z a2 ax (x 0 , z 0)
y0
目录 上页 下页 返回 结束
内容小结
• 空间曲线 • 求投影曲线
三元方程组 或参数方程 (如, 圆柱螺线)
思考与练习
P36 题 1,2,7(展示空间图形)
随着 t
目录 上页 下页 返回 结束
例 1 如果空间一点 M 在圆柱面 x2 y2 a2上以
角速度 绕z轴旋转,同时又以线速度v沿平行于z
轴的正方向上升(其中 、v都是常数),那么点
M 构成的图形叫做螺旋线.试建立其参数方程.
解
z
取时间t为参数,动点从A点出
发,经过t时间,运动到M点
M 在xoy面的投影M ( x, y,0)
目录 上页 下页 返回 结束
例2. 将下列曲线化为参数方程表示: 解: (1) 根据第一方程引入参数 , 得所求为
(2) 将第二方程变形为
故所求为
目录 上页 下页 返回 结束
三、空间曲线在坐标面上的投影
设空间曲线的一般方程:GF((xx,,
y, z) y, z)
0 0
消去变量z后得: H ( x, y) 0
第四节
第八章
空间曲线及其方程
一、空间曲线的一般方程 二、空间曲线的参数方程 三、空间曲线在坐标面上的投影
目录 上页 下页 返回 结束
一、空间曲线的一般方程
空间曲线可视为两曲面的交线, 其一般方程为方程组
例如,方程组
S2
S1
G(x, y, z) 0 L F (x, y, z) 0
第二章第二节曲面的参数方程

第二章 曲面论第二节 曲面的参数方程一、 曲面的参数方程设曲面∑是由显式D y x y x f z ∈=),(),,( 所表示。
设),,(z y x 是曲面∑上的点, 记向量),,(z y x r = ,则它们可构成一一对应。
于是曲面∑上的点可以用向量值函数 D y x y x f y x r ∈=),()),,(,,( 来表示,也可以写为参数形式⎪⎩⎪⎨⎧===),(,,y x f z y y x x D y x ∈),(。
一般地,设3),(R v u r r ∈= ,其中参数∆∈),(v u ,这里∆是2R 中的一个区域。
我们称由3),(R v u r r ∈= ,∆∈),(v u ,所构成的3R 中点集∑为一张参数曲面,(即曲面∑,可以表示为参数方程表示的点集。
)记为∆∈=∑),(),,(:v u v u r r ,(1)把(1)用分量表示出来,就是 ⎪⎩⎪⎨⎧===),(),(),,(v u z z v u y y v u x x ,∆∈),(v u (2)通常,我们称(1)是曲面∑的向量方程,而(2)是曲面∑的参数方程。
显然方程(1)和(2)之间的转换是直截了当的,所以我们可以认为(1)与(2)是一回事。
二、 几个常见曲面的参数方程表示例1 平面的参数方程设30000),,(R z y x p ∈= 是一个固定的点,),,(321a a a a = 与),,(321b b b b = 是自0p 出发的两个不平行的向量。
这时,由a 与b 张成的平面可以用向量方程, 20),(,Rv u b v a u p r ∈++=来表示;写成分量表示为v b u a x x 110++=,v b u a y y 220++=,v b u a z z 330++=,即方程组0)()(1)(110=-+-+⋅-v b u a x x ,0)()(1)(220=-+-+⋅-v b u a y y ,0)()(1)(330=-+-+⋅-v b u a z z有非零解),,1(v u --,所以,有0321321000=---b b b a a a z z y y x x 。
空间曲线与曲面的参数方程

空间曲线与曲面的参数方程空间曲线和曲面是数学中的重要概念,它们在几何学、物理学和工程学等领域都有广泛的应用。
曲线和曲面的参数方程是一种描述它们的有效方法。
本文将介绍空间曲线和曲面的概念,并详细讨论它们的参数方程表示。
一、空间曲线的参数方程空间曲线是由一系列点组成的,这些点在三维坐标系中具有一定的规律和特点。
为了描述和研究这些曲线,我们需要引入参数方程。
一个常见的空间曲线的参数方程形式为:x = f(t)y = g(t)z = h(t)其中,x、y、z分别表示点在三维坐标系中的坐标,f(t)、g(t)、h(t)是一个或多个关于参数t的函数。
例如,我们考虑描述一个处于平面上的圆的参数方程:x = r*cos(t)y = r*sin(t)z = 0其中,r是圆的半径,t是参数,范围一般取决于所研究的具体问题。
二、空间曲面的参数方程空间曲面是可以用曲面方程描述的几何实体,它由一系列点构成,这些点与曲面方程满足一定的关系。
为了研究和描述曲面,我们引入曲面的参数方程。
一个常见的空间曲面的参数方程形式为:x = f(u, v)y = g(u, v)z = h(u, v)其中,x、y、z分别表示点在三维坐标系中的坐标,f(u, v)、g(u, v)、h(u, v)是一个或多个关于参数u和v的函数。
例如,我们考虑描述一个球体的参数方程:x = R*sin(u)*cos(v)y = R*sin(u)*sin(v)z = R*cos(u)其中,R是球体的半径,u和v是参数,u的范围一般取[0,π],v的范围一般取[0,2π]。
三、应用举例1. 机械工程中的齿轮曲面齿轮是机械传动中常用的装置,它的曲面形状可以用参数方程描述。
齿轮的曲面参数方程可以根据其几何特性和设计要求进行推导和计算。
2. 物理学中的光学曲面在光学研究中,曲面的形状对于光的传播有着重要的影响。
光学曲面的参数方程可以帮助我们计算光的传播路径和光线的反射、折射等特性。
高等数学方明亮64空间曲线及其方程资料

第四节 空间曲线及其方程
(Space Curve and Its Equations)
一、空间曲线的一般方程
二、空间曲线的参数方程
三、曲面的参数方程
四、空间曲线在坐标面上的投影
五、小结与思考练习
2019年8月26日星期一
1
目录
上页
下页
返回
一、空间曲线的一般方程
(General Equation of Space Curve)
设空间曲线 C 的一般方程为
消去 z 得投影柱面
z
则C 在xoy 面上的投影曲线 C´为
C
y
消去 x 得C 在yoz 面上的投影曲线方程
x C
消去y 得C 在zox 面上的投影曲线方程
2019年8月26日星期一
10
目录
上页
下页
返回
例如,
x2 y2 z2 1
C
:
x2
(y
1)2
2019年8月26日星期一
4
目录
上页
下页
返回
例1(补充题)将下列曲线化为参数方程表示:
解: (1) 根据第一方程引入参数 , 得所求为
(2) 将第二方程变形为
故所求为
2019年8月26日星期一
5
目录
上页
下页
返回
三、曲面的参数方程
(The Parametric Equation of Surface)
下页
返回
二、空间曲线的参数方程
(The Parametric Equation of Space Curve)
将曲线C上的动点坐标x, y, z表示成参数t 的函数:
空间中曲线与曲面方程

空间中曲线与曲面方程在三维空间中,曲线和曲面是几何学中重要的概念,在数学和物理学等领域有广泛的应用。
曲线是指在空间中表示为一系列点的集合,而曲面是在空间中表示为一系列点的集合的一个二维面。
本文将就空间中曲线与曲面方程进行探讨。
一、空间曲线的方程在三维空间中,曲线可以用参数方程或者一般方程来表示。
参数方程是指将曲线的坐标用参数表示,例如(x(t), y(t), z(t))。
每个参数t对应曲线上的一个点。
一般方程则是通过给出曲线上的点满足的关系式来表示,例如F(x, y, z) = 0。
参数方程的优势在于可以轻松描述曲线的形状,通常直接从曲线的定义出发,选择合适的参数方程。
而一般方程则更适合用于描述曲线的性质和特征。
二、空间曲面的方程空间中的曲面可以用参数方程、一般方程或者隐函数方程来表示。
参数方程类似于曲线的参数方程,将曲面上的点用参数表示,例如(x(u, v), y(u, v), z(u, v))。
每个参数对应曲面上的一个点。
一般方程则通过给出曲面上的点满足的关系式来表示,例如F(x, y, z) = 0。
隐函数方程则将曲面的方程化简为一个关于x、y、z的方程,例如F(x, y, z) = 0。
选择曲面的方程格式取决于具体的问题和需求。
参数方程可以直观地描述曲面的形状,适用于绘制和计算曲面上的点。
一般方程和隐函数方程更适合用于分析曲面的性质和特征。
三、曲线和曲面的方程求解对于空间中的曲线和曲面方程,求解其解析式是数学中一个重要的问题。
有时可以通过直接求解得到解析式,有时需要借助计算机和数值方法进行求解。
对于一些简单的曲线和曲面方程,可以通过代数运算得到解析式。
例如对于一条直线,可以通过给出直线上两点的坐标,然后通过两点间的直线方程求解出直线的解析式。
对于一些复杂的曲线和曲面方程,可以通过数值方法进行求解,如迭代法、线性插值等,以获得近似解。
四、曲线和曲面方程的应用曲线和曲面方程在数学和物理学中有广泛的应用。
空间曲线的参数方程

MA z
亦即 ( x 4) y z
z
( x 4) 2 y 2 0
由于上述变形为同解变形,从而所求的轨迹方程为 ( x 4) y 0
2 2
2、在空间,选取适当的坐标系,求下列点的轨迹方程: (1)到两定点距离之比为常数的点的轨迹; (2)到两定点的距离之和为常数的点的轨迹; (3)到两定点的距离之差为常数的点的轨迹; (4)到一定点和一定平面距离之比等于常数的点的轨迹。 解: (1)取二定点的连线为 x 轴,二定点连接线段的中点作为坐标原点,且令两距离之比的 常数为 m ,二定点的距离为 2a ,则二定点的坐标为 (a,0,0), (a,0,0) ,设动点 M ( x, y, z ) , 所求的轨迹为 C ,则
解:上述二图形的公共点的坐标满足
x 2 y 2 2x 0 y 2 c( 2 c) x c x c
从而: (Ⅰ)当 0 c 2 时,公共点的轨迹为:
y c(2 c) x c
即为两条平行轴的直线; (Ⅱ)当 c 0 时,公共点的轨迹为:
及
y c(2 c) x c
y 0 x 0
(Ⅲ)当 c 2 时,公共点的轨迹为:
即为 z 轴;
y 0 x 2
即过 (2,0,0) 且平行于 z 轴的直线;
(Ⅳ)当 c 2 或 c 0 时,两图形无公共点。 2、指出下列曲面与三个坐标面的交线分别是什么曲线? (1) x y 16 z 64 ;
(* )
( x 2) 2 ( y 1) 2 ( z 3) 2 36
(2)由已知,球面半径 R 所以类似上题,得球面方程为
空间曲线与曲面

空间曲线与曲面空间曲线和曲面是几何学中的重要概念,它们在数学、物理学以及工程学等领域都有广泛的应用。
本文将介绍空间曲线和曲面的基本概念,并讨论它们的性质和应用。
一、空间曲线空间曲线是指在三维空间中由一组点按照一定规律组成的线条。
通常情况下,我们可以用参数方程或者向量函数来描述一条空间曲线。
1. 参数方程参数方程是一种用参数表示变量关系的方法。
对于空间曲线而言,参数方程可以表示为:x = f(t)y = g(t)z = h(t)其中,x、y、z分别表示曲线上一点的坐标,f(t)、g(t)、h(t)是关于参数t的函数。
通过改变参数t的取值范围,我们可以得到曲线上不同点的坐标。
2. 向量函数向量函数是一种将向量与参数相关联的函数。
对于空间曲线而言,向量函数可以表示为:r(t) = x(t)i + y(t)j + z(t)k其中,r(t)表示曲线上一点的位置向量,i、j、k是空间直角坐标系的单位向量,x(t)、y(t)、z(t)是关于参数t的函数。
通过改变参数t的取值范围,我们可以得到曲线上不同点的位置向量。
二、空间曲面空间曲面是指在三维空间中由曲线按照一定规律延伸得到的平面或者曲面。
与空间曲线类似,我们可以用参数方程或者向量函数来描述一个空间曲面。
1. 参数方程参数方程可以用来表示平面或曲面上每一个点的坐标。
对于空间曲面而言,参数方程可以表示为:x = f(u, v)y = g(u, v)z = h(u, v)其中,x、y、z分别表示曲面上一点的坐标,f(u, v)、g(u, v)、h(u, v)是关于参数u和v的函数。
通过改变参数u和v的取值范围,我们可以得到曲面上不同点的坐标。
2. 向量函数向量函数可以用来表示曲面上每一个点的位置向量。
对于空间曲面而言,向量函数可以表示为:r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k其中,r(u, v)表示曲面上一点的位置向量,i、j、k是空间直角坐标系的单位向量,x(u, v)、y(u, v)、z(u, v)是关于参数u和v的函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
z
z 0.
所求立体在xOy面上的投影为
x2 y2 1.
Co
y
x
小结
空间曲线的一般方程、参数方程.
F ( x, y, z) 0, G( x, y, z) 0.
x x(t),
y
y(t ),
z z(t).
空间曲线在坐标面上的投影.
H ( x, y) 0, R( y, z) 0, T ( x, z) 0,
z
z
z
R
O
yO
x
r 常数 (以O为球心R为 半径的)球面
x
0
常数
— 半
x 常数 (顶点在 O, z轴是对称轴,半顶 角为 )圆锥面.
五、投影柱面和投影曲线
设空间曲线的一般方程:GF((xx,,
y, z) y, z)
0, 0.
消去变量 z 后得: H ( x, y) 0
"直坐"与"柱坐"之间的关系:
z
M(x,y,z)
x r cos
y
r sin
r
z z
x2 y2
x
O
M(r, , z)
z
r
y
M'( x, y,0)
柱面坐标系的三组坐标面
z
z
z
O
O
O
y
y
y
x
r 常数 — 圆柱面
x
常数
— 半平面
x
z 常数 — 水平面
2. 球面坐标
设M( x, y, z) M(r, , ) 球面坐标
z
0.
x
0.
y
0.
思考题
求椭圆抛物面2 y2 x2 z与抛物柱面 2 x 2 z的交线关于 xOy面的投影柱面
和在 xOy面上的投影曲线方程.
思考题解答
2y2 x2 z,
交线方程为
2
x2
z.
消去z 得投影柱面 x2 y2 1,
在 xOy面上的投影为
x2 y2 1,
x
0.
zOx面上的投影曲线,
T ( x, z) 0,
y
0.
例如,
x2 y2 z2 1,
C
:
x2
(
y
1)2
(z
1)2
1
在xOy 面上的投影曲线方程为
x2 2 y2 2 y 0,
z 0.
z
C
o
1y
x
x2 y2 z2 1,
例5
求曲线
z
1 2
在坐标面上的投影.
解 (1)消去变量 z 后得
空 间 立 体
曲 面
例6 设一个立体,由上半球面 z 4 x2 y2
和 z 3( x2 y2 )锥面所围成,求它在 xOy
面上的投影.
解
半球面和锥面的交线为
C
:
z
4 x2 y2,
z 3( x2 y2 ),
消去 z 得投影柱面 x2 y2 1,
x2 y2 1, 则交线 C 在 xOy 面上的投影为
z 0.
P239-9
x2 z2 a2, (8)
x2 y2 a2.
z
a
oa
y
x
P239-6
z
z
x
x2 y2 ax, z 0.
ay
ay
x
x2 z2 a2, ( x 0, z 0) y 0.
范围: 0 r ,0 ,0 2
( x, y, z)与(r, , )之间
的 关 系:
z
x r sin cos
y
r
sin
sin
z r cos
r
x2 y2 z2 r2 r x2 y2 z2
xo x
M(x,y,z)
M(r,, )
y
M'( x, y,0)
三 组 坐 标 面 是:
消去 t 和 , 得旋转曲面方程为
又如, xOz 面上的半圆周 绕 z 轴旋转所得旋转曲面(即球面)方程为
说明: 一般曲面的参数方程含两个参数,形如
四、点的柱面坐标和球面坐标
1. 柱面坐标
M( x, y, z) M(r, , z) — 柱面坐标 此处规定: 0 r , 0 2 , z .
x acost y a sint
z vt
x a cos
y
a
sin
z b
y
螺旋线的参数方程
(
t,b
v
)
螺旋线的参数方程还可以写为
x a cos
y
a
sin
z b
( t,
b v)
螺旋线的重要性质:
上升的高度与转过的角度成正比.
即 : 0 0 , z : b0 b0 b , 2, 上升的高度 h 2b 螺距
x2 y2 3, 4
在 xOy面上的投影为
x2
y2
3 4,
z 0
(2)因为曲线在平面 z 1 上, 2
所以在 zOx 面上的投影为线段.
z
1 2
,
y 0
| x | 3 ; 2
(3)同理在 yOz面上的投影也为线段.
z
1 2,
x 0
| y | 3 . 2
空间立体或曲面在坐标面上的投影.
二、两种曲线方程的互化
例 2 求例 1 中螺旋线的一般方程.
x a cos ,
解
由
y
a sin ,
消去参数得
z b ,
x2 y2 a2 ,
x a cos z . b
例3. 将下列曲线化为参数方程表示:
x2 y2 1, (1)
2x 3z 6;
(
2)
z x2
a2 y2
曲线关于xOy 的投影柱面 投影柱面的特征:
以此空间曲线为准线,母线垂直于所投影的坐标面.
如图:投影曲线的研究过程.
空间曲线
投影柱面
投影曲线
空间曲线在xOy 面上的投影曲线
H ( x, y) 0, z 0. 类似地:可定义空间曲线在其他坐标面上的投影
yOz面上的投影曲线,
R( y, z) 0,
部点.
例 1 如果空间一点 M 在圆柱面 x 2 y2 a 2上以
角速度 绕z 轴旋转,同时又以线速度v沿平行于z 轴的正方向上升(其中 、v都是常数),那么点
M 构成的图形叫做螺旋线.试建立其参数方程.
解
z
t
o
M
•
x A M
取时间t为参数,动点从A点出 发,经过t时间,运动到M点
M 在 xOy面的投影M ( x, y,0)
x2 y2 , ax 0.
解: (1) 根据第一方程引入参数, 得所求为
(2) 将第二方程变形为
故所求为
*三、曲面的参数方程
例4 . 求空间曲线 :
时的旋转曲面方程.
解:
转过角度 后到点
则
绕 z 轴旋转 点 M1绕 z 轴旋转,
这就是旋转曲面满足的参数方程.
例如, 直线
绕 z 轴旋转所得旋转曲面方程为
7.3 空间曲线与曲面的参数方程
一、空间曲线的参数方程 二、两种曲线方程的互化 *三、曲面的参数方程 四、点的柱面坐标和球面坐标 五、投影柱面和投影曲线
一、空间曲线的参数方程
x x(t),
y
y(t )
,t
( ,
)
z z(t),
空间曲线的参数方程
当给定t t1 时,就得到曲线上的一个点 ( x1 , y1 , z1 ),随着参数的变化可得到曲线上的全