《函数的基本性质》知识总结大全

合集下载

高二数学函数基本性质知识总结

高二数学函数基本性质知识总结

⾼⼆数学函数基本性质知识总结关于函数的基本性质的知识点是⼀个系统的知识体系,需要重点掌握,下⾯给⼤家分享⼀些关于⾼⼆数学函数基本性质知识总结,希望对⼤家有所帮助。

知识点总结(⼀)函数的有关概念1.函数的概念:设A、B是⾮空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意⼀个数x,在集合B中都有唯⼀确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的⼀个函数.记作:y=f(x),x∈A.其中,x叫做⾃变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x) x∈A }叫做函数的值域.注意:如果只给出解析式y=f(x),⽽没有指明它的定义域,则函数的定义域即是指能使这个式⼦有意义的实数的集合; 函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数 x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1) 分式的分母不等于零;(2) 偶次⽅根的被开⽅数不⼩于零;(3) 对数式的真数必须⼤于零;(4) 指数、对数式的底必须⼤于零且不等于 1.(5) 如果函数是由⼀些基本函数通过四则运算结合⽽成的 . 那么,它的定义域是使各部分都有意义的 x 的值组成的集合 .(6)指数为零底不可以等于零构成函数的三要素:定义域、对应关系和值域再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全⼀致,即称这两个函数相等(或为同⼀函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全⼀致,⽽与表⽰⾃变量和函数值的字母⽆关。

相同函数的判断⽅法:①表达式相同;②定义域⼀致 (两点必须同时具备)值域补充( 1 )、函数的值域取决于定义域和对应法则,不论采取什么⽅法求函数的值域都应先考虑其定义域 . ( 2 ) . 应熟悉掌握⼀次函数、⼆次函数、指数、对数函数及各三⾓函数的值域,它是求解复杂函数值域的基础 . ( 3 ) . 求函数值域的常⽤⽅法有:直接法、反函数法、换元法、配⽅法、均值不等式法、判别式法、单调性法等.3. 函数图象知识归纳(1) 定义:在平⾯直⾓坐标系中,以函数 y=f(x) , (x ∈A)中的 x 为横坐标,函数值 y 为纵坐标的点 P(x ,y) 的集合 C ,叫做函数 y=f(x),(x ∈A)的图象.C 上每⼀点的坐标 (x , y) 均满⾜函数关系 y=f(x) ,反过来,以满⾜ y=f(x) 的每⼀组有序实数对 x 、 y 为坐标的点 (x , y) ,均在 C 上 . 即记为 C={ P(x,y) y= f(x) , x ∈A }图象 C ⼀般的是⼀条光滑的连续曲线 ( 或直线 ), 也可能是由与任意平⾏与 Y 轴的直线最多只有⼀个交点的若⼲条曲线或离散点组成 .(2) 画法A、描点法:根据函数解析式和定义域,求出 x,y 的⼀些对应值并列表,以 (x,y) 为坐标在坐标系内描出相应的点 P(x, y) ,最后⽤平滑的曲线将这些点连接起来 .B、图象变换法(请参考必修4三⾓函数)常⽤变换⽅法有三种,即平移变换、伸缩变换和对称变换(3) 作⽤:1 、直观的看出函数的性质;2 、利⽤数形结合的⽅法分析解题的思路。

函数的基本性质 知识总结

函数的基本性质 知识总结

《函数的基本性质》知识总结1.单调性函数的单调性是研究函数在定义域内某一范围的图象整体上升或下降的变化趋势,是研究函数图象在定义域内的局部变化性质。

⑴函数单调性的定义一般地,设函数()y f x =的定义域为A ,区间I A ⊆.如果对于区间I 内的______两个值1x ,2x ,当1x <2x 时,都有1()f x _____2()f x ,那么()y f x =在区间I 上是单调增函数,I 称为()y f x =的单调_____区间. 如果对于区间I 内的______两个值1x ,2x ,当1x <2x 时,都有1()f x _____2()f x ,那么()y f x =在区间I 上是单调减函数,I 称为()y f x =的单调_____区间.如果函数()y f x =在区间I 上是单调增函数或单调减函数,那么函数()y f x =在区间I 上具有________.单调性的等价定义:①)(x f 在区间M 上是增函数,,21M x x ∈∀⇔当21x x <时,有0)()(21<-x f x f0)]()([)(2121>-⋅-⇔x f x f x x 00)()(2121>∆∆⇔>--⇔xy x x x f x f ; ②)(x f 在区间M 上是减函数,,21M x x ∈∀⇔当21x x <时,有0)()(21>-x f x f0)]()([)(2121<-⋅-⇔x f x f x x 00)()(2121<∆∆⇔<--⇔xy x x x f x f ; ⑵函数单调性的判定方法①定义法;②图像法;③复合函数法;④导数法;⑤特值法(用于小题),⑥结论法等.注意:①定义法(取值——作差——变形——定号——结论):设12[]x x a b ∈,,且12x x ≠,那么0)]()([)(2121>-⋅-x f x f x x 0)()(2121>--⇔x x x f x f )(x f ⇔在区间],[b a 上是增函数;0)]()([)(2121<-⋅-x f x f x x 0)()(2121<--⇔x x x f x f )(x f ⇔在区间],[b a 上是减函数。

《函数的基本性质》知识总结大全

《函数的基本性质》知识总结大全

《函数的基本性质》知识总结大全函数的基本性质是数学中非常重要的一部分内容,对于理解和应用函数有着重要的作用。

以下是《函数的基本性质》的知识总结大全:1. 定义域和值域:函数的定义域是指函数可以取值的所有实数的范围,值域是指函数实际取值的范围。

函数的定义域和值域可以用图像来表示。

2. 奇偶性:如果对于函数中的任意实数x,有f(-x) = f(x),则称函数f(x)为偶函数;如果对于函数中的任意实数x,有f(-x) = -f(x),则称函数f(x)为奇函数。

3. 函数的图像:函数的图像是指函数在坐标平面上的显示,可以通过画图来表示函数的特点。

可以通过图像来判断函数的增减性、极值、特殊点等。

4. 单调性:如果函数f(x)在定义域上是递增的,则称函数f(x)为增函数;如果函数f(x)在定义域上是递减的,则称函数f(x)为减函数。

5. 极值:如果函数在某一点上的函数值比它邻近的点上的函数值都大(或小),则称这个点为函数的极大值点(或极小值点)。

极大值和极小值统称为极值。

6. 零点:函数的零点是指函数在定义域上满足f(x) = 0的实数x的值。

7. 对称轴:如果函数的图像关于某一直线对称,则这条直线称为函数的对称轴。

8. 周期性:如果函数f(x)在一个定义域上的每一个x都有f(x+T) = f(x)成立,其中T>0,则称函数f(x)为周期函数,T称为函数的周期。

9. 常用函数:常用函数包括线性函数、二次函数、指数函数、对数函数、三角函数等,这些函数有着特殊的性质和应用。

10. 复合函数:复合函数是指由两个函数构成的新函数,其中一个函数的输出是另一个函数的输入。

复合函数的求值需要按照函数的定义进行计算。

《函数的基本性质》知识总结大全

《函数的基本性质》知识总结大全

《函数的基本性质》知识总结大全沛县第二中学数学组张驰1. 单调性函数的单调性是研究函数在定义域内某一范围的图象整体上升或下降的变化趋势,是研究函数图象在定义域内的局部变化性质。

⑴函数单调性的定义一般地,设函数y=f(x)的定义域为A,区间I A .如果对于区间I内的_______ 两个值X i , X2 ,当X i<X2时,都有f(x i) ________ f(X2), 那么y =f(x)在区间I上是单调增函数,I称为y = f X的单调____________ 区间•如果对于区间I内的_________ 两个值X i , X2,当X i<X2时,都有f (X i) ______ f(X2),那么y=f(x)在区间I上是单调减函数,I称为y f (x)的单调_______ 区间.如果函数y = f(x)在区间I上是单调增函数或单调减函数,那么函数y = f (x)在区间I上具有___________ .点评单调性的等价定义:① f (x)在区间M上是增函数二_x i,x^ M ,当%:::x2时,有f(X i) - f(X2)::0二(%_x2) [ f (Xj) _ f (x2)] 0 f (Xi)——f (X2)• 0 二― 0 ;% - x2A x②f (x)在区间M上是减函数=■ X i,x^ M ,当X i :::X2时,有f(X i) - f(X2)0 二(% _x2) [ f (xj 一 f (x2)] ::0= f (Xi)__f (X2)::: 0:= —y:::0 ;X r —X2A x⑵函数单调性的判定方法①定义法;②图像法;③复合函数法;④导数法;⑤特值法 (用于小题),⑥结论法等.注意:①定义法(取值一一作差一一变形一一定号一一结论) :设X i, X2 • [a, b]且X i -X2,那么化-x2) [f (xj - f (x2)] • 0:= f (Xi)一f(X2)0= f (x)在区间[a,b]上是增X r _ X2函数;(% -x2) [ f (xj - f (x2)] ::0 = f (Xi)—::0 f (x)在区间[a,b]X i —X2上是减函数。

函数的基本性质知识点总结

函数的基本性质知识点总结

函数的基本性质知识点总结一、函数的定义和表示方式1.定义:函数是一种特殊关系,它将一个集合中的每个元素与另一个集合中的唯一元素相对应。

2.表示方式:函数可以用图表、解析式、关系式等方式表示。

二、函数的定义域、值域和对应关系1.定义域:函数的定义域是指能使函数有意义的输入值的集合。

2.值域:函数的值域是指函数的所有可能的输出值的集合。

3.对应关系:对于函数中的每个输入值,都有一个唯一的输出值与之对应。

三、函数的图象和图像1.图象:函数的图象是函数在平面直角坐标系中的表示,其所有的点坐标满足函数的对应关系。

2.图像:函数的图像是函数的图象在控制显示器或打印机上的可视化表现。

四、函数的性质1.单调性:函数可以是递增的(单调递增)或递减的(单调递减)。

2.奇偶性:函数可以是奇函数(关于原点对称)或偶函数(关于y轴对称)。

3.周期性:函数可以是周期函数,即函数在一定区间内具有重复的规律。

4.奇点和间断点:函数的奇点是指函数在定义域内的特定点,其函数值不存在或趋于无穷;间断点是指函数在特定点不连续。

五、函数的极限与连续性1.极限:函数的极限是指当自变量趋于一些值时,函数值的趋向或趋近的特性。

2.连续性:函数在定义域内的所有点都连续,当且仅当函数在这些点的极限存在且等于这些点的函数值。

六、函数的导数与微分1.导数:函数的导数描述了函数在其中一点处的变化率。

导数表示为函数的斜率或函数的变化速率。

2.微分:函数的微分可以理解为函数在其中一点处的无穷小增量。

七、函数的极值与最值1.极值:函数在极值点处的函数值称为极大值或极小值。

极大值是函数在该点附近所有函数值中最大的值,极小值是函数在该点附近所有函数值中最小的值。

2.最值:函数的最大值和最小值称为函数的最值。

八、函数的反函数1.反函数:如果函数f的定义域与值域互换,且对于f的每一个输出值,存在唯一的输入值与之对应,则这个函数称为f的反函数。

以上是函数的基本性质的总结,函数理论是数学中的基础内容,也是其他学科中的重要概念。

2024年高二数学函数基本性质知识总结

2024年高二数学函数基本性质知识总结

2024年高二数学函数基本性质知识总结____年高二数学函数基本性质知识总结(____字)一、函数的定义和基本性质函数是一种特殊的关系,每一个自变量只对应一个因变量。

函数的定义包括定义域、值域、对应关系和表达式。

函数的基本性质包括单调性、奇偶性、周期性和界值性。

1.1 定义域和值域函数的定义域是自变量的取值范围,值域是因变量的取值范围。

定义域可以通过解不等式或考察定义域的连续性来确定。

值域可以通过求导或考察函数的图像来确定。

1.2 对应关系函数的对应关系决定了自变量和因变量之间的对应关系。

函数可以用图像、显式表达式、隐式表达式或递推关系来表示。

对应关系可以用一一对应、多对一或一对多来描述。

1.3 单调性一个函数的单调性是指函数在定义域上的变化趋势。

函数可以是上下单调递增、上下单调递减、左右单调递增或左右单调递减。

单调性可以通过求导数或摸底函数的上下凸性来判断。

1.4 奇偶性一个函数的奇偶性是指函数在定义域上的对称性。

一个函数是奇函数,当且仅当对于任意x,f(-x)=-f(x)。

一个函数是偶函数,当且仅当对于任意x,f(-x)=f(x)。

奇偶性可以通过观察函数的对称性或通过代入-x来判断。

1.5 周期性一个函数的周期性是指函数具有重复出现的规律。

周期函数满足f(x+T)=f(x),其中T为函数的周期。

周期性可以通过观察函数的周期性或通过解函数的方程来判断。

1.6 界值性一个函数的界值性是指函数在定义域或值域上的极大值或极小值。

界值性可以通过求导数或考察函数的图像来判断。

二、高中数学中常见的函数高中数学中常见的函数包括常函数、一次函数、幂函数、指数函数、对数函数、三角函数和反三角函数等。

2.1 常函数常函数是一个常数,其函数图像是一条平行于x轴的直线。

常函数的定义域是整个实数集,值域是只有一个值的数集。

2.2 一次函数一次函数是一个一次多项式,函数表达式为f(x)=ax+b,其中a和b为常数,a称为斜率,b称为截距。

函数性质知识点总结通用3篇

函数性质知识点总结通用3篇

函数性质知识点总结通用3篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!函数性质知识点总结通用3篇教案是教师为顺利而有效地开展教学活动,根据教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。

函数的基本性质知识点总结

函数的基本性质知识点总结

函数的基本性质知识点总结1.函数的定义:函数是一种数学对象,它将一个集合中的每个元素映射到另一个集合中的唯一元素上。

函数通常以符号表示,例如f(x)。

2.定义域:函数的定义域是指函数能够接受的自变量的值的集合。

它是函数能够有效进行计算的自变量的范围。

通常用符号表示为D(f)。

3.值域:函数的值域是指函数在定义域上所有可能的函数值的集合。

它是因变量的取值范围。

通常用符号表示为R(f)。

4.图像:函数的图像是指由函数的所有有序对(x,f(x))组成的点的集合。

可以通过将自变量的取值代入函数的表达式来确定函数的图像。

5.奇偶性:函数的奇偶性指函数在坐标系中的对称性。

一个函数被称为奇函数,如果对于定义域上的任何x值,-x处的函数值等于x处的相反数。

一个函数被称为偶函数,如果对于定义域上的任何x值,-x处的函数值等于x处的函数值。

6.单调性:函数的单调性指函数在定义域上的增减趋势。

一个函数被称为严格递增函数,如果对于定义域上的任意两个x值,f(x1)<f(x2)。

一个函数被称为严格递减函数,如果对于定义域上的任意两个x值,f(x1)>f(x2)。

7.周期性:函数的周期性指函数在定义域上以一定的周期重复。

一个函数被称为周期函数,如果存在一个正整数T,对于定义域上的任意x值,有f(x+T)=f(x)。

8.连续性:函数的连续性指函数在定义域上的无间断性。

一个函数在点x=c处连续,如果当x趋近于c时,f(x)趋近于f(c)。

一个函数在整个定义域上连续,如果它在每个点都连续。

9.可导性:函数的可导性指函数在一些点上的导数是否存在。

函数f(x)在点x=c处可导,如果当x趋近于c时,f(x)的斜率存在,并且等于c处的导数。

10.极值:函数的极值指函数在定义域上的最大值和最小值。

一个局部最大值是指函数在一些区间上的最大值,而不一定是整个定义域上的最大值。

一个局部最小值是指函数在一些区间上的最小值,而不一定是整个定义域上的最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《函数的基本性质》知识总结大全沛县第二中学数学组 张驰1.单调性函数的单调性是研究函数在定义域内某一范围的图象整体上升或下降的变化趋势,是研究函数图象在定义域内的局部变化性质。

⑴函数单调性的定义一般地,设函数()y f x =的定义域为A ,区间I A ⊆.如果对于区间I 内的______两个值1x ,2x ,当1x <2x 时,都有1()f x _____2()f x ,那么()y f x =在区间I 上是单调增函数,I 称为()y f x =的单调_____区间. 如果对于区间I 内的______两个值1x ,2x ,当1x <2x 时,都有1()f x _____2()f x ,那么()y f x =在区间I 上是单调减函数,I 称为()y f x =的单调_____区间.如果函数()y f x =在区间I 上是单调增函数或单调减函数,那么函数()y f x =在区间I 上具有________.点评 单调性的等价定义:①)(x f 在区间M 上是增函数,,21M x x ∈∀⇔当21x x <时,有0)()(21<-x f x f 0)]()([)(2121>-⋅-⇔x f x f x x 00)()(2121>∆∆⇔>--⇔xy x x x f x f ; ②)(x f 在区间M 上是减函数,,21M x x ∈∀⇔当21x x <时,有0)()(21>-x f x f 0)]()([)(2121<-⋅-⇔x f x f x x 00)()(2121<∆∆⇔<--⇔x y x x x f x f ; ⑵函数单调性的判定方法①定义法;②图像法;③复合函数法;④导数法;⑤特值法(用于小题),⑥结论法等. 注意:①定义法(取值——作差——变形——定号——结论):设12[]x x a b ∈,,且12x x ≠,那么0)]()([)(2121>-⋅-x f x f x x 0)()(2121>--⇔x x x f x f )(x f ⇔在区间],[b a 上是增函数;0)]()([)(2121<-⋅-x f x f x x 0)()(2121<--⇔x x x f x f )(x f ⇔在区间],[b a 上是减函数。

②导数法(选修):在()f x 区间()a b ,内处处可导,若总有'()0f x >('()0f x <),则()f x 在区间()a b ,内为增(减)函数;反之,()f x 在区间()a b ,内为增(减)函数,且处处可导,则'()0f x ≥('()0f x ≤)。

请注意两者之间的区别,可以“数形结合法”研究。

点评 判定函数的单调性一般要将式子)()(21x f x f -进行因式分解、配方、通分、分子(分母)有理化处理,以利于判断符号;证明函数的单调性主要用定义法和导数法。

提醒 求单调区间时,不忘定义域;多个单调性相同的区间不一定能用符号“”连接;单调区间应该用区间表示,不能用集合或不等式表示。

判定函数不具有单调性时,可举反例。

⑶与函数单调性有关的一些结论①若()f x 与()g x 同增(减),则()f x +()g x 为增(减)函数,(())f g x 为增函数; ②若()f x 增,()g x 为减,则()f x -()g x 为增函数,()g x -()f x 为减函数,(())f g x 为减函数;③若函数()y f x =在某一范围内恒为正值或恒为负值,则()y f x =与1()y f x =在相同的单调区间上的单调性相反;④函数()y f x =与函数()(0)y f x k k =+≠具有相同的单调性和单调区间;⑤函数()y f x =与函数()(0)y kf x k =>具有相同的单调性和单调区间,函数()y f x =与函数()(0)y kf x k =<具有相同单调区间上的单调性相反。

2.奇偶性函数的奇偶性是研究函数在定义域内的图象是否关于原点中心对称,还是关于y 轴成轴对称,是研究函数图象的结构特点;⑴函数奇偶性的定义一般地,设函数()y f x =的定义域为A .如果对于_____的x A ∈,都有()f x -=_____,那么函数()y f x =是偶函数. 一般地,设函数()y f x =的定义域为A .如果对于_____的x A ∈,都有()f x -=_____,那么函数()y f x =是奇函数. 如果函数()y f x =是奇函数或偶函数,那么函数()y f x =具有________.注意 具有奇偶性的函数的定义域一定关于原点对称,因此,确定函数奇偶性时,务必先判定函数定义域是否关于原点对称。

⑵图象特征函数()y f x =为奇(偶)函数⇔函数()y f x =的图象关于原点(y 轴)成中心(轴)对称图形。

注意 定义域含0的偶函数图象不一定过原点;定义域含0的奇函数图象一定过原点;利用函数的奇偶性可以把研究整个函数问题转化到一半区间上,简化问题。

点评①函数的定义域关于原点对称是函数具有奇偶性的必要条件..... ②)(x f 是奇函数()()()()()01()f x f x f x f x f x f x -⇔-=-⇔-+=⇔=-. ③)(x f 是偶函数()()()()()01()f x f x f x f x f x f x -⇔-=⇔--=⇔=. ④奇函数)(x f 在原点有定义,则0)0(=f . ⑤在关于原点对称的单调区间内:(ⅰ)奇函数有相同的单调性,偶函数有相反的单调性;(ⅱ)奇函数有相反的最值(极值),偶函数有相同的最值(极值)。

⑥)(x f 是偶函数⇔(||)()f x f x =.⑶奇偶性的判定方法若所给函数的解析式较为复杂,应先考虑其定义域并等价变形化简后,再判断其奇偶性.如判断函数()f x =法;②图像法;③结论法等. 点评 定义法判定函数的奇偶性先求定义域,看其是否关于原点对称,若对称,再求()f x -,接着考察()f x -与()f x 的关系,最后得结论.判断函数不具有奇偶性时,可用反例。

⑷与函数的奇偶性有关的一些结论①若()f x 与()g x 同奇(偶),则()f x ±()g x 为奇(偶)函数,()f x ()g x 和()()f x g x 为偶函数,(())f g x 为奇(偶)函数;②若()f x 与()g x 一奇一偶,则()f x ()g x 和()()f xg x 为奇函数,(())f g x 为偶函数; ③定义域关于原点对称的函数可以表示为一个奇函数与一个偶函数和的形式。

⑸函数按奇偶性分类①奇函数非偶函数,②偶函数非奇函数,③既是奇函数又是偶函数,④非奇非偶函数。

点评既奇又偶的函数有无数个。

如()0f x =定义域关于原点对称即可。

如函数()f x =。

3.周期性函数的周期性是研究一些函数图象在定义域内具有某种一定的周期变化规律;⑴函数周期性的定义一般地,对于函数()f x ,如果存在一个________的常数T ,使得定义域内的________ x 值,都满足()________f x T +=,那么函数()f x 称为周期函数,________常数T 叫做这个函数的周期。

如果一个周期函数()f x 的所有的周期中存在一个________的____数,那么这个数叫做函数()f x 的最小周期正周期。

如没有特别说明,遇到的周期都指最小正周期。

点评 ①非零常数T 是周期函数本身固有的性质,与自变量x 的取值无关;②若非零常数T 是函数()f x 的周期,则非零常数T 的非零整数倍(nT n Z ∈,,且0)n ≠也是函数()f x 的周期;③若函数()f x 的周期为T ,则函数()y Af x ωϕ=+(其中A ,ω,ϕ为常数,且0A ≠,0ω≠)的周期为||T ω;④定义中的等式()f x T +=()f x 是恒等式;⑤函数()f x 的周期是T ⇔()f x T +=()f x 。

⑵三角函数的周期①π2:sin ==T x y ;②π2:cos ==T x y ;③π==T x y :tan ; ④||2:)cos(),sin(ωπϕωϕω=+=+=T x A y x A y ;⑤||:tan ωπω==T x y ; ⑶函数周期的判定①定义法(试值) ②图像法 ③公式法(利用(2)中结论)④结论法。

⑷与周期有关的一些结论①)()(a x f a x f -=+或)0)(()2(>=-a x f a x f ⇒)(x f 的周期为a 2;②()f x 是偶函数,其图像又关于直线x a =对称⇒()f x 的周期为2||a ;③()f x 奇函数,其图像又关于直线x a =对称⇒()f x 的周期为4||a ;④()f x 关于点(,0)a ,(,0)b ()a b ≠对称⇒()f x 的周期为2||a b -;⑤()f x 的图象关于直线x a =,()x b a b =≠对称⇒函数()f x 的周期为2||a b -; ⑥()f x 的图象关于点)0,(a 中心对称,直线b x =轴对称⇒)(x f 周期为4b a -; ⑦()f x 对x R ∈时,()()f x a f x +=-或1()()f x f x a +=-⇒()f x 的周期为2||a ; ⑧函数()f x 满足1()()1()f x f x a f x ++=-,且a 为非零常数⇒()f x 的周期为4||a ; ⑨函数()f x 满足()()()2f x a f x a f x +=+-(a 为非零常数)⇒()f x 的周期6||a 。

点评 注意对称性与周期性的关系。

4.对称性函数的对称性是研究函数图象的结构特点(即函数图象关于某一点成中心对称图形或关于某一条直线成轴对称图形);⑴函数对称性的定义如果函数()y f x =的图象关于直线x a =成____对称或点()a b ,成______对称,那么()y f x =具有对称性。

注意 利用函数的对称性可以把研究整个函数问题转化到一半区间上,简化问题。

⑵函数图象对称性的证明证明函数()y f x =图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;⑶与对称性性有关的一些结论①函数()y f x =的图象关于直线x a =成轴对称⇔()()f a x f a x -=+。

特别地,当0a =时,函数()y f x =为偶函数。

②函数()y f x =的图象关于点()a b ,成中心对称⇔()()2f a x f a x b -++=。

相关文档
最新文档