函数的基本性质
函数的基本性质

函数的基本性质其性质通常是指函数的定义域、值域、解析式、单调性、奇偶性、周期性、对称性。
函数表⽰每个输⼊值对应唯⼀输出值的⼀种对应关系。
函数f中对应输⼊值x的输出值的标准符号为f(x)。
性质有界性设函数f(x)在区间X上有定义,如果存在M>0,对于⼀切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上⽆界。
单调性设函数f(x)的定义域为D,区间I包含于D。
如果对于区间上任意两点x1及x2,当x1<x2时,恒有f(x1)<f(x2),则称函数f(x)在区间I上是单调递增的;如果对于区间I上任意两点x1及x2,当x1<x2时,恒有f(x1)>f(x2),则称函数f(x)在区间I上是单调递减的。
单调递增和单调递减的函数统称为单调函数。
奇偶性设为⼀个实变量实值函数,若有f(-x)=-f(x),则f(x)为奇函数。
⼏何上,⼀个奇函数关于原点对称,亦即其图像在绕原点做180度旋转后不会改变。
奇函数的例⼦有x、sin(x)、sinh(x)和erf(x)。
设f(x)为⼀实变量实值函数,若有f(x)=f(-x),则f(x)为偶函数。
⼏何上,⼀个偶函数关于y轴对称,亦即其图在对y轴映射后不会改变。
偶函数的例⼦有|x|、x2、cos(x)和cosh(x)。
偶函数不可能是个双射映射。
连续性在数学中,连续是函数的⼀种属性。
直观上来说,连续的函数就是当输⼊值的变化⾜够⼩的时候,输出的变化也会随之⾜够⼩的函数。
如果输⼊值的某种微⼩的变化会产⽣输出值的⼀个突然的跳跃甚⾄⽆法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。
函数的基本性质有

函数是数学中一种重要的概念,它具有一些重要的性质。
常见的函数性质包括:
1.单调性:函数在定义域内单调递增或递减。
2.可导性:函数在定义域内可导。
3.可积性:函数在定义域内可积。
4.可逆性:函数在定义域内可逆。
5.可微性:函数在定义域内可微。
6.可解析性:函数在定义域内可解析。
7.持久性:函数在定义域内持久,即函数的值在定义域内不会突然变化。
8. 函数的值域:函数的值域是函数在定义域内所有可能取到的值的集合。
9. 函数的导函数:函数在定义域内可导,那么它就有导函数,并且导函数是唯一的。
10. 函数的导数:函数的导数描述了函数在某一点处的变化率。
这些性质对于理解和分析函数具有重要的意义。
不同的函数具有不同的性质,因此在研究和使用函数时需要结合具体情况来考虑这些性质。
函数的基本性质

增函数 减函数3:函数的基本性质 I :函数的单调性(1) 改变量:在函数 y=f(x)的图象上任取两点 A (x 1, y 1 ) ,B (x 2 , y 2 ),记∆x = x 2 − x 1 ,∆y = f (x 2 ) − f (x 1 ) = y 2 − y 1 。
∆x 表示自变量 x 的改变量, ∆y 表示因变量 y 的改变量, 其中“ ∆ ”为希腊字母,读作“delta ”。
(2) 一般地,设 y=f(x)的定义域为 A ,区间M ⊆ A 。
如果区间 M 的任意两个值x 1, x 2 ,○ 1 当改变量∆x = x 2 − x 1 > 0 时,有∆y = f (x 2 ) − f (x 1 ) > 0 ,那么就称 y=f(x)在 M 上是 增函数。
○ 2 当改变量∆x = x 2 − x 1 < 0 时,有∆y = f (x 2 ) − f (x 1 ) > 0 ,那么就称 y=f(x)在 M 上是减函数。
○ 3 如果一个函数在某个区间 M 上是增函数或是减函数,就说这个函数在这个区间 M 上具有单调性。
(区间 M 称为单调区间)。
1.关于单调性的几点注意的问题:(1) 定义中的x 1 ,和 x 2 的特点:○1 任意性○2 有大小差别○3 同属于一个单调区间 (2) 函数的单调性是函数的局部性质 (3)在写单调区间时,可以包括端点,也可以不包括端点。
但对于某些无意义的点,单 调区间就不包括这些点。
2.单调区间的写法:(1)一个函数出现两个或两个以上的单调区间时,不能用“ ∪ ”而应该用“和”或“,”y = 1来连接, 如函数 x 在区间 (−∞, 0) 和(0, +∞) 上均为减函数, 但不能说它再定义域(−∞, 0) ∪ (0,+∞) 上是减函数。
(2)书写函数单调区间时,区间端点的开或闭没有严格的规定,习惯上,若函数在区间端点有意义,则写成闭区间,当然写成开区间也可以;若函数在区间端点没有意义,则必须 写成开区间。
《函数的基本性质(函数的奇偶性、对称性、周期性)灵活应用》

备战高考数学“棘手”问题培优专题讲座---函数的基本性质(函数的奇偶性、对称性、周期性)灵活应用一.函数的周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)函数周期性的判定与应用(1)判定:判断函数的周期性只需证明f(x+T)=f(x)(T≠0)即可.(2)应用:根据函数的周期性,可以由函数的局部性质得到函数的整体性质,在解决具体问题时,要注意结论:若T是函数的周期,则kT(k∈Z且k≠0)也是函数的周期.函数y=f(x)满足:(1)若f(x+a)=f(x-a),则函数的周期为2a;(2)若f(x+a)=-f(x),则函数的周期为2a;(3)若f(x+a)=-1f(x),则函数的周期为2a;(4)若f(x+a)=1f(x),则函数的周期为2a;(5)若函数f(x)关于直线x=a与x=b对称,那么函数f(x)的周期为2|b-a|;(6)若函数f(x)关于点(a,0)对称,又关于点(b,0)对称,则函数f(x)的周期是2|b-a|;(7)若函数f(x)关于直线x=a对称,又关于点(b,0)对称,则函数f(x)的周期是4|b-a|;(8)若函数f(x)是偶函数,其图象关于直线x=a对称,则其周期为2a;(9)若函数f(x)是奇函数,其图象关于直线x=a对称,则其周期为4a.【方法点拨】1.函数奇偶性、对称性间关系:(1)若函数y=f(x+a)是偶函数,即f(a-x)=f(a+x),则函数y=f(x)的图象关于直线x=a对称;一般的,若对于R上的任意x都有f(a-x)=f(a+x),则y=f(x)的图象关于直线x=a+b2对称.(2)若函数y=f(x+a)是奇函数,即f(-x+a)+f(x+a)=0,则函数y =f (x )关于点(a ,0)中心对称;一般的,若对于R 上的任意x 都有f (-x +a )+f (x +a )=2b , 则y =f (x )的图象关于点(a ,b )中心对称.2. 函数对称性、周期性间关系:若函数有多重对称性,则该函数具有周期性且最小正周期为相邻对称轴距离的2倍, 为相邻对称中心距离的2倍,为对称轴与其相邻对称中心距离的4倍. (注:如果遇到抽象函数给出类似性质,可以联想y =sin x ,y =cos x 的对称轴、对称中心和周期之间的关系)3. 善于发现函数的对称性(中心对称、轴对称),有时需将对称性与函数的奇偶性相互转化. 【典型题示例】例1.已知函数f (x )对任意的x ∈R ,都有f ⎝ ⎛⎭⎪⎫12+x =f ⎝ ⎛⎭⎪⎫12-x ,函数f (x +1)是奇函数,当-12≤x ≤12时,f (x )=2x ,则方程f (x )=-12在区间[-3,5]内的所有根之和为________.【分析】由f ⎝ ⎛⎭⎪⎫12+x =f ⎝ ⎛⎭⎪⎫12-x 对任意的x ∈R 恒成立,得f (x )关于直线x =12对称,由函数f (x +1)是奇函数,f (x )关于点(1,0)中心对称,根据函数对称性、周期性间关系,知函数f (x )的周期为2,作出函数f (x )的图象即可.【解析】因为函数f (x +1)是奇函数,所以f (-x +1)=-f (x +1),又因为f ⎝ ⎛⎭⎪⎫12+x = f ⎝ ⎛⎭⎪⎫12-x ,所以f (1-x )=f (x ),所以f (x +1)=-f (x ),即f (x +2)=-f (x +1)=f (x ), 所以 函数f (x )的周期为2,且图象关于直线x =12对称.作出函数f (x )的图象如图所示,由图象可得f (x )=-12在区间[-3,5]内有8个零点,且所有根之和为12×2×4=4.【答案】4 二、典型例题1.奇偶性与周期性的综合问题1.已知偶函数y =f (x )(x ∈R)在区间[-1,0]上单调递增,且满足f (1-x )+f (1+x )=0,给出下列判断:①f (5)=0; ②f (x )在[1,2]上是减函数; ③函数f (x )没有最小值; ④函数f (x )在x =0处取得最大值; ⑤f (x )的图象关于直线x =1对称. 其中正确的序号是________.解:因为f (1-x )+f (1+x )=0,所以f (1+x )=-f (1-x )=-f (x -1),所以f (2+x )=-f (x ),所以f (x +4)=f (x ),即函数f (x )是周期为4的周期函数.由题意知,函数y =f (x )(x ∈R)关于点(1,0)对称,画出满足条件的图象如图所示,结合图象可知①②④正确.答案:①②④2. 已知定义在R 上的偶函数()f x 满足:当(]1,0x ∈-时,()2x f x =,且()1f x +的图像关于原点对称,则20192f ⎛⎫= ⎪⎝⎭( )A .2B C .2-D .【解题思路】根据偶函数及()1f x +的图像关于原点对称可知,函数的周期;根据周期性及()1f x +为奇函数,可得20192f ⎛⎫⎪⎝⎭的值.解:由题可知函数()f x 的图像关于直线0x =和点()1,0对称,所以函数()f x 的周期为4,则12201933114252222222f f f ff ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+==-=--=-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 答案:C3.已知定义在R 上的函数f (x )满足f (x -1)=f (x +1),且当x ∈[-1,1]时,f (x )=x ⎝⎛⎭⎫1-2e x +1,则( )A .f (-3)<f (2)<f ⎝⎛⎭⎫52B .f ⎝⎛⎭⎫52<f (-3)<f (2)C .f (2)<f (-3)<f ⎝⎛⎭⎫52D .f (2)<f ⎝⎛⎭⎫52<f (-3) 解: ∵f (x -1)=f (x +1),则函数f (x )的周期T =2.当x ∈[-1,1]时,f (x )=x ⎝⎛⎭⎫1-2e x +1=x ·e x-1e x +1,则f (-x )=-x ·e -x -1e -x +1=-x ·1-e x 1+e x =x ·e x -1e x +1=f (x ),则函数f (x )为偶函数,因此f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫12,f (-3)=f (-1)=f (1),f (2)=f (0). 当0 ≤x ≤1时,函数y =x 与y =1-2e x +1均为增函数且都不小于0, 所以f (x )=x ⎝⎛⎭⎫1-2e x +1在区间[0,1]上是增函数,∴f (1)>f ⎝⎛⎭⎫12>f (0),即f (-3)>f ⎝⎛⎭⎫52>f (2). 答案:D4.(2018年全国2卷)已知是定义域为的奇函数,满足.若,则A.B. 0C. 2D. 50分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果. 解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.【答案】C点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.5. 已知f (x )是定义在R 上的周期为2的奇函数,当x ∈(0,1)时,f (x )=3x -1,则f ⎝⎛⎭⎫2 0192=( )A.3+1B.3-1 C .-3-1D .-3+1解:由题可知f (x +2)=f (x )=-f (-x ),所以f ⎝⎛⎭⎫2 0192=f ⎝⎛⎭⎫1 008+32=f ⎝⎛⎭⎫32=-f ⎝⎛⎭⎫-32=-f ⎝⎛⎭⎫12. 又当x ∈(0,1)时,f (x )=3x -1,所以f ⎝⎛⎭⎫12=3-1,则f ⎝⎛⎭⎫2 0192=-f ⎝⎛⎭⎫12=-3+1. 答案:D奇偶性与周期性综合问题的解题策略函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.6. 已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为______ 解:∵f (x )是定义在R 上的周期为3的偶函数,∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3a +1, ∴2a -3a +1<1,即a -4a +1<0,解得-1<a <4. 答案:(-1,4)7. 设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x ,0≤x <1,则f ⎝⎛⎭⎫32=________. 解:∵f (x )的周期为2,∴f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12, 又∵当-1≤x <0时,f (x )=-4x 2+2, ∴f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12=-4×⎝⎛⎭⎫-122+2=1. 答案:18. 若函数f (x )(x ∈R)是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=________. 解:由于函数f (x )是周期为4的奇函数,所以f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=f ⎝⎛⎭⎫2×4-34+f ⎝⎛⎭⎫2×4-76=f ⎝⎛⎭⎫-34+f ⎝⎛⎭⎫-76=-f ⎝⎛⎭⎫34-f ⎝⎛⎭⎫76 =-316+sin π6=516.答案:5169.已知f (x )是定义在R 上的偶函数,且f (x +2)=-f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=________.解:由f (x +2)=-f (x ),得f (x +4)=f [(x +2)+2]=-f (x +2)=-[-f (x )]=f (x ),所以函数f (x )的周期为4,∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5)=2.5. 答案:2.510.若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)=________. 解:由f (x )是R 上周期为5的奇函数知f (3)=f (-2)=-f (2)=-2,f (4)=f (-1)=-f (1)=-1, ∴f (3)-f (4)=-1.答案:-111.已知定义在R 上的函数f (x )满足f (2)=15,且对任意的x 都有f (x +3)=-1f (x ),则f (8)=________;f (2 015)=________. 解:由f (x +3)=-1f (x ),得f (x +6)=-1f (x +3)=f (x ), 故函数f (x )是周期为6的周期函数.故f (8)=f (2)=15,f (2 015)=f (6×335+5)=f (5)=-1f (2)=-115=-5.答案:15;-513.奇函数f (x )的周期为4,且x ∈[0,2],f (x )=2x -x 2,则f (2 018)+f (2 019)+f (2 020)的值为________.解:函数f (x )是奇函数,则f (0)=0,由f (x )=2x -x 2,x ∈[0,2]知f (1)=1,f (2)=0,又f (x )的周期为4,所以f (2 018)+f (2 019)+f (2 020)=f (2)+f (3)+f (0)=f (3)=f (-1)=-f (1)=-1. 答案:-114.已知函数f (x )是周期为2的奇函数,当x ∈[0,1)时,f (x )=lg(x +1),则f ⎝⎛⎭⎫2 0165+lg 18=________.解:由函数f (x )是周期为2的奇函数得f ⎝⎛⎭⎫2 0165=f ⎝⎛⎭⎫65=f ⎝⎛⎭⎫-45=-f ⎝⎛⎭⎫45, 又当x ∈[0,1)时,f (x )=lg(x +1), 所以f ⎝⎛⎭⎫2 0165=-f ⎝⎛⎭⎫45=-lg 95=lg 59, 故f ⎝⎛⎭⎫2 0165+lg 18=lg 59+lg 18=lg 10=1. 答案:115.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x ≤1时,f (x )=2x -1.则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=________. 解析:依题意知:函数f (x )为奇函数且周期为2,则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫-12+f (0)+f ⎝⎛⎭⎫12 =f ⎝⎛⎭⎫12+f (1)+f (0)=212-1+21-1+20-1= 2. 答案: 216.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R.若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________.解:因为f (x )是定义在R 上且周期为2的函数,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12,且f (-1)=f (1),故f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12,从而12b +212+1=-12a +1, 即3a +2b =-2.① 由f (-1)=f (1),得-a +1=b +22, 即b =-2a .② 由①②得a =2,b =-4,从而a +3b =-10. 答案:-1017.已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图像在区间[0,6]上与x 轴的交点个数为________.解:因为当0≤x <2时,f (x )=x 3-x ,又f (x )是R 上最小正周期为2的周期函数,且f (0)=0,所以f (6)=f (4)=f (2)=f (0)=0.又f (1)=0,所以f (3)=f (5)=0.故函数y =f (x )的图像在区间[0,6]上与x 轴的交点个数为7. 答案:718.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时,f (x )=2x ,则有 ①2是函数f (x )的周期;②函数f (x )在(1,2)上是减函数,在(2,3)上是增函数; ③函数f (x )的最大值是1,最小值是0.其中所有正确命题的序号是________.解:在f (x +1)=f (x -1)中,令x -1=t ,则有f (t +2)=f (t ),因此2是函数f (x )的周期,故①正确;当x ∈[0,1]时,f (x )=2x 是增函数,根据函数的奇偶性知,f (x )在[-1,0]上是减函数,根据函数的周期性知, 函数f (x )在(1,2)上是减函数,在(2,3)上是增函数,故②正确;由②知f (x )在[0,2]上的最大值f (x )max =f (1)=2,f (x )的最小值f (x )min =f (0)=f (2)=20=1, 且f (x )是周期为2的周期函数.∴f (x )的最大值是2,最小值是1,故③错误. 答案:①②1. 已知定义在R 上的奇函数f (x )满足f (x +1)=-f (x ),且在[0,1)上单调递增,记a =f ⎝⎛⎭⎫12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A.a >b =c B.b >a =c C.b >c >a D.a >c >b解:依题意得,f (x +2)=-f (x +1)=f (x ),即函数f (x )是以2为周期的函数,f (2)=f (0)=0,又f (3)=-f (2)=0,且f (x )在[0,1)上是增函数, 于是有f ⎝⎛⎭⎫12>f (0)=f (2)=f (3),即a >b =c . 答案:A2.奇函数f (x )的定义域为R ,若f (x +1)为偶函数,且f (1)=2,则f (4)+f (5)的值为( )A .2B .1C .-1D .-2解:设g (x )=f (x +1),∵f (x +1)为偶函数,则g (-x )=g (x ),即f (-x +1)=f (x +1),∵f (x )是奇函数,∴f (-x +1)=f (x +1)=-f (x -1), 即f (x +2)=-f (x ),f (x +4)=f (x +2+2)=-f (x +2)=f (x ), 则f (4)=f (0)=0,f (5)=f (1)=2,∴f (4)+f (5)=0+2=2,故选A.3. 已知函数f (x )是定义域为R 的偶函数,且f (x +1)=1f (x ),若f (x )在[-1,0]上是减函数, 那么f (x )在[2,3]上是( )A .增函数B .减函数C .先增后减的函数D .先减后增的函数 解:由题意知f (x +2)=1f (x +1)=f (x ),所以f (x )的周期为2, 又函数f (x )是定义域为R 的偶函数,且f (x )在[-1,0]上是减函数, 则f (x )在[0,1]上是增函数,所以f (x )在[2,3]上是增函数.选A7.设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=( )A.12B.32 C .0 D .-12解:∵f (x +2π)=f (x +π)+sin(x +π)=f (x )+sin x -sin x =f (x ),∴f (x )的周期T =2π,又∵当0≤x <π时,f (x )=0, ∴f ⎝⎛⎭⎫5π6=0,∴f ⎝⎛⎭⎫-π6+π=f ⎝⎛⎭⎫-π6+sin ⎝⎛⎭⎫-π6=0, ∴f ⎝⎛⎭⎫-π6=12,∴f ⎝⎛⎭⎫23π6=f ⎝⎛⎭⎫4π-π6=f ⎝⎛⎭⎫-π6=12. 故选A. 8.已知函数f (x )对任意x ∈R ,都有f (x +6)+f (x )=0,y =f (x -1)的图象关于点(1,0)对称,且f (2)=4,则f (2 014)=( )A .0B .-4C .-8D .-16解:由题可知,函数f (x )对任意x ∈R ,都有f (x +6)=-f (x ),∴f(x+12)=f[(x+6)+6]=-f(x+6)=f(x),∴函数f(x)的周期T=12.把y=f(x-1)的图象向左平移1个单位得y=f(x-1+1)=f(x)的图象,关于点(0,0)对称,因此函数f(x)为奇函数,∴f(2 014)=f(167×12+10)=f(10)=f(10-12)=f(-2)=-f(2)=-4,故选B.9.已知f(x)是定义在R上的偶函数,且对任意x∈R,都有f(x+4)=f(x)+f(2),则f(2 014)等于( )A.0B.3C.4D.6解:依题意,得f(-2+4)=f(-2)+f(2)=f(2),即2f(2)=f(2),f(2)=0,f(x+4)=f(x),f(x)是以4为周期的周期函数,又2014=4×503+2,所以f(2014)=f(2)=0.故选A.答案:A11.奇函数f(x)的定义域为R. 若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.-2 B.-1 C.0 D.1解:因为f(x)为R上的奇函数,所以f(-x)=-f(x),f(0)=0.因为f(x+2)为偶函数,所以f(x+2)=f(-x+2),所以f(x+4)=f(-x)=-f(x),所以f(x+8)=f(x),即函数f(x)的周期为8,故f(8)+f(9)=f(0)+f(1)=1. 故选D12.f(x)是R上的偶函数,f(x+2)=f(x),当0≤x≤1时,f(x)=x2,则函数y=f(x)-|log5x|的零点个数为( )A.4 B.5 C.8 D.10解:由零点的定义可得f(x)=|log5x|,两个函数图象如图,总共有5个交点,所以共有5个零点。
高中数学必修1函数的基本性质

高中数学必修1函数的基本性质1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。
如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。
注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数;若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。
函数的基本性质

数学校本课程----函数的基本性质函数的性质通常是指函数的定义域、值域、解析式、单调性、奇偶性、周期性、对称性等等,在解决与函数有关的(如方程、不等式等)问题时,巧妙利用函数及其图象的相关性质,可以使得问题得到简化,从而达到解决问题的目的.I .函数的定义设A ,B 都是非空的数集,f 是从A 到B 的一个对应法则.那么,从A 到B 的映射f :A →B 就叫做从A 到B 的函数.记做y =f (x ),其中x ∈A ,y ∈B ,原象集合,A 叫做函数f (x )的定义域,象的集合C 叫做函数的值域,显然C B.II .函数的性质(1)奇偶性 设函数f(x)的定义域为D ,且D 是关于原点对称的数集.若对任意的x ∈D ,都有f (-x )=-f (x ),则称f(x)是奇函数;若对任意的x ∈D ,都有f (-x )=f (x ),则称f(x)是偶函数.(2)函数的增减性 设函数f (x )在区间D ′上满足:对任意x 1, x 2∈D ′,并且x 1<x 2时,总有f (x 1)<f (x 2) (f (x 1)>f (x 2)),则称f (x )在区间D ′上的增函数(减函数),区间D ′称为f (x )的一个单调增(减)区间.III .函数的周期性对于函数 f(x ),如果存在一个不为零的正数T ,使得当x 取定义域中的每个数时,f (x +T)=f (x )总成立,那么称f (x )是周期函数,T 称做这个周期函数的周期.如果函数f (x )的所有周期中存在最小值T 0,称T 0为周期函数f (x )的最小值正周期.例题讲解1.已知f (x )=8+2x -x 2,如果g (x )=f(2-x 2),那么g (x )( )A.在区间(-2,0)上单调递增B.在(0,2)上单调递增C.在(-1,0)上单调递增D.在(0,1)上单调递增2.设f (x )是R 上的奇函数,且f (x +3)=-f (x ),当0≤x ≤23时,f (x )=x ,则f (2003)=( )A.-1B.0C.1D.20033.定义在实数集上的函数f (x ),对一切实数x 都有f (x +1)=f (2-x )成立,若f(x)=0仅有101个不同的实数根,那么所有实数根的和为( )A.150B.2303C.152D.23054.实数x ,y 满足x 2=2xsin (xy )-1,则x 1998+6sin 5y =______________.5.已知x =9919+是方程x 4+b x 2+c =0的根,b ,c 为整数,则b +c =__________.6.已知f (x )=ax 2+bx +c (a >0),f (x )=0有实数根,且f (x )=1在(0,1)内有两个实数根,求证:a >4.7.已知f (x )=x 2+ax +b (-1≤x ≤1),若|f (x )|的最大值为M ,求证:M≥21.8.⑴解方程:(x +8)2001+x 2001+2x +8=0 ⑵解方程:2)1x (222221)1x (1x 1x 4x 2-=++++++9.设f (x )=x 4+ax 3+bx 2+cx +d ,f ⑴=1,f ⑵=2,f ⑶=3,求41[f ⑷+f (0)]的值.课后练习1. 已知f(x)=ax 5+bsin 5x +1,且f ⑴=5,则f(-1)=( )A.3B.-3C.5D.-52. 已知(3x +y)2001+x 2001+4x +y =0,求4x +y 的值.3. 解方程:ln(1x 2++x)+ln(1x 42++2x)+3x =04. 若函数y =log 3(x 2+ax -a)的值域为R ,则实数a 的取值范围是______________.5. 函数y =8x 4x 5x 4x 22+-+++的最小值是______________.6. 已知f(x)=ax 2+bx +c ,f(x)=x 的两根为x 1,x 2,a >0,x 1-x 2>a 1,若0<t <x 1,试比较f(t)与x 1的大小.7. 设a ,b ,c ∈R ,|x|≤1,f(x)=ax 2+bx +c ,如果|f(x)|≤1,求证:|2ax +b|≤4.8. 已知函数f(x)=x 3-x +c 定义在[0,1]上,x 1,x 2∈[0,1]且x 1≠x 2. ⑴求证:|f(x 1)-f(x 2)|<2|x 1-x 2|;⑵求证:|f(x 1)-f(x 2)|<1.。
高一数学函数的基本性质

第 1 页共13 页函数的基本性质一、知识梳理1.奇偶性(1)定义:设函数y =)(x f 的定义域为D ,如果对于D 内任意一个x ,都有D x,且)(x f =-)(x f ,那么这个函数叫做奇函数.设函数y =)(x g 的定义域为D ,如果对于D 内任意一个x ,都有D x,且)(x g =)(x g ,那么这个函数叫做偶函数.(2)如果函数)(x f 不具有上述性质,则)(x f 不具有奇偶性.如果函数同时具有上述两条性质,则)(x f 既是奇函数,又是偶函数.函数是奇函数或是偶函数的性质称为函数的奇偶性,函数的奇偶性是函数的整体性质.(3)由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则x 也一定在定义域内.即定义域是关于原点对称的点集.(4)图象的对称性质:一个函数是奇函数当且仅当它的图象关于原点对称;一个函数是偶函数的当且仅当它的图象关于y 轴对称.(5)奇偶函数的运算性质:设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.(6)奇(偶)函数图象对称性的推广:若函数)(x f 的图象关于直线a x 对称,则)2()(a x f x f ;若函数)(x f 的图象关于点)0,(a 对称,则)2()(a xf x f .2.单调性(1)定义:一般地,设函数()y f x 的定义域为A ,区间I A .如果对于区间I 内的任意两个值1x ,2x ,当12x x 时,都有12()()f x f x ,那么就说()yf x 在区间I 上是单调增函数,I 称为()yf x 的单调增区间;如果对于区间I 内的任意两个值1x ,2x ,当12x x 时,都有12()()f x f x ,那么就说()yf x 在区间I 上是单调减函数,I 称为()yf x 的单调减区间.(2)函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质.。
函数的基本性质知识点

✌单调性1、定义:如果函数()x f 对区间D 内的任意21,x x ,当21x x <时都有()()21x f x f <,则()x f 在D 内是增函数;当21x x <时都有()()21x f x f >,则()x f 在D 内时减函数。
2、函数单调性的证明方法:(1)定义法:其一般步骤为:①任取2121,,x x D x x <且∈;②论证)()()()(2121x f x f x f x f >(或<; ③根据定义得出结论。
(2)用已知函数的单调性(3)图象法3、复合函数的单调性如果是增函数;如果单调性相同,那么和))(()()(x g f y x g u u f y ===)(u f y =和是减函数。
单调性相反,那么))(()(x g f y x g u ==也就是说,复合函数的单调性由其内、外函数的单调性共同决定,它遵循“同增异减”的原则,即内外函数的单调性相同时递增,相异时递减。
✌函数的奇偶性1、 定义:设函数A x x f y ∈=),(,如果对于任意的A x ∈,都有)()(x f x f -=-,则称函数)(x f y =为奇函数;如果对于任意的A x ∈,都有)()(x f x f =-,则称函数)(x f y =为偶函数。
2、 性质(1)前提条件:定义域关于原点对称。
(2)奇函数的图像关于原点对称,偶函数的图像关于y 轴对称。
函数的基本性质(3)若)(x f 的定义域为R ,且当[)+∞∈,0x 时为增函数,则当)(x f 为奇函数时,它在()0,∞-上为增函数,当)(x f 为偶函数时,它在()0,∞-上为减函数。
(4)若奇函数)(x f 的定义域中包含0,则0)0(=f 。
3、 判断函数奇偶性的方法(1) 定义法:①确定定义域,看是否关于原点对称,若不对称,则非奇非偶。
②若定义域关于原点对称,函数表达式能化简则适当化简,再判断。
③若函数较复杂,可利用变形式子,用求和(或差)法:即看)()(x f x f ±-与0的关系;或用求商法(即看)()(x f x f -与1±的关系)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四讲 函数的基本性质.函数的单调性概念(1)增函数和减函数的概念如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性.区间D 叫做函数y =f (x )的单调区间. (3)函数的单调性等价变形 设[]2121,,x x b a x x ≠∈,那么 ①[]1212()()()0x x f x f x --> ⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;②[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.2.运算法则:如果函数)(x f 和)(x g 在相同区间上是单调函数,则(1)增函数+增函数是增函数;(2)减函数+减函数是减函数;(3)增函数-减函数是增函数;(4)减函数-增函数是减函数;3.常见函数的单调性:(1)一次函数b kx y +=,当0>k 时,在区间),(+∞-∞上是增函数,当0<k 时,在区间),(+∞-∞上是减函数;(2)反比例函数xky =,当0>k 时,在区间)0,(-∞和区间),0(+∞上是减函数,当0<k 时,在区间)0,(-∞和区间),0(+∞上是增函数(3)二次函数c bx ax y ++=2,当0>a 时,在区间)2,(ab--∞是减函数,在区间),2(+∞-a b 是增函数,当0<a 时,在区间)2,(a b --∞是增函数,在区间),2(+∞-ab是减函数.4.函数单调性判定方法①定义法:取值、作差、变形、定号、下结论 ②运算法则法④图像法,利用图像研究函数的单调性.1.根据函数的单调性的定义,证明函数1)(3+-=x x f 在),(+∞-∞上是减函数。
2.判断函数)0()(>+=p xpx x f 的单调性3.根据函数的单调性的定义,证明函数x x x f -+=1)(2在),(+∞-∞上是减函数。
4.函数)(x f 对任意的R b a ∈,都有1)()()(-+=+b f a f b a f ,且0>x 时,)(x f >1,(1)证明:)(x f 是R 上的增函数;(2)若5)4(=f ,解不等式:f ()232--m m 3<。
5.求下列函数的单调区间,1)(+=x xx f (2)32)(2-+=x x x f ,9696)()3(22++++-=x x x x x f6.(1)求函数f(x)=245x x --的单调增区间;(2)求函数201)(2--=x x x f 的单调区间。
7.若函数f(x)=ax x 22+-与xax g =)(在区间[1,2]上都是减函数,则a 的取值范围为 .8.若函数⎩⎨⎧≤-+->-+-=,0,)2(,0,1)12()(2x x b x x b x b x f 在R 上为增函数,求实数b 的取值范围。
9.如果c bx x x f ++=2)(,对任意实数t 都有)2()2(t f t f -=+,比较)4(),2(),1(f f f 的大小。
10.(1)求函数23)(++-=x x x f 的值域;(2)求函数52132+-+=x x y 的最小值。
11.f(x)是定义在)2,1[-上的增函数,若)1(-a f >)31(a f -,求实数a 的取值范围。
课时训练6.1.下列函数在(0,1)上是增函数的是 A .y x = B .2y x=C .31y x =-+D .21y x =-+2.已知函数3()f x x=,则下面区间不是递减区间的是 A .(0,)+∞ B .(,0)-∞ C .(,0)(0,)-∞+∞ D .(1,)+∞3.函数3)(x x f =,]2,0[∈x ,则)(x f 的值域是A .]8,0[B .]6,0[C .]6,1[D .]8,1[ 4.函数()f x 是定义在(2,2)-上的减函数,则不等式()(2)f x f x >-的解集为 A .(0,1) B .(0,2) C .(2,)+∞ D .(,2)-∞ 5.若函数()1x f x x a-=+在(),1-∞-上是减函数,则a 的取值范围是 A .(],1-∞- B .(),1-∞- C .(],1-∞ D .(),1-∞ 6.设0<x <1,则函数111y x x=+-的最小值是________. 7.已知函数f (x )=x 2–6x +8,x ∈[1,a ],并且f (x )的最小值为f (a ),则实数a 的取值范围是________. 8.求证:函数2()1f x x =-在(1,+∞)上是减函数.9.函数f (x )的图象如图所示.(1)根据图象指出函数f (x )的单调区间,以及在每一个单调区间上,它是增函数还是减函数;(2)根据图象,结合(1)的结论,给出函数f (x )的最值情况.10.已知函数2()22,[5,5]f x x ax x =++∈-.(1)当1a =-时,求函数()f x 的最大值和最小值;(2)若函数()f x 在区间[5,5]-上是单调函数,求a 的取值范围.11. 函数f (x )=4x 2-mx +5在区间[-2,+∞)上是增函数,则有 A .f (1)≥25 B .f (1)=25 C .f (1)≤25 D .f (1)>2512.函数()f x x =的值域是A .[12,+∞) B .(–∞,12] C .(0,+∞) D .[1,+∞) 13.已知函数()()()()222222,228.f x x a x a g x x a x a =-++=-+--+设()()(){}()()(){}{}12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 的最小值为,A ()2H x 的最大值为B ,则A B -=A .2216a a --B .2216a a +-C .16-D .1614.若定义在R 上的函数)(x f 同时满足下列三个条件:①对任意实数b a ,均有)()()(b f a f b a f +=+成立;②41)4(=f ;③当0>x 时,都有0)(>x f 成立. (1)求)0(f ,)8(f 的值; (2)求证:)(x f 为R 上的增函数;(3)求解关于x 的不等式21)53()3(≤---x f x f .函数的奇偶性1.奇偶性的概念(1)()f x 是奇函数⇔对定义域内任意x ,都有()()f x f x -=-⇔对定义域内任意x ,都有()()0f x f x -+=⇔()f x 图像关于原点对称;(2)()f x 是偶函数⇔对定义域内任意x ,都有()()f x f x -=⇔对定义域内任意x ,都有()()0f x f x --=⇔()f x 图像关于y 轴对称; 2.若奇函数)(x f 在0=x 处有意义,则0)0(=f . 3.若函数)(x f 是偶函数,则|)(|)(x f x f =. 4.函数奇偶性的运算性质:(1)奇函数±奇函数是奇函数;(2)偶函数±偶函数是偶函数;(3)奇函数⨯奇函数是偶函数;(4)偶函数×偶函数是偶函数;(5)奇函数×偶函数是奇函数;(6)奇函数/奇函数是偶函数;(7)偶函数/偶函数是偶函数;(8)奇函数/偶函数是奇函数 5.函数奇偶性是研究函数在定义域上的整体性质.1.已知c b cx bx ax x f ++++=3)(23是定义在)2,1(b b -上的偶函数,求a,b,c 的值.2.判断下列函数的奇偶性 (1).1.1)(-+=x x x f (2)22)(++-=x x x f(3)11)(22++-=x x x f (4)221)(2-+-=x x x f(5)1111)(22+++-++=x x x x x f (6)⎪⎩⎪⎨⎧>-+-=<++=0,320,00,.32)(22x x x x x x x x f3.已知)(x f 是定义在R 上的不恒为零的函数,对任意R b a ∈,,都有)()()(a bf b af ab f +=,(1)求)1(),0(f f 的值;(2)判断)(x f 的奇偶性,并证明你的结论。
4. (1)若)4)(()(-+=x a x x f 为偶函数,则实数=a 。
(2)已知函数xa x x x f ))(1()(++=为奇函数,则=a 。
5.已知)(x f 是定义在R 上的奇函数,当0≥x 时x x x f 2)(2-=,则当0<x 时,)(x f = .6.设)(x f 是偶函数,)(x g 是奇函数,且11)()(-=+x x g x f ,求)(),(x g x f 的解析式。
7.已知)(x f 是定义在R 上的奇函数,且1)(2+++=nx x mx x f ,求)(x f .8.已知)(x f =835+++bx ax x ,且10)2(=-f ,求)2(f 的值。
9.函数)(x f 是定义在R 上的不恒为零的偶函数,且对任意实数x 都有)()1()1(x f x x xf +=+,则))25((f f 的值是( )A.0B.21C.1.D.25.10.设)(x f 是),(+∞-∞上的奇函数,),()2(x f x f -=+当]1,0[∈x 时,,)(x x f =则=)5.7(f 。
11(1).已知偶函数)(x f 在),0[+∞上单调递增,则满足)12(-x f <)31(f 的x 的取值范围是A.)32,31( B )32,31[ C.)32,21( D.)32,21[(2).若)(x f 是定义在R 上的奇函数,在]0,(-∞上递增,且0)1(=f ,则使0)(<x f 的x 的取值范围是 .13.定义在区间]2,2[-上的偶函数)(x g ,当0≥x 时,)(x g 单调递减,若)1(m g -<)(m g 成立,求m 的取值范围。
14.设函数1)1()(22++=x x x f 的最大值为M ,最小值为m ,则=+m M .课时训练71.下列函数中,既是奇函数又是增函数的是A .1y x =+B .2y x =- C .1y x=D .3y x = 2.已知f (x )是定义在R 上的偶函数,且有(3)(1)f f >,则下列各式中一定成立的是 A .(1)(3)f f -< B .(0)(5)f f < C .(3)(2)f f > D .(2)(0)f f > 3.已知定义在R 上的奇函数()f x 满足()()2f x f x +=-,则()6f 的值为 A .1- B .0 C .1 D .24.已知偶函数()f x 在区间[)0,+∞上单调递增,则满足()1213f x f ⎛⎫-< ⎪⎝⎭的x 的取值范围是 A .12,33⎛⎫ ⎪⎝⎭ B .12,33⎡⎫⎪⎢⎣⎭ C .12,23⎛⎫ ⎪⎝⎭ D .12,23⎡⎫⎪⎢⎣⎭5.函数1()1f x x=+的图象大致是A .B .C .D .6.已知3()f x x x =+,,a b ∈R ,且0a b +>,则()()f a f b +的值一定A .大于零B .等于零C .小于零D .正负都有可能 7.如果定义在区间[3+a,5]上的函数f (x )为奇函数,那么a 的值为________.8.已知)(x f 是偶函数,当0<x 时,)1()(+=x x x f ,则当0>x 时,=)(x f . 9.已知函数21()1f x x =+,令1()()g x f x=.(1)如图,已知f (x )在区间[0,+∞)上的图象,请据此在该坐标系中补全函数f (x )在定义域内的图象,请说明你的作图依据; (2)求证:f (x )+g (x )=1(x ≠0).10.设()f x 是奇函数,对任意的实数,x y 有()()()f x y f x f y +=+,且当0x >时,()0f x <,则()f x 在区间[,]a b 上A .有最大值()2a b f +B .有最小值()2a b f + C .有最大值()f a D .有最小值()f a11.定义在R 上的偶函数()f x 满足:(4)(2)0f f =-=,在区间(,3)-∞-与[3,0]-上分别递增和递减,则不等式()0xf x >的解集为A .(,4)(4,)-∞-+∞ B .(4,2)(2,4)-- C .(,4)(2,0)-∞-- D .(,4)(2,0)(2,4)-∞--12.已知函数22()3px f x x q +=+是奇函数,且5(2)3f =,求实数p ,q 的值.13.若对一切实数x ,y 都有f (x +y )=f (x )+f (y ).(1)求f (0),并证明:f (x )为奇函数;(2)若f (1)=3,求f (-3).。