ssr分子标记原理

合集下载

SSR分子标记

SSR分子标记

SSR分子标记的步骤 分子标记的步骤
第一步:DNA 提取:
提取DNA并用0.8%琼脂糖凝胶电泳检测DNA质量。
第二步:PCR :
PCR体系: 模板DNA 引物 氯化镁 4种dNTP混合物 PCR缓冲液 TaqDNA 聚合酶
PCR反应程序 : 变性94 ℃ → 复性(或退火)5062℃ → 延伸72 ℃,一般30-35个循环
SSR分子标记引物设计 SSR分子标记引物设计 分子标记

从有关数据库(GenBank, EMBL DDBJ等)或文章中 查询
引物 设计

使用#39;锚定 锚定PCR 分离 分离SSR标记 锚定 标记
SSR标记原理示意图 标记原理示意图
SSR分子标记的优势 SSR分子标记的优势
SSR在真核生物基因组中分布广 SSR在真核生物基因组中分布广 多态性丰富 其产物进行测序胶电泳分离时单碱基分辨 率高、 率高、遗传信息量大 SSR通常为共显性标记, SSR通常为共显性标记,呈孟德尔式遗传 通常为共显性标记 具有很好的稳定性和多态性 DNA用量少 DNA用量少 PCR扩增的可重复性高 PCR扩增的可重复性高
SSR分子标记 SSR分子标记
胡玉龙 M110107260
SSR分子标记
1
Байду номын сангаас
SSR标记的简介及原理
2 SSR标记的步骤及分析 3 SSR标记引物设计
SSR标记的简介
SSR (simple sequence repeat)
简单重复序列(Simple Sequence Repeat , SSR),指的是基因组中由1-6个核苷酸组成 的基本单位重复多次构成的一段DNA,广泛分 布于基因组的不同位置,长度一般在200bp以 下。

《分子标记SSR标记》课件

《分子标记SSR标记》课件
《分子标记ssr标记》ppt课 件
contents
目录
• SSR标记介绍 • SSR标记技术原理 • SSR标记实验操作 • SSR标记在遗传育种中的应用 • SSR标记研究展望
01
SSR标记介绍
SSR标记定义
SSR标记,即简单序列重复标 记,是一种基于PCR技术的 DNA分子标记。
它由2-6个碱基组成的重复单位 串联而成,具有高度多态性, 可应用于基因组遗传分析。
04
分子标记辅助选择
通过SSR标记与目标性状关联,实 现分子标记辅助选择,加速育种
进程。
SSR标记在动物遗传育种中的应用
动物资源保护与利用
SSR标记用于评估动物的遗传多样性, 有助于动物资源的保护和合理利用。
基因定位与疾病关联研究
SSR标记用于基因定位和疾病关联研 究,为动物疾病防控和动物育种提供
疾病易感性分析
02
通过SSR标记分析某些疾病的易感性,有助于疾病的预防和早期
干预。
个体识别与亲子鉴定
03
SSR标记还可用于个体识别和亲子鉴定,为法医学和人类学等领
域提供技术支持。
05
SSR标记研究展望
SSR标记技术的发展趋势
自动化与高通量
随着技术的发展,SSR标记将更加自动化和高通量,提高检测效 率和准确性。
基因组DNA提取
从生物样本中提取基因组DNA 。
PCR扩增
使用设计的引物进行PCR扩增 ,得到SSR片段。
数据分析
对电泳结果进行统计分析,评 估遗传差异和多样性。
SSR标记技术优缺点
01 优点
02 操作简便,检测结果稳定可靠。
03
可用于检测微卫星序列的长度多态性,反映基因组

ssr标记原理

ssr标记原理

ssr标记原理
SSR标记,即简单重复序列标记,是一种以特异引物PCR为基础的分子标记技术。

它利用了DNA序列中的简单重复序列,这些重复序列通常由1-6个碱基组成,形成长串重复。

由于这些重复序列在不同个体间的数量存在差异,因此能揭示比其他标记技术更高的多态性。

SSR标记的基本原理是,根据微卫星序列两端互补序列设计引物,通过PCR反应扩增微卫星片段。

由于核心序列串联重复数目不同,能够用PCR的方法扩增出不同长度的PCR产物。

将这些产物进行凝胶电泳,根据分离片段的大小决定基因型并计算等位基因频率。

SSR 标记具有一些优点,如一般检测到的是一个单一的多等位基因位点、微卫星呈共显性遗传,可鉴别杂合子和纯合子、所需DNA量少等。

在采用SSR技术分析微卫星DNA多态性时,必须知道重复序列两端的DNA序列的信息。

SSR标记的原理步骤

SSR标记的原理步骤

SSR:微卫星DNA又叫简单重复序列,指的是基因组中由1~6个核苷酸组成的基本单位重复多次构成的一段DNA,广泛分布于基因组的不同位置,长度一般在200bp以下。

研究表明,微卫星在真核生物的基因组中的含量非常丰富,而且常常是随机分布于核DNA中。

微卫星中重复单位的数目存在高度变异,这些变异表现为微卫星数目的整倍性变异或重复单位序列中的序列有可能不完全相同,因而造成多个位点的多态性。

如果能够将这些变异揭示出来,就能发现不同的SSR在不同的种甚至不同个体间的多态性,基于这一想法,人们发展起了SSR标记。

SSR标记又称为sequence tagged microsatellite site,简写为STMS,是目前最常用的微卫星标记之一。

由于基因组中某一特定的微卫星的侧翼序列通常都是保守性较强的单一序列,因而可以将微卫星侧翼的DNA片段克隆、测序,然后根据微卫星的侧翼序列就可以人工合成引物进行PCR扩增,从而将单个微卫星位点扩增出来。

由于单个微卫星位点重复单元在数量上的变异,个体的扩增产物在长度上的变化就产生长度的多态性,这一多态性称为简单序列重复长度多态性(SSLP),每一扩增位点就代表了这一位点的一对等位基因。

由于SSR重复数目变化很大,所以SSR标记能揭示比RFLP高得多的多态性,这就是SSR标记的原理。

? 与其它分子标记相比,SSR标记具有以下优点:(1)数量丰富,覆盖整个基因组,揭示的多态性高;(2)具有多等位基因的特性,提供的信息量高;(3)以孟德尔方式遗传,呈共显性;(4)每个位点由设计的引物顺序决定,便于不同的实验室相互交流合作开发引物。

因而目前该技术已广泛用于遗传图谱的构建〔11,12,18,19,33〕、目标基因的标定〔8,9,21,22,26〕、指纹图〔22〕的绘制等研究中。

但应看到,SSR标记的建立首先要对微卫星侧翼序列进行克隆、测序、人工设计合成引物以及标记的定位、作图等基础性研究,因而其开发费用相当高,各个实验室必须进行合作才能开发更多的标记。

简单重复序列标记名词解释

简单重复序列标记名词解释

简单重复序列标记(Simple Sequence Repeat,SSR)是一种基于PCR技术的分子标记技术,用于检测DNA序列中的重复序列。

这些重复序列通常由几个到几十个核苷酸组成,并且在基因组中以串联的形式重复出现。

SSR标记的原理是利用PCR技术扩增这些重复序列,并通过凝胶电泳或毛细管电泳检测扩增产物的大小,从而确定不同个体或种群之间的遗传多样性。

SSR标记具有多态性高、重复性好、共显性等优点,因此在遗传学、基因组学、进化生物学和遗传育种等领域得到了广泛应用。

例如,SSR标记可以用于研究物种的遗传多样性、亲缘关系和系统发育,也可以用于基因定位和分子标记辅助育种。

在SSR标记的应用中,通常需要设计特定的引物来扩增特定的重复序列。

这些引物可以通过已知的基因组序列或EST序列来设计,也可以通过生物信息学的方法来预测和设计。

在PCR扩增后,可以通过凝胶电泳或毛细管电泳来分离扩增产物,并通过一些特定的软件来分析扩增产物的大小和数量,从而确定不同个体或种群之间的遗传多样性。

此外,SSR标记还可以用于法医鉴定、亲子鉴定和人类遗传学研究等领域。

例如,通过检测犯罪现场遗留的DNA样本中的SSR标记,可以确定犯罪嫌疑人的身份或亲缘关系。

在人类遗传学研究中,SSR标记可以用于研究人类基因组的遗传多样性和进化历程。

总之,简单重复序列标记是一种重要的分子标记技术,在多个领域得到了广泛应用。

随着技术的不断发展和完善,SSR标记的应用前景将更加广阔。

SSR分子标记技术简述

SSR分子标记技术简述

SSR标记
SSR 标记是当今流行的分子标记技术之 一。尽管 SSR 分布于基 因组的不同位置,但其两端多是保守 的单拷贝序列,因此可以根 据两端的序列设计一对特异引 物,通过 PCR 技术将其扩增出来, 利用电泳分析技术获得长 度多态性, 即 SSR 标记。
SSR分子标记的优势
SSR在真核生物基因组中分布广
SSR标记的基本原理:根据微卫星序列两端互补序列设计引物,通过PCR反应 扩增微卫星片段,由于核心序列串联重复数目不同,因而能够用PCR的方法扩 增出不同长度的PCR产物,将扩增产物进行凝胶电泳,根据分离片段的大小决 定基因型并计算等位基因频率。
welcome to use these PowerPoint templates, New Content design, 10 years experience
多态性丰富
其产物进行测序胶电泳分离时单碱基分辨率 高、遗传信息量大
SSR通常为显性标记,呈孟德尔式遗传
具有很好的稳定性和多态性 DNA用量少 技术要求低,成本低廉 PCR扩增的可重复性高
SSR标记的劣势
开发和合成新的SSR引物投入高、难度大 现有的SSR标记数量有限,不能标记所有的功 能基因 SSR多态性的检测和应用很大程度上依赖PCR 扩增的效果 SSR座位突变率高,对变异反应非常敏感等等
SSR标记的原理Байду номын сангаас
微卫星中重复单位的数目存在高度变异,这些变异表现为微卫星 数目的整倍性变异或重复单位序列中的序列有可能不完全相同, 因而造成多个位点的多态性。如果能够将这些变异揭示出来,就 能发现不同的SSR在不同的种甚至不同个体间的多态性,基于这 一想法,人们发展起了SSR标记。
由于基因组中某一特定的微卫星的侧翼序列通常都是保 守性较强的单一序列,因而可以将微卫星侧翼的DNA片 段克隆、测序,然后根据微卫星的侧翼序列就可以人工 合成引物进行PCR扩增,从而将单个微卫星位点扩增出 来。由于单个微卫星位点重复单元在数量上的变异,个 体的扩增产物在长度上的变化就产生长度的多态性,这 一多态性称为简单序列重复长度多态性(SSLP),每一扩 增位点就代表了这一位点的一对等位基因。由于SSR重 复数目变化很大,所以SSR标记能揭示比RFLP高得多 的多态性,这就是SSR标记的原理

SSR分子标记

SSR分子标记
K可以跟任何核苷酸配对,V不 能与A配对,R不能与G配对, 其他核苷酸均可与它们配对。 这样,VRVRV五个碱基一起 构成了一个封闭碱基群。在 PCR过程中,由于VRVRV不 能与GA配对,该引物与模板 DNA结合的时候,就不会在 (GA)n重复区滑动,只会结合 在如图1所示的位置上,以保 证SSR位点的长度多态性不会 丢失。
SSR座位突变率高,对变异反应非常敏感等等。
SSR分子标记的步骤
第一步:DNA 提取: 第二步:PCR :
PCR体系(15微升):45纳克模板DNA 2.25微摩尔/升引物 11.5毫摩尔/升 氯化镁 各625微摩尔/升 4种dNTP 10X PCR缓冲液 1.5U Taq DNA 聚合酶 PCR反应程序 : 变性94 摄氏度 3min 30次循环:94摄氏度 25s ,50-60摄氏度 25s ,72摄氏度 45s 最后72摄氏度延伸 10min
根据两端序列的保守性,设计引物;进行PCR, 电泳分离,染色显带以检测、分析微卫星序列多 态性;并确定基因排布序列及表型,最终达到成 功鉴定的目的。 简而言之,就是通过对样本DNA多态性的分析, 从而来得到样本DNA序列以及在遗传性状上的调 控和差异。
SSR标记原理示意图
SSR分子标记的优势
SSR标记
SSR标记是一种通过直接分析遗传物质的多态性来鉴别生物内 在的核苷酸排布及其外在状态表现规律的技术
SSR分子标记的分子学基础
微卫星在真核生物的基因组中的含量非常丰 富,而且常常是随机分布于核DNA中。在植 物中通过对拟南芥、玉米、水稻、小麦等的 研究表明微卫星在植物中也很丰富,均匀分 布于整个植物基因组中,但不同植物中微卫 星出现的频率变化是非常大的 常见的二核苷酸重复单位:(AC)n、 (GA)n、(AT)n 常见的三核苷酸重复单位: (AAG)n、 (AAT)n

玉米品种鉴定技术规程 ssr标记法

玉米品种鉴定技术规程 ssr标记法

玉米品种鉴定技术规程 ssr标记法SSR(Simple Sequence Repeat)标记法是一种用于玉米品种鉴定的技术规程。

以下是关于玉米品种鉴定技术规程 SSR 标记法的一些基本信息:1. SSR 标记的原理:SSR 标记是基于短小简单重复序列的分子标记技术。

这些重复序列在基因组中广泛存在且具有高度多态性。

通过设计特定的引物,可以扩增并检测这些 SSR 标记,从而识别不同品种之间的差异。

2. DNA 提取:从待鉴定的玉米样本中提取高质量的 DNA 是进行 SSR 分析的重要步骤。

通常使用适当的 DNA 提取方法,如 CTAB 法或商业试剂盒。

3. SSR 引物设计:针对玉米基因组中的 SSR 位点,设计特异性的引物对。

这些引物可以根据已发表的玉米 SSR 数据库或通过自行开发来获得。

4. PCR 扩增:使用设计的 SSR 引物对,对提取的 DNA 进行 PCR 扩增。

PCR 反应条件可以根据引物的特性和设备要求进行优化。

5. 电泳和凝胶分析:扩增产物通过电泳在琼脂糖凝胶或聚丙烯酰胺凝胶上进行分离。

根据 SSR 标记的大小差异,可以观察到不同的电泳条带。

6. 数据分析:对电泳结果进行分析,记录每个品种的 SSR 标记图谱。

通过比较不同品种之间的图谱差异,可以鉴定出品种的独特特征。

7. 品种鉴定:根据 SSR 标记的多态性和品种特有的图谱模式,可以对玉米品种进行准确的鉴定和区分。

需要注意的是,SSR 标记法需要专业的实验室设备和技术操作,同时也需要对玉米基因组和 SSR 标记的相关知识有一定的了解。

在进行品种鉴定时,建议遵循相关的标准操作程序和实验室安全规范。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ssr分子标记原理
SSR分子标记原理
引言:
SSR分子标记(SSR molecular tagging)是一种用于分析和鉴定生物体内特定分子的技术。

它基于分子生物学和生物化学的原理,通过特定的标记物,可以在细胞、组织或体液中准确地检测和定位目标分子。

本文将介绍SSR分子标记的原理及其在科研和医学领域的应用。

一、SSR分子标记的原理
SSR分子标记是一种基于DNA序列多态性的分子标记技术。

它利用了DNA序列中的简单重复序列(simple sequence repeat, SSR),即由1-6个碱基重复组成的核酸序列。

SSR序列在基因组中广泛存在,具有高度变异性和遗传稳定性,因此可以作为DNA分子标记的候选序列。

SSR分子标记的原理可以简单概括为以下几个步骤:
1. DNA提取:从样品(如细胞、组织或体液)中提取总DNA。

2. SSR标记物设计:根据目标分子的序列信息,设计特异性引物,引物的两端分别包含互补的SSR序列。

3. PCR扩增:利用PCR技术,使用设计好的引物对DNA进行扩增,扩增产物中包含了目标分子的序列和SSR序列。

4. 电泳分析:将PCR扩增产物进行电泳分析,根据SSR序列的长度变异性,可以将不同样品中的目标分子进行定性和定量分析。

二、SSR分子标记的应用
SSR分子标记技术在科研和医学领域具有广泛的应用价值,以下是几个典型的应用案例:
1. 遗传多样性研究:SSR分子标记可以用于研究不同物种或不同个体间的遗传多样性。

通过对多个基因座进行SSR分子标记,可以获得物种或个体的遗传背景信息,进而推断种群结构、基因流动和进化关系等。

2. 基因定位和图谱构建:SSR分子标记可以用于构建遗传图谱,帮助研究人员定位和克隆感兴趣的基因。

通过SSR标记物在遗传图谱上的位置,可以确定目标基因的大致区域,为后续的克隆工作提供有力的指导。

3. 疾病诊断和预后评估:SSR分子标记在医学诊断中的应用也日益广泛。

通过对特定基因的SSR序列进行分子标记,可以检测和鉴定与疾病相关的突变或多态性。

这种标记方式有助于早期疾病的诊断和预后评估,为个体化治疗提供依据。

4. 基因编辑和转基因研究:SSR分子标记可用于基因编辑和转基因研究中的筛选与鉴定。

通过在目标基因上插入或删除SSR序列,可
以对基因进行定点编辑,并通过SSR分子标记对编辑效果进行筛选和鉴定。

结论:
SSR分子标记技术是一种基于DNA序列的分子标记技术,具有高度的灵敏性和准确性。

它在科研和医学领域有着广泛的应用前景,可以用于遗传多样性研究、基因定位和图谱构建、疾病诊断和预后评估,以及基因编辑和转基因研究等领域。

随着技术的发展和应用的深入,SSR分子标记将进一步推动生物医学研究的进展,为人类健康和生物科学的发展做出更大的贡献。

相关文档
最新文档