镍氢电池结构原理

合集下载

镍氢电池在电网储能系统中的充放电效率如何?

镍氢电池在电网储能系统中的充放电效率如何?

镍氢电池在电网储能系统中的充放电效率如何?一、镍氢电池的基本原理镍氢电池是一种以氢气和氢化镍为主要反应物的电池。

在充电过程中,电流通过电极,将电子输送到氢气吸附层中,将氢离子还原为氢气,从而吸收氢气分子的电子。

当需要放电时,通过电极将电子输入到氢气吸附层中,氢气分子再次与氢离子发生氧化反应,产生电能。

二、镍氢电池在电网储能系统中的优势1. 高充电效率:镍氢电池具有高充电效率,能够在电网储能系统中充分利用电能,并转化为化学能储存起来。

其高效的充电能力可以提高储能系统的整体效率。

2. 长周期寿命:镍氢电池具有较长的循环寿命,可以进行大量的充放电循环。

这使得它在电网储能系统中能够长期稳定运行,并提供持久的储能支持。

3. 高能量密度:镍氢电池具有较高的能量密度,能够在相对小的体积内存储更多的电能。

这使得它在电网储能系统中能够提供持续且大容量的储能。

三、镍氢电池在电网储能系统中的充放电效率1. 充电效率:镍氢电池的充电效率较高,通常可以达到90%以上。

这意味着在电网储能系统中,将电能转化为化学能存储起来时,只有很少的能量会损失。

这可以有效提高储能系统的能量转化效率。

2. 放电效率:镍氢电池的放电效率也较高,可以达到90%以上。

这意味着在需要释放储能时,镍氢电池可以将储存的化学能有效地转化为电能,并输出给电网。

高放电效率可以提高电网储能系统的能量利用率。

3. 整体效率:镍氢电池在充放电过程中的高效率使得它在电网储能系统中具有较好的整体效率。

其高效的充放电性能可以提高储能系统的能量转化和利用效率,减少能量损失。

四、镍氢电池在电网储能系统中的应用前景镍氢电池作为一种高效、长寿命、高能量密度的储能设备,具有广阔的应用前景。

在电网储能系统中,它可以承担储能、调峰、备用电源等多种功能,为电网的稳定运行提供持续可靠的电能支持。

此外,随着可再生能源的快速发展,电网储能系统的需求不断增加。

而镍氢电池作为一种环保、可持续的储能技术,有望在未来得到更广泛的应用。

镍氢电池的化学原理及工艺流程

镍氢电池的化学原理及工艺流程

镍氢电池的化学原理及工艺流程镍氢电池的化学原理镍氢电池采用Ni的氧化物作为正极,储氢金属作为负极,碱液(主要为KOH)作为电解液.圆柱形和方形镍氢电池电化学原理和化学反应相同:充电时,正极:Ni(OH)2– e-+OH-→NiOOH+H2O负极:MHn+ne-→M+n/2 H2放电时,正极:NiOOH+H2O+e-→Ni(OH)2+OH-负极:M+n/2 H2→MHn+ne-。

镍氢电池的放电效率在低温会有显著的降低(如低于-15℃),而在-20℃时,碱液达到起凝固点,电池充电速度也将大大降低。

在低温充电低于0℃会增大电池内压并可能使安全阀开启。

为了有效充电,环境温度范围应在5-30℃之间,一般充电效率会随温度的升高而升高,但当温度升到45℃以上,高温下充电电池材料的性能会退化,电池的循环寿命也将大大缩短。

圆柱形Ni-MH电池只采用金属电池槽,一是因为电池槽本身与金属氢化物负极连接在一起,可以作为负极极端;二是因为许多应用要求能够快速充电,气体发生复合反应时,电池的内压很高,只有金属容器可以承受这种压力,而且不会发生太大的变形。

最后金属电池槽聚砜密封环翻边与电池盖密封,这种方法成本低,易于生产,而且可靠。

工艺流程:(以SC型为例1.配方1.1正极:氢氧化镍(2.1.1和2.2.3)氧化钴(可以形成导电网络,弥补氢氧化镍与金属集流体间较大的间距以及氢氧化镍本身电导率较低的不足)添加剂1.2负极:贮氢合金粉(3.1有具体讨论)添加剂1.3电解质:30%的KOH水溶液17g/L的LiOH NaOH(为提高高温充电效率,将部分KOH替换为NaOH,但是会加重对金属氢化物活性物质的腐蚀,降低循环寿命)2.正极制备2.1烧结式2.1.1调浆:纤维镍+导电剂CoO+CMC(2.5%)或MC+PVB造孔剂2.1.2拉浆:将膏状物涂覆到基板(如冲孔镍带)2.1.3烘干(挥发黏结剂)(75℃)2.1.4在氮气/氢气环境下高温煅烧(880℃,烧结速度90m/h)2.1.5化学浸渍或电化学浸渍(将NiOH沉积到烧结骨架中)Ni(NO3)2浸渍密度1.62-1.65g/c㎡,含3%-5%Co(NO3)2增重[(1.72-1.80)±0.007]g/cm2 2.1.6浸渍后的电极用电化学充/放电工艺进行预活化2.1.7逆向水洗2.1.8烘干(75℃)2.1.9电极软化(成型厚0.58±0.05mm)2.1.10极耳点焊主要设计参数:纤维镍骨架的强度和孔径氢氧化镍活性物质的化学组成活性物质的载入有害物质(硝酸盐、碳酸盐等)的含量2.2涂膏式2.2.1泡沫镍基板制备用电沉积或化学蒸汽沉积工艺。

镍氢电池的化学原理及工艺流程

镍氢电池的化学原理及工艺流程

镍氢电池的化学原理及工艺流程镍氢电池的化学原理镍氢电池采用Ni的氧化物作为正极,储氢金属作为负极,碱液(主要为KOH)作为电解液.圆柱形和方形镍氢电池电化学原理和化学反应相同:充电时,正极:Ni(OH)2– e-+OH-→NiOOH+H2O负极:MHn+ne-→M+n/2 H2放电时,正极:NiOOH+H2O+e-→Ni(OH)2+OH-负极:M+n/2 H2→MHn+ne-。

镍氢电池的放电效率在低温会有显著的降低(如低于-15℃),而在-20℃时,碱液达到起凝固点,电池充电速度也将大大降低。

在低温充电低于0℃会增大电池内压并可能使安全阀开启。

为了有效充电,环境温度范围应在5-30℃之间,一般充电效率会随温度的升高而升高,但当温度升到45℃以上,高温下充电电池材料的性能会退化,电池的循环寿命也将大大缩短。

圆柱形Ni-MH电池只采用金属电池槽,一是因为电池槽本身与金属氢化物负极连接在一起,可以作为负极极端;二是因为许多应用要求能够快速充电,气体发生复合反应时,电池的内压很高,只有金属容器可以承受这种压力,而且不会发生太大的变形。

最后金属电池槽聚砜密封环翻边与电池盖密封,这种方法成本低,易于生产,而且可靠。

工艺流程:(以SC型为例1.配方1.1正极:氢氧化镍(2.1.1和2.2.3)氧化钴(可以形成导电网络,弥补氢氧化镍与金属集流体间较大的间距以及氢氧化镍本身电导率较低的不足)添加剂1.2负极:贮氢合金粉(3.1有具体讨论)添加剂1.3电解质:30%的KOH水溶液17g/L的LiOH NaOH(为提高高温充电效率,将部分KOH替换为NaOH,但是会加重对金属氢化物活性物质的腐蚀,降低循环寿命)2.正极制备2.1烧结式2.1.1调浆:纤维镍+导电剂CoO+CMC(2.5%)或MC+PVB造孔剂2.1.2拉浆:将膏状物涂覆到基板(如冲孔镍带)2.1.3烘干(挥发黏结剂)(75℃)2.1.4在氮气/氢气环境下高温煅烧(880℃,烧结速度90m/h)2.1.5化学浸渍或电化学浸渍(将NiOH沉积到烧结骨架中)Ni(NO3)2浸渍密度1.62-1.65g/c㎡,含3%-5%Co(NO3)2增重[(1.72-1.80)±0.007]g/cm2 2.1.6浸渍后的电极用电化学充/放电工艺进行预活化2.1.7逆向水洗2.1.8烘干(75℃)2.1.9电极软化(成型厚0.58±0.05mm)2.1.10极耳点焊主要设计参数:纤维镍骨架的强度和孔径氢氧化镍活性物质的化学组成活性物质的载入有害物质(硝酸盐、碳酸盐等)的含量2.2涂膏式2.2.1泡沫镍基板制备用电沉积或化学蒸汽沉积工艺。

镍氢电池知识点介绍

镍氢电池知识点介绍

镍氢电池知识点介绍镍氢电池是一种性能良好的蓄电池。

镍氢电池分为高压镍氢电池和低压镍氢电池。

镍氢电池作为氢能源应用的一个重要方向越来越被人们注意。

下面小编为大家介绍下镍氢电池知识点。

一、镍氢电池的分类镍氢电池分为高压镍氢电池和低压镍氢电池。

低压镍氢电池具有以下特点:(1)电池电压为1.2~1.3V,与镉镍电池相当;(2)能量密度高,是镉镍电池的1.5倍以上;(3)可快速充放电,低温性能良好;(4)可密封,耐过充放电能力强;(5)无树枝状晶体生成,可防止电池内短路;(6)安全可靠对环境无污染,无记忆效应等。

高压镍氢电池具有如下特点:(1)可靠性强。

具有较好的过放电、过充电保护,可耐较高的充放电率并且无枝晶形成。

具有良好的比特性。

其质量比容量为60A·h/kg,是镉镍电池的5倍。

(2)循环寿命长,可达数千次之多。

(3)与镍镉电池相比,全密封,维护少。

(4)低温性能优良,在-10℃时,容量没有明显改变。

二、镍氢电池的结构原理镍氢电池正极活性物质为Ni(OH)2(称NiO电极),负极活性物质为金属氢化物,也称储氢合金(电极称储氢电极),电解液为6mol/L氢氧化钾溶液。

活性物质构成电极极片的工艺方式主要有烧结式、拉浆式、泡沫镍式、纤维镍式及嵌渗式等,不同工艺制备的电极在容量、大电流放电性能上存在较大差异,一般根据使用条件不同的工艺生产电池。

通讯等民用电池大多采用拉浆式负极、泡沫镍式正极构成电池。

充放电化学反应如下:正极:Ni(OH)2+OH-=NiOOH+H2O+e-负极:M+H2O+e-=MHab+OH-总反应:Ni(OH)2+M=NiOOH+MH注:M:氢合金;Hab:吸附氢;反应式从左到右的过程为充电过程;反应式从右到左的过程为放电过程。

充电时正极的Ni(OH)2和OH-反应生成NiOOH和H2O,同时释放出e-一起生成MH和OH-,总反应是Ni(OH)2和M生成NiOOH,储氢合金储氢;放电时与此相反,MHab释放H+,H+和OH-生成H2O和e-,NiOOH、H2O和e-重新生成Ni (OH)2和OH-。

镍氢电池的工作原理

镍氢电池的工作原理

镍氢电池的工作原理镍氢电池和同体积的镍镉电池相比,容量增加一倍,充放电循环寿命也较长,并且无记忆效应。

镍氢电池正极的活性物质为NiOOH(放电时)和Ni(OH)2(充电时),负极板的活性物质为H2(放电时)和H2O(充电时),电解液采用30%的氢氧化钾溶液,充放电时的电化学反应如下:javascript:=picsize(this,600) border=0 dypop="按此在新窗口浏览图片">从方程式看出:充电时,负极析出氢气,贮存在容器中,正极由氢氧化亚镍变成氢氧化镍(NiOOH)和H2O;放电时氢气在负极上被消耗掉,正极由氢氧化镍变成氢氧化亚镍。

过量充电时的电化学反应:javascript:=picsize(this,600) border=0 dypop="按此在新窗口浏览图片">从方程式看出,蓄电池过量充电时,正极板析出氧气,负极板析出氢气。

由于有催化剂的氢电极面积大,而且氢气能够随时扩散到氢电极表面,因此,氢气和氧气能够很容易在蓄电池内部再化合生成水,使容器内的气体压力保持不变,这种再化合的速率很快,可以使蓄电池内部氧气的浓度,不超过千分之几。

从以上各反应式可以看出,镍氢电池的反应与镍镉电池相似,只是负极充放电过程中生成物不同,从后两个反应式可以看出,镍氢电池也可以做成密封型结构。

镍氢电池的电解液多采用KOH水溶液,并加入少量的LiOH。

隔膜采用多孔维尼纶无纺布或尼龙无纺布等。

为了防止充电过程后期电池内压过高,电池中装有防爆装置。

电池充电特性镍镉电池充电特性曲线如图1所示。

当恒定电流刚充入放完电的电池时,由于电池内阻产生压降,所以电池电压很快上升(A点)。

此后,电池开始接受电荷,电池电压以较低的速率持续上升。

在这个范围内(AB之间),电化学反应以一定的速率产生氧气,同时氧气也以同样的速率与氢气化合,因此,电池内部的温度和气体压力都很低。

动力电池的结构及工作原理

动力电池的结构及工作原理
(5)壳体和安全阀 镍氢电池的外壳多采用镀镍薄钢板,在电动汽车用的方形电池上,也有采用塑料外壳。
安全阀安装在镍氢电池的顶部,其主要作用是在镍氢电池过放电时,正极析出的气体可以在 负极消耗,电池内部压力保持平衡。
二、镍氢动力电池
2、镍氢电池的结构类型
型号含义:HF18/07/49,表示该镍氢电池为方形,其宽为18mm,厚度为7mm,高度为 49mm。
2、磷酸锂电池与三元锂电池电池性能对比
4)循环寿命 磷酸铁锂电池包循环寿命要优于三元锂电池,三元锂电池的理论寿命是2000次,但基本上
到1000次循环时,容量衰减到60%;就算业界最优秀品牌特斯拉,经过3000次也只能保持70% 的电量,而磷酸铁锂电池经过相同循环周期,还有80%的容量。但是三元锂的不断加强的电池 管理技术加持下,逐渐得到提高。
温也不会起火。
四、三元锂电池
2、磷酸锂电池与三元锂电池电池性能对比
3)耐温性能 三元锂电池耐低温性能更好,在零下20C时,三元锂电池能够释放70.14%的容量,而磷
酸铁锂电池包只能释放54.94%的容量。
温度(℃)
55 25 -20
温度(℃)
55 25 -20
三元材料电池
容量(Ah)
放电平台(V )
(3)电解液(电解质) 锂离子电池的电解液一般采用非水电解液、聚合物电解质和固体电解质三大类。锂电池的
电解质应具有高的导电能力,较好的稳定性及安全性,所以在电解质内通常会加入适量添加剂。
三、磷酸铁锂电池
1、锂离子电池组成结构
(4)隔膜 隔膜位于正负极之间,要是防止正负极活性物质短路。保证锂离子电池的正常充放电和安
五、固态电池
固态电池的优势
一方面由于采用了有机电解液的传统锂电池,在过度充电、内部短路等异常情况下 容易导致电解液发热,从而引发自燃甚至自爆的安全隐患。固态电池基于固态材料不可 燃、无腐蚀、不挥发、不漏液等条件,安全系数较之锂离子电池有着先天的优势。

镍氢电池的结构工作原理

镍氢电池的结构工作原理

镍氢电池的结构工作原理
镍氢电池是一种典型的二次电池,它由正极、负极、电解质和隔膜组成。

正极:正极由镍氢化合物制成,其中的活性物质是镍氢化物(NiMH)。

这种材料可以与氢气发生反应,在充电时将氢气储存为氢氧根离子(OH-)。

在放电时,氢氧根离子会转化为水。

负极:负极由金属氢化物制成,其中的活性物质是锑氢化物(SbH3)。

在充电时,锑氢化物会释放出氢气,而在放电时则会接收氢气。

电解质:电解质一般使用氢氧化钾(KOH),它能够提供离子导电的环境。

隔膜:隔膜的作用是防止正负极直接接触,防止短路,并允许离子的交换。

工作原理:
1. 充电:在充电时,外部电源提供直流电,正极上的氢氧根离子(OH-)被氧化成氧气,负极上锑氢化物(SbH3)发生还原反应,释放出氢气。

氧气和氢气会分别在正负极的表面反应,将氢氧根离子和氢气转化为氢氧根离子(OH-)和水,并储存在电池中。

2. 放电:在放电时,电池外部形成电路,氢氧根离子(OH-)在正极上发生还原反应,转化为水,同时释放出电子,电子通过外部电路流动至负极。

负极上的
锑氢化物(SbH3)被氢气氧化,同时接收电子,转化为锑氢化物。

整个充放电过程中,镍氢电池通过氢气与氢氧根离子的转化,实现了电能与化学能的转换。

镍氢电池的循环使用可重复多次,具有高能量密度、低自放电率、无污染等优点。

镍氢电池工作原理

镍氢电池工作原理

镍氢电池工作原理镍氢电池是一种高性能、环保的蓄电池,它的工作原理主要是通过镍氢化合物和氢氧化镍作为正负极活性物质,在电解液中进行氢化和脱氢反应,从而实现电能的储存和释放。

首先,让我们来了解一下镍氢电池的结构。

镍氢电池由正极、负极、电解液和隔膜组成。

正极是由氢氧化镍制成的,而负极则是由镍氢化合物构成。

电解液通常是氢氧化钾或氢氧化锂的溶液。

而隔膜则起到隔离正负极的作用,防止短路。

在充电状态下,外部电源会向电池施加电压,使得正极中的氢氧化镍发生氧化反应,同时负极中的镍氢化合物发生还原反应,将氢气转化为氢离子并释放电子。

这些电子通过外部电路流向正极,从而实现电能的储存。

在放电状态下,电池内部的化学反应过程则是相反的。

氢氧化镍被还原为氢气,同时镍氢化合物氧化为氢离子和电子。

这些电子通过外部电路流回负极,完成电能的释放。

镍氢电池的工作原理可以用如下方程式来表示:充电状态,正极,Ni(OH)2 → NiOOH + H2O + e-。

负极,MH → M + H2O + e-。

放电状态,正极,NiOOH + H2O + e→ Ni(OH)2。

负极,M + H2O + e→ MH。

在实际应用中,镍氢电池具有许多优点。

首先,它的能量密度高,可以提供较长的使用时间。

其次,镍氢电池不含有汞、铅等有害物质,对环境友好。

此外,镍氢电池的循环寿命长,可以充放电数千次而不会损坏电池性能。

然而,镍氢电池也存在一些缺点。

例如,它的自放电率较高,即使在不使用时也会自行放电,导致储存能量的损失。

此外,镍氢电池的成本相对较高,制约了其在某些领域的应用。

总的来说,镍氢电池通过镍氢化合物和氢氧化镍的氧化还原反应,实现了电能的储存和释放。

它具有高能量密度、环保、循环寿命长等优点,但也存在自放电率高、成本较高等缺点。

随着科技的发展,相信镍氢电池在未来会有更广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

镍氢电池结构原理
镍氢电池是一种新型的可充电电池,其结构原理主要由正极、负极、电解质和隔膜组成。

本文将从这四个方面详细介绍镍氢电池的结构原理。

一、正极结构
镍氢电池的正极由镍氢化物组成,其化学反应可通过镍氢化物中的镍离子和氢离子之间的氧化还原反应来实现。

在充电过程中,镍氢化物会吸收氢离子并转化为镍氢化合物,同时释放出电子;而在放电过程中,镍氢化物会释放出氢离子并重新转化为镍氢化物,同时吸收电子。

正极的化学反应过程是镍氢电池实现充放电的关键。

二、负极结构
镍氢电池的负极通常由金属氢化物组成,其化学反应可通过金属氢化物中的金属离子和氢离子之间的氧化还原反应来实现。

在充电过程中,金属氢化物会吸收氢离子并转化为金属,并同时释放出电子;而在放电过程中,金属会释放出氢离子并重新转化为金属氢化物,同时吸收电子。

负极的化学反应过程与正极相反,共同实现了镍氢电池的充放电。

三、电解质结构
镍氢电池的电解质通常是由溶液或凝胶状物质组成,其主要作用是传递离子。

在充放电过程中,电解质会承载正、负极之间的离子传
输,使得电池内部的化学反应能够顺利进行。

电解质的选择要考虑到电池的工作温度、电导率等因素,以保证电解质具有较好的离子导电性能。

四、隔膜结构
镍氢电池的隔膜起到隔离正、负极的作用,防止直接接触而导致短路。

隔膜通常由聚合物材料制成,具有较好的电离子透过性能。

隔膜要求既能阻止正、负极之间的直接接触,又要保证离子能够自由穿过,以维持电池的正常工作。

此外,隔膜还能防止电池内部杂质的扩散,保证电池的长寿命和安全性。

总结:镍氢电池的结构原理主要由正极、负极、电解质和隔膜组成。

正极和负极通过化学反应实现充放电,电解质传递离子,隔膜隔离正、负极并保证离子的自由穿过。

这种结构使得镍氢电池具有高能量密度、长循环寿命和较好的安全性能,广泛应用于电动车、储能系统等领域。

相关文档
最新文档