11非线性药物动力学

合集下载

非线性药物动力学.

非线性药物动力学.

Km C0 C0 C ln t Vm C Vm ln C0 V C C m t 0 C Km Km
C0 C K m C0 t ln Vm Vm C C0 C Vm ln C ln C0 t Km Km C0 C Vm lg C ln C0 t 2.303K m 2.303K m (11 9)
药物
保泰松,水杨酸盐 卡那霉素,硫喷妥 甲氨蝶呤
青霉素G 抗坏血酸 水杨酸 氨基糖甙类 茶碱,乙醇
三、非线性药物动力学的特点
(1) 药物的消除不遵守简单的一级动力学过程,而遵 从Michaelis-Menten方程。
(2) 药物的消除半衰期随剂量增加而延长;
(3) 血药浓度和AUC与剂量不成正比;
4、用静脉注射后的lnC-t数据估算Km、Vm
C0 C Vm lnC lnC 0 t Km Km
在曲线尾段(低浓度时)为直线,将其外推,得直线方程为:
其中, lnC 为截距。 0 C0 C C0 所以, ln
Vm lnC lnC t Km
0
Km
C0
C0>>C,简化得:
C中
1/C中
C中/ΔC/Δt
107.0 98.5 89.5 67.5 33.2 10.65 3.20 0.975
0.0093 0.0102 0.0112 0.0148 0.0301 0.0939 0.3125 1.0256
13.375 10.944 9.944 7.714 3.952 3.704 3.765 3.707
力即达饱和,故其动力学呈现明显的剂量(浓度)
依赖性。表现为一些药物动力学参数随剂量不 同而改变,也称为剂量依赖药物动力学、容量限 制动力学或饱和动力学。

生物药剂学与药物动力学考试复习

生物药剂学与药物动力学考试复习

生物药剂学与药物动力学第一章生物药剂学概述1、生物药剂学:是研究药物及其剂型在体内的吸收、分布、代谢与排泄过程,阐明药物的剂型因素,机体生物因素和药物疗效之间相互关系的科学;2、研究生物药剂学的目的:为了正确评价药物制剂质量,设计合理剂型、处方及制备工艺,为临床合理用药提供科学依据,使药物发挥最佳的治疗作用并确保用药的有效性和安全性;3、影响剂型体内过程的剂型因素药物的某些化学性质、药物的某些物理因素、药物的剂型及用药方法、制剂处方中所用的辅料的性质及用量、处方中药物的配伍及相互作用4、影响剂型体内过程的生物因素:种族差异、性别差异、年龄差异、生理和病理条件的差异、遗传因素第二章口服药物的吸收1、被动转运的特点:1从高浓度侧向低浓度侧的顺浓度梯度转运;2不需要载体,膜对药物无特殊选择性;3不消耗能量,扩散过程与细胞代谢无关,不受细胞代谢抑制剂的影响;4不存在转运饱和现象和同类物竞争抑制现象;2、膜孔转运中分子小于微孔的药物吸收快,如水,乙醇,尿素,糖类等;大分子药物或与蛋白质结合的药物不能通过含水小孔吸收;3、主动转运的转运速率可用米氏Michaelis-Menten方程描述:4、主动转运的特点①逆浓度梯度转运;②需要消耗机体能量;③需要载体参与;④速率及转运量与载体量及其活性有关;⑤存在竞争性抑制作用;⑥受代谢抑制剂影响;部位特异性5、被动转运与载体媒介转运速率示意图,如右图6、胃排空:胃内容物从胃幽门排入十二指肠的过程;7、胃空速率:胃排空的快慢用胃空速率来描述;8③食物的组成;④药物的影响;9、肝首过效应:透过胃肠道生物膜吸收的药物经肝门静脉入肝后,在肝药酶作用下药物可产生生物转化;药物进入体循环前的降解或失活称为“肝首过代谢”或“肝首过效应”;10、避免首过效应的方法:答:①静脉、肌肉注射;②口腔黏膜吸收;③经皮吸收;④经鼻给药;⑤经肺吸收;⑥直肠给药;11、避免首过效应的剂型:①贴剂皮肤给药;②气雾剂和粉雾剂经呼吸道或经鼻黏膜吸收;③口腔粘附片黏膜吸收;12、肠肝循环:指经胆汁排入肠道的药物,在肠道中又重新被吸收,经门静脉又返回肝脏的现象;肠肝循环现象在药动学上表现为药时曲线出现双峰现象;13、引起肠肝循环的因素:现象主要发生在经胆汁排泄的药物中,有些由胆汁排入肠道的原型药物如毒毛旋花子苷G,极性高,很少能再从肠道吸收,而大部分从粪便排出;有些药物如氯霉素、酚酞等在肝内与葡萄糖醛酸结合后,水溶性增高,分泌人胆汁,排入肠道,在肠道细菌酶作用下水解释放出原型药物,又被肠道吸收进入肝脏;14、pH-分配假说:药物的吸收取决于药物在胃肠道中的解离状态和油/水分配系数;胃肠液中未解离型与解离型药物浓度之比是药物解离常数pKa与消化道pH的函数,可用Henderson-Hasselbalch方程表达:弱酸性药物:弱碱性药物:式中C u,C i分别为未解离型和解离型药物的浓度;·当酸性药物的pka值大于消化道体液pH值时通常是酸性药物在胃中,则未解离型药物浓度C u占有较大比例;·当碱性药物pka值大于体液pH值时通常是弱碱性药物在小肠中,则解离型药物浓度C i 所占比例15、评价药物脂溶性大小的参数是油/水分配系数K o/w16、溶出速度可用Noyes-Whitney方程描述:dC dt =DhS(C s−C)dCdt为药物的溶出速度,D未溶解药物的扩散系数,S为固体药物的表面积,h为扩散层厚度,C s为药物在液体介质中的溶解度,C为t时间药物在胃肠液或溶出介质中的浓度;17、漏槽效应:在胃肠道中,溶出的药物不断地透膜吸收入血,形成漏槽状态;18、影响溶出的药物理化性质1药物的溶解度;2粒子大小;3多晶型;4溶剂化物19、崩解时限:用来描述固体制剂在检查时限内全部崩解或溶散成碎粒的过程;20、溶出速率:指在规定溶出介质中,片剂或胶囊剂等固体制剂中药物溶出的速度和程度;21、溶出速率的测定方法:转篮法、桨法、小杯法;22、溶出介质有人工胃液、人工肠液、蒸馏水;第三章非口服药物的吸收1、透皮吸收促进剂:月桂氮卓酮2、影响口腔黏膜给药制剂吸收的最大因素是唾液的冲洗作用;3、药物粒子在气道内的沉积机制:①惯性碰撞;②沉降;③扩散第四章药物的分布1、药物的分布:药物从吸收部位进入血浆后,在血液和组织之间的转运过程;2、影响分布的因素:药物的化学结构、脂溶性、对组织的亲和性、相互作用,血液循环与血管通透性,不同组织的生理结构特征等药物的理化性质和机体的生理特性表观分布容积的意义;3、表观分布容积:用来描述药物在体内分布的程度,表示全血或血浆中药物浓度与体内药量的比例关系;X表示体内药量,C表示相应的血药浓度;4、血浆中的三种蛋白质:白蛋白、α1-酸性糖蛋白、脂蛋白;5、血脑屏障:由单层脑毛细血管内皮细胞形成连续性无膜孔的毛细血管壁,细胞之间存在紧密连接,几乎没有细胞间隙;6、弱碱性药物易透过血脑屏障;7、提高药物脑内分布的方法①对药物结构进行改造;②药物直接给药;③暂时破坏血脑屏障;④利用血脑屏障跨细胞途径⑤通过鼻腔途径给药第五章药物代谢1、代谢:药物被机体吸收后,在体内各种酶以及体液环境作用下,其化学结构可发生改变的过程,又称生物转化;代谢主要在肝中进行,也发生在其他器官,如肠、肾、肺、血液和皮肤等;2、代谢的临床意义1代谢使药物失去活性;2代谢使药物活性降低;3代谢使药物活性增强;4代谢使药理作用激活;5代谢产生毒性代谢物;3、药物代谢反应的I相反应包括氧化反应、还原反应和水解反应;4、首过效应:指某些药物经胃肠道给药,在尚未吸收进入血循环之前,在肠粘膜和肝脏被代谢,而使进入血循环的原形药量减少的现象;5、影响药物代谢的因素;1生理因素:种属、种族、年龄、性别、妊娠、疾病等;2剂型因素:给药途径、剂量、剂型、手性药物、药物相互作用等;第六章药物排泄1、排泄:是指体内药物或其代谢物排出体外的过程;肾排泄是许多药物消除的主要途径;2、药物肾排泄包括肾小球滤过、肾小管分泌和肾小管重吸收3、影响肾小管重吸收的因素答:①、药物的脂溶性:脂溶性大的非解离型药物重吸收程度大,自尿中排泄量小;②、尿pH值和药物的pKa:对于弱酸来说,pH升高将增加解离程度,重吸收减少,肾清除率增加;对于强碱性药物,在任何尿pH范围内均呈解离状态,几乎不被重吸收,其肾清除率也不受尿pH值得影响且常较高;③、尿量:当尿量增加时,药物在尿液中的浓度下降,重吸收减少;尿量减少时,药物浓度增大,重吸收量也增多;4、肾小管的主动分泌机制:阴离子分泌机制和阳离子分泌机制5、测量肾小球滤过:以菊粉清除率为指标,可以推测其他各种物质通过肾单位的变化;6、影响药物胆汁排泄的因素:1排泄机制的影响;2水溶性的影响;3分子量的影响;第七章药物动力学概述1、隔室模型:将整个机体按动力学特性划分为若干个独立的隔室,把这些隔室串接起来构成的的一种足以反映药物动力学特征的模型;2、隔室模型的划分隔室的划分与器官、组织的血流量、膜通透性、药物与组织的亲和力等因素密切相关;只要体内某些部位接受药物及消除药物的速率常数相似,而不管这些部位的解剖位置与生理功能如何;3、一级速率过程特点:①半衰期与剂量无关;②一次给药的血药浓度-时间曲线下面积与剂量成正比;③一次给药情况下,尿排泄量与剂量成正比;4、零级速率过程:指药物的转运速率在任何时间都是恒定的,与药物量或浓度无关;临床上恒速静脉滴注的给药速率以及控释制剂中药物的释放速率即为零级速率过程;5、生物半衰期:指体内药量或血药浓度通过各种途径消除一半所需要的时间,以t1/2表示6、清除率:整个机体或机体内某些消除器官、组织的药物消除率,是指机体或机体内某些消除器官、组织在单位时间内消除掉相当于多少体积的流经血液中的药物;即单位时间内从体内消除的药物表观分布容积;用Cl表示,公式如下:Cl=−dX/dtC=kXC=kV-dX/dt代表机体或消除器官中单位时间内消除的药物量,X为体内药物量,V为表观分布容积,C为血药浓度;第八章单室模型1、单室模型:某些药物进入全身循环后迅速向全身各部位分布,并在血液、组织与体液之间达到分布动态平衡,即动力学上的“均一”状态,因而称为单室模型;2、静脉注射1血药浓度与时间的关系lg C=−k2.303t+lg C0k为一级消除速率常数,C0初始浓度;2基本参数k与Co的求算以上述公式的lg C对t作图,可得一直线k=C0=10ab为直线斜率,a为截距;3生物半衰期t1/2=0.693 k4表观分布容积V=X0 C0X0为静脉注射剂量;3、静脉滴注体内血药浓度C与时间t的关系1稳态血药浓度或坪浓度C ssC ss=k0 kVk0为静脉滴注速率;4、血管外给药1达峰时间t max和峰浓度C maxt max=ln k a−ln k k a−kC max=FX0Ve−kt maxk a一级吸收速率常数,F为吸收率0≤F≤1,X0给药剂量; 2血药浓度-时间曲线下面积AUCAUC=FX0 kV3残数法步骤①根据lg C-t数据,采用线性回归求得尾段直线方程ln C=−kt+ln A或lg C=−k2.303t+lg A,式中,根据斜率求得消除速率常数k、消除半衰期t1/2,根据截距求得A;②将吸收相中的时间代入尾端直线方程,求得尾端直线外推线上血药浓度值;③用外推线上血药浓度值减去吸收相中同一时间点的实测浓度,即得一系列参数浓度C.④根据根据lg C r-t数据,采用线性回归求得残数直线方程ln C r=−k a t+ln A或lg C r=−k a2.303t+lg A,从而根据斜率求得吸收速率常数k a、吸收半衰期;⑤若已知F、X0,根据A可求出V值;第九章多室模型1、α称为分布相混合一级速率常数或快配置速率常数;β称为消除相混合一级速率常数或慢配置速率常数;α和β又称为混杂参数;两者的关系有:α+β=k12+k21+k10αβ=k21k10第十章多剂量给药1、多剂量给药:指药物按一定的剂量、一定的给药间隔,经多次给药后才能达到并保持在一定的有效血药浓度范围内的给药方法;多数疾病的治疗必须采用多次给药方可达到有效治疗目的;2、多剂量函数:n为给药次数,k i为一级速率常数,τ为给药间隔时间;3、达坪分数:指n次给药后,血药浓度C n相当于坪浓度C ss的分数以f ssn表示4、平均稳态血药浓度:当血药浓度达到稳态后,在一个剂量间隔时间内t=0→τ,血药浓度-时间曲线下面积除以间隔时间τ所得的商;用C ss̀表示:5、蓄积系数:指稳态血药浓度与第一次给药后的血药浓度的比值,以R表示;6、波动百分数PF:指稳态最大血药浓度与稳态最小血药浓度之差与稳态最大血药浓度比值的百分数;PF=C maxss−CminssC maxss∗100%7、波动度DF:指稳态最大血药浓度与稳态最小血药浓度之差与平均稳态血药浓度的比值;8、血药浓度变化率:指稳态最大血药浓度与稳态最小血药浓度之差与稳态最小血药浓度比值的百分数;第十一章非线性药物动力学1、非线性动力学特征的药物的体内过程特点1药物的消除不遵循一级动力学,而遵从米氏Michaelis-Menten方程,消除动力学是非线性的;2血药浓度和SUC与剂量不成正比;3药物消除半衰期随剂量增加而延长;4其他药物可能竞争酶或载体系统,其动力学过程可能受合并用药的影响;5药物代谢物的组成和或比例可能由于剂量变化而变化;2、米氏Michaelis-Menten方程−dC为药物在t时间的下降速率,表示消除速率的大小;V m为药物在体内消除过程中理dt论上的最大消除速率;K m为米曼常数,指药物在体内的消除速度为V m的一半时所对应的血药浓度,即当时,K m=C;十二章统计矩分析1、只要药物的体内过程符合线性药物动力学过程,都可以用统计矩分析;2、MRT:代表给药剂量或药物浓度消除掉%所需的时间;3、MDT:药物的平均溶出时间;第十三章药物动力学在临床药学中的应用1、静脉滴注给药方案的设计给药间隔第十四章药物动力学在新药研究中的应用1、生物利用度:指剂型中的药物被吸收进入体循环的速度与程度;有相对生物利用度F rel和绝对生物利用度F abst跟r分别代表受试制剂与参比制剂,iv表示静脉注射给药,X给药剂量;2、生物等效性:指一种药物的不同制剂在相同试验条件下、给以相同剂量,反映其吸收程度和速度的主要药物动力学参数无统计学差异;——以上由C_D-m整理。

生物药剂学与药物动力学考试复习资料

生物药剂学与药物动力学考试复习资料
非线性动力学:有些药物的体内过程,不能用一级速度过程或线性过程表示,存在较明显的非线性过程,体内过程呈现与线性动力学不同的药物动力学特征。称为非线性动力学,也称为剂量依赖药物动力学。
生物利用度:指剂型中的药物被吸收进入体循环的速度与程度。有相对生物利用度( )和绝对生物利用度( )。
绝对生物利用度:是药物吸收进入人体循环的量与给药剂量的比值,是以静脉给药制剂为参比制剂获得的药物吸收进入人体循环的相对量。
多剂量给药:指药物按一定的剂量、一定的给药间隔,经多次给药后才能达到并保持在一定的有效血药浓度范围内的给药方法。
平均稳态血药浓度:当多剂量给药达稳态后,在每个间隔时间内的C-t曲线下面积为一恒定值。将这一面积与间隔时间τ的商,称为平均稳态血药浓度。
负荷剂量:一般临床上常采取首次给药剂量加大的方法,实现快速达到有效治疗浓度的目的,以后药量仅给以维持剂量即可。这种首次给予的较大剂量称为负荷剂量或首剂量。
5.药物代谢反应:Ⅰ相反应——引入官能团(氧化、还原、水解)大多脂溶性药物代谢后生成极性基团,极性增大,脂溶性降低,利于排泄。
Ⅱ相反应——结合反应,药物的极性基团;Ⅰ相反应生成极性基团与机体自身成分结合(Ⅰ相反应生成物可能直接排泄出去,或经结合反应以结合物形式排泄)。㈠葡萄糖醛酸结合。二磷酸尿苷葡萄糖醛酸(UDPGA)㈡硫酸结合。磷酸腺苷-5-磷酸硫酸酯(PAPS)㈢氨基酸结合。㈣谷胱甘肽结合。㈤甲基结合。㈥乙酰化反应
第二章口服药物的吸收
1.药物的跨膜转运机制:(一)被动转运(单纯扩散、膜孔转运);(二)载体媒介转运(促进扩散、主动转运);(三)膜动转运(胞饮与吞噬、胞吐)
2.被动转运的特点:
(1)从高浓度侧向低浓度侧的顺浓度梯度转运;
(2)不需要载体,膜对药物无特殊选择性;

药剂学:第11章 非线性药物动力学

药剂学:第11章  非线性药物动力学

讨论:
dC dt
vm
Ⅲ Ⅰ
Km

C
C-t
❖ 单纯米氏方程特征消除(静脉注射)
积分有:
lg C
C0 C 2.303Km
lg C0
vm 2.303Km
t
lg C
lg C0
1 2.303Km
(C
C0 )
vm 2.303Km
t
❖ 非线性药物动力学参数Vm及Km的求算
米氏方程直线化
t1
2
0.693(Km vm
非线性模型
动力学 一级动力学
零级动力学
C-T图 曲线
直线
lnC-T图 直线
曲线
消除特点 恒比消除
恒量消除
浓度变化 无关
高段非线性,低段趋线性
药物 多数药物
少数药物
C-T曲线
线性
C-T图上恒 为曲线
ln C-T曲线
线性 lnC-T图 恒为直线
非线性 C-T图上 直线为主,低段趋曲线
非线性 lnC-T图 曲线为主,低段趋直线
• 区分与实际意义
• 与线性动力学无绝对界线,有时难以区分 • 呈非线动力学药物的中毒,抢救较为困难
线性或非线性动力学的比较
线性
非线性
AUC 与剂量呈直线关系 与剂量呈曲线关系
与剂量呈正比 与剂量呈超比例增加
T1/2 基本不变
大剂量时,T1/2延长
Cmax 与剂量基本呈正比 与剂量呈超比例增加
模型 房室模型
高、中、低三种剂量的AUC/剂量的比值基本相等属线 性,不等属非线性,随剂量增加比值显著增大。
AUC X 0 KV
LOGO
非线性药物动力学方程

11非线性药物动力学

11非线性药物动力学
两边取倒数得 对
Km 1 作图得直线,其斜率为 V C中 m
1 ,截距为 ,即 Vm
1 C / t
可求得Km和Vm
• Hanes-Woolf 方程
C中 K m C中 C Vm V m t
• 以
C中 ΔC/Δt
对C中作图或回归,直线的斜率
1 Km 为 ,截距为 。 Vm Vm
思考题解析
• 解:(1)静脉注射给药10mg/kg, 则 C0=X0/V=10/20=0.5mg/L, 此时C0远小于Km,因此, -dC/dt=Vm/Km*C, 相当于一级动力学消除过程,消 除速度常数k= Vm/Km=20/50=0.4h-1 • (2)上述情况下,消除掉50%的药物所需的时间即消 除半衰期为t1/2=0.693/k=0.693/0.4=1.73h • (3) 静脉注射给药100mg/kg, 则 C0=X0/V=100/20=5mg/L, 该药物的消除动力学为非 线性过程,符合M-M方程, -dC/dt = Vm*C/Km+C 。
二、药物Michaelis-Menten动力学过程的特征
米曼方程描述的非线性药物动力学过程
可以用方程分段表示即:
dC Vm ·C dt K m
血药浓度很低时 (C<<Km) 血药浓度介于两者之间时 血药浓度很高时 (C>>Km)
dC Vm ·C dt K m C
dC Vm dt
口服不同剂量苯妥英钠时,生物半衰期不同,苯妥英钠的体内 动力学不符合线性动力学规律,属于非线性动力学研究范畴。
问题:
1.给药剂量增加 半衰期延长,是 否符合线性动力 学规律? 2.发生这一现象 的原因?如何描 述苯妥英钠的体 内动力学过程?

第十一章 非线性动力学

第十一章 非线性动力学

可饱和的代谢过程;酶诱导;较高剂量时 的肝中毒;肝血流的变化;代谢物的抑制 作用
二、非线性药物动力学特点与识别
特点:



药物消除为非一级动力学,遵从米氏方程 AUC与剂量不成正比 消除半衰期随剂量增大而延长,剂量增加至一定 程度时,半衰期急剧增大 动力学过程可能会受到合并用药的影响 代谢物的组成比例受剂量的影响
当C0>>Km时, t1/2=C0/(2Vm) 当Km>>C0时, t1/2=0.693Km/Vm
清除率Cl
dX dt Cl C VmC dX dt ( dC dt ) V V Km C Vm V Cl Km C
当C>>Km时, Cl与C成反比:CL=Vm*V/C 当Km>>C时, Cl与C无关: CL=Vm*V/Km

线性动力学
血药浓度与剂量呈正比 ; AUC与剂量呈正比;t1/2、k、 V、Cl与剂量无关

非线性动力学
Dose-dependant PK 动力学参数与剂量有关 存在饱和现象
k
AUC
t1/2
X0
X0
X0
注:图中实线表示非线性,虚线表示线性非线性药代动力学主要见于:
与药物代谢有关的可饱和的酶代谢过程; 与药物吸收、排泄有关的可饱和的载体转 运过程; 与药物分布有关的可饱和的血浆/组织蛋白 结合过程; 酶诱导及代谢产物抑制等其他特殊过程。
五、非线性动力学参数的求算
1. Km及Vm的求算:根据-dC/dt 求算
dC Vm C dt K m C
Lineweaver-Burk方程式: Hanes-Woolf方程式: Eadie-Hofstee方程式:

非线性药物动力学概述和计算

非线性药物动力学概述和计算
乙酰水杨酸(阿司匹林)、地高辛、肝素、华法 林钠、乙醇、苯妥英、苯海拉明、氯喹、氢泼尼 松、乙酰唑胺、对氨水杨酸等。
非线性药物动力学的特点:
(1)血药浓度和AUC与剂量不成正比; (2)药物的消除不呈现一级动力学特征,即消除动力学 是非线性的; (3)当剂量增加时,消除半衰期延长; (4)其它药物可能竞争酶或载体系统,影响其动力学过 程; (5)药物代谢物的组成比例可能由于剂量变化而变化。
非线性药物动力学的这些特征,主要与药物在高 浓度条件下形成体内药物代谢酶或载体的饱和过 程有关。
非线性药物动力学过程,药物在 较大剂量时的表观消除速率常数 与小剂量时不同,因此不能根据 小剂量时所估算的常数预估血药 浓度。
因为:
具有非线性药物动 力学特征的药物
一般在高浓度下达到饱和过程,则消除减慢。
100mg表示最高剂量所产生的初浓度大大超过Km,所 以开始时血药浓度以恒速下降(零级动力学)。
这些曲线表明:药物初浓度下降50%所需要的时间 (t1/2)并非与剂量无关,事实上将随剂量的增加而 延长。
此图还表明:不管药物开始的剂量是多少,当血药浓 度下降到很低时(比Km低得多),药物的消除即为一 级动力学过程,此时与剂量无关。
oral
6.1
产生非线性过程的主要原因:
一是药物降解的酶被饱和 二是与主动转运有关的药物通
过选择膜的载体被饱和。
除容量限定性因素外,引起非线性动力学 Nhomakorabea有其 它一些因素,包括代谢产物抑制和酶诱导等。
某些药物的代谢产物消除较慢,当达到足够高的血药 浓度时可竞争性抑制催化原形药物代谢的酶,从而能 够抑制原形药物的自身代谢,此即所谓产物抑制 (product inhibition)。

非线性药物动力学页PPT文档

非线性药物动力学页PPT文档

三、产生非线性药物动力学的原因
有些药物在体内的吸收、分布、代谢、排泄任 一过程涉及酶和载体的饱和性,出现非线性药 物动力学。
又称为容量限制动力学。 主要表现为药物动力学参数随剂量不同而改变。
引起非线性药物动力学的原因
产生非线性药物动力学原因来自于代谢酶和载 体系统的饱和性,主要表现:
1、根据药动学参数(t1/2 、k、CL)判断: 高、中、低三种剂量的t1/2基本相等属线
性, 不等属非线性。
2、AUC/剂量 判断:
高、中、低三种剂量的AUC/剂量的比值基本
相等属线性,不等属非线性,随剂量增加比值显
著增大。
AUC X 0 KV
第二节 非线性药物动力学方程(熟悉)
一、米氏方程(Michaelis-Menten Equation)
药物代谢过程中酶代谢达饱和。 药物吸收、排泄中载体转运达饱和。 药物分布时与血浆组织蛋白结合达饱和。 酶诱导及代谢产物抑制。
酶诱导及代谢产物抑制产生非线性现象。 如:双香豆素剂量增加后,半衰期延长 (代谢产物抑制代谢酶引起)。
X0 150mg 286mg 600mg
t1/2
10h
(2)当血药浓度较高时, C >> Km ,则
Cl VmV C
药物总清除率与血药浓度成反比,血药浓度 增大一倍,总体清除率减少至原来的一半。
(3)当一种药物既有线性消除,也有非线性消除时
dX Cl dt
C
所以,非线性消除的药物,其总体清除率与血药 浓度有关,随血药浓度的增高总体清除率将变慢。
Cl VmV Km C
讨论: (1)当血药浓度较低时,Km>>C,则
C l VmV Km
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非线性药物动力学过程特征
非线性动力学药物若低剂量给药或体内血 药浓度较低时,药物的消除为一级动力学
当浓度增大到一定程度时,消除过程达饱 和,消除速率逐渐接近常数Vm,药物的消 除为零级动力学,曲线接近于一水平线
当血药浓度介于两种情况之间时,消除为 非线性过程, 可以认为,一级过程与零级过 程是非线性过程的两个特例。
口服三种不同剂量阿司匹林的消除曲线
案例二分析
阿司匹林在体内是经酶代谢由尿排出体外的,是典型酶饱 和非线性消除动力学实例。 小剂量给药时(0.25 g),由于酶的活性与数量充足,未出现 饱和现象,其消除为一级动力学过程;当服用剂量较大 (≥1.0g)时,初始阶段消除过程在高剂量下酶达到饱和,表 现为零级消除,随着体内药量下降,消除过程逐渐脱离饱 和状态,体内药量降低到一定程度后,又恢复一级动力学 消除。 三种不同剂量消除曲线尾端均为直线且相互平行,直线部 分的消除半衰期基本相同,但总剂量的消除半衰期不同(分 别为3.5h、7.2h、8.0h),表明动力学参数t1/2随剂量的增加 而增加。
药物代谢物的组成、比例可因剂量改变而变化
案例二
左图为服用不同剂量阿司 匹林(0.25g、1.0g 及1.5g) 的消除曲线。直线部分消 除半衰期基本相同(t1/2分 别是3.1h、3.2h、3.2h), 总剂量的消除半衰期分别 为3.5h、7.2h、8.0h。 问题: 1. 随给药剂量的增加半衰 期如何变化? 2. 血药浓度、AUC是否按 剂量增加比例增加?
C中
(µmol· ml-1)
C t
0.500 1.515 1.961 2.208
1 C / t
2.000 0.660 0.510 0.453
1 / C中
(ml· µ mol-1)
C中 C / t
(h)
C / t C中
(h-1)
(µ mol· ml-1· h-1) (ml· h· µ mol-1)
第二节 非线性药物动力学方程
一、米曼氏方程
dC Vm C dt K m C
-dC/dt 指 t 时间药物浓度消除速率; Vm为该过程中理论上的最大速率(mg/L/h); Km为米氏常数(mg/L),是消除速率等于最大消除 速率的一半时,即-dC/dt=½Vm的药物浓度
Michaelis-Menten过程药物消除速率与浓度曲线
二、药物Michaelis-Menten动力学过程的特征
米曼方程描述的非线性药物动力学过程
可以用方程分段表示即:
dC Vm ·C dt K m
血药浓度很低时 (C<<Km) 血药浓度介于两者之间时 血药浓度很高时 (C>>Km)
dC Vm ·C dt K m C
dC Vm dt
线性药物动力学与非线性药物动力学比较
线性药物动力学 数学模型 线性微分方程 非线性药物动力学 M-M方程 不成正比
浓度与剂量关系 正比
AUC与剂量
t1/2
正比
常数,与剂量无关
不成正比
随剂量增加而增加
易出现非线性药物动力学现象的体内过程
药物可饱和的酶代谢过程 药物吸收、排泄可饱和的载体转运过程; 药物分布中可饱和的血浆/组织蛋白结合过程; 代谢产物抑制及酶诱导等其它特殊过程;
一、Km和Vm的计算
(一)以血药浓度变化速率求Km和Vm
Vm C中 C dC Vm C 由米氏方程 ,变化可得 t K m C中 dt K m C
Km 1 1 1 C / t Vm C 中 Vm 此式为LB(Lineweaver-Burk)表达式,以
案例三分析
乙醇在体内的代谢是通过乙醇脱氢酶和CYP2E1 进行的,消除过程属于饱和酶的代谢过程。因此 初始阶段体内乙醇浓度增加,代谢速率也随之增 加,但当体内乙醇达到一定浓度后,药物代谢酶 饱和,代谢速率将不再增加,维持在最大代谢速 率(约10g/h)不变,即使乙醇浓度再增加,代谢速 率也不可能增大,此时可造成体内乙醇浓度迅速 加大。 理论上讲,饮酒速率快,若每小时乙醇的摄入量 ﹥10g时即可发生醉酒、酒精中毒,甚至死亡。
第一节 非线性药物动力学简介
一、非线性药物动力学现象及含义
非线性药物动力学:一些药物的体内过 程,不能用一级速度方程或线性过程表示, 存在较明显的非线性过程,而表现出使体 内过程呈现与线性动力学不同的药物动力 学特征。这种药物动力学特征称为非线性 动力学(nonlinear pharmacokinetics)。
线性药物动力学(linear pharmacokinetics): 药物的体内动力学参数不因给药次数、给药 剂量的不同而发生变化,药物体内的动态量 变规律可以用线性微分方程来描述。 基 本 特 点
药物的t1/2,k,CL等参数 与剂量无关 AUC与剂量呈正比
案例一
苯妥英钠为临床常用抗癫痫药物,主要用于 癫痫大发作、局限性发作、精神运动性发作 及其它各种发作,对小发作无效。下图为某 患者口服不同剂量苯妥英钠血药浓度-时间半 对数图,曲线a给药剂量为2.3mg/kg,曲线b 给药剂量为4.7mg/kg,两剂量t1/2分别为24h、 52.9h。
• Eadie-Hofstee方程
C C Vm t K m t C中
C C / t 以 对 作图或回归,可根据斜 t C中
率求出Km,根据截距求出Vm
例题
• 某药物为一体内单纯非线性消除药物静 脉注射后不同时间血药浓度整理数据, 该药物血药浓度变化速率符合MichaelisMenten方程。C中为相近两点血药浓度平 均值,-△C/△t为浓度差△C与时间差△t 之比称平均消除速率。
药物吸收前的溶解及从剂型中释放存在的限速 过程。
二、非线性药物动力学的特点
药物消除速率符合Michaelis-Menten方程,即 低剂量(低浓度)时为一级动力学,高剂量(高浓 度)为零级动力学 药物消除半衰期随剂量增加而延长
血药浓度、AUC与剂量不成正比
其他药物可竞争酶或载体系统,影响药物的动 力学过程
1 5 9 13
1.000 0.200 0.111 0.077
2.000 3.300 4.590 5.889
0.500 0.303 0.218 0.170
第三节 非线性药物动力学参数的计算
• 具有非线性消除动力学特点的药物,静注后,血药 浓度的经时过程可通过米氏方程的积分式来表达。
Vm C dC dt Km C
dC (C K m ) Vm dt C
或 积分得
Km dC dC Vm dt C
积分 常数
C K m lnC Vm t i
口服不同剂量苯妥英钠时,生物半衰期不同,苯妥英钠的体内 动力学不符合线性动力学规律,属于非线性动力学研究范畴。
问题:
1.给药剂量增加 半衰期延长,是 否符合线性动力 学规律? 2.发生这一现象 的原因?如何描 述苯妥英钠的体 内动力学过程?
案例一分析
口服不同剂量苯妥英钠时,t1/2不同,因此苯妥英钠的体 内动力学不符合线性药物动力学规律,属于非线性药物 动力学。 苯妥英钠的非线性药物动力学现象,是由于苯妥英钠在 体内经肝微粒体酶代谢为无活性代谢产物,当给药剂量 小,药酶活性充足时,药物的消除速率与体内药量成正 比,表现为一级动力学过程(曲线a);当给药剂量超过酶 的代谢能力时,半衰期延长,表明药物的消除速率不随 剂量增加而成比例增大,为零级动力学过程(曲线b)。
三、产生非线性药物动力学的原因
容量限制系统(capacity-limited system):药物 的生物转化、肾小管排泄和胆汁分泌均涉及酶和 载体系统。这些系统对药物消除有特异性,并有 一定容量限制性。通常体内药物代谢酶活性以及 载体数量具有一定限度,当给药剂量及所产生的 体内药物浓度超过一定限度时,酶的催化能力和 载体转运能力达到饱和,其动力学呈现明显的剂 量(浓度)依赖性。 涉及容量限制系统的药物往往显示出非线性动力学
两边取倒数得 对
Km 1 作图得直线,其斜率为 V C中 m
1 ,截距为 ,即 Vm
1 C / t
可求得Km和Vm
• Hanes-Woolf 方程
C中 K m C中 C Vm V m t
• 以
C中 ΔC/Δt
对C中作图或回归,直线的斜率
1 Km 为 ,截距为 。 Vm Vm
案例五
某一非线性消除药物Km为6mg/L,Vm为2.0mg/L· h,按米曼方 程计算得消除速度以及消除速度与血药浓度的比值,如下表:
血药浓度(mg/L) 1000 900 800 400 300 100 10 1 0.1 0.01 0.001 消除速度(mg/L· h) 1.988 1.987 1.985 1.970 1.961 1.887 1.250 0.286 0.0328 0.0033 0.00033 消除速度/血药浓度(h-1) 0.001988 0.00221 0.00248 0.00493 0.00654 0.01887 0.1250 0.2860 0.3280 0.330 0.330
问题:分析非线性消除特征的药物血药浓度对消除速度的影响
案例五分析
当血药浓度处于低浓度(C<<Km)范围内, 消除速度随血药浓度呈线性增加,符合一 级动力学,消除速度与血药浓度的比值趋 近于Vm/Km≈0.33
当血药浓度高(C>>Km)范围时,消除速 度趋近最大值Vm≈2.0,近似零级消除 浓度介于两者之间为非线性消除。
思考题解析
• 解:(1)静脉注射给药10mg/kg, 则 C0=X0/V=10/20=0.5mg/L, 此时C0远小于Km,因此, -dC/dt=Vm/Km*C, 相当于一级动力学消除过程,消 除速度常数k= Vm/Km=20/50=0.4h-1 • (2)上述情况下,消除掉50%的药物所需的时间即消 除半衰期为t1/2=0.693/k=0.693/0.4=1.73h • (3) 静脉注射给药100mg/kg, 则 C0=X0/V=100/20=5mg/L, 该药物的消除动力学为非 线性过程,符合M-M方程, -dC/dt = Vm*C/Km学消除。若Km为50 µ g· ml-1, Vm为20 µ g· ml-1· h-1,V为20 L· kg-1。 • (1)如果单次给药10 mg· kg-1,这一剂量药物 的消除为几级过程? • (2)药物消除50%所需要的时间是多少? • (3)如果单次给药100 mg· kg-1,这一剂量药物 的消除为几级过程?
相关文档
最新文档