非线性药物动力学2016

合集下载

非线性药物动力学.

非线性药物动力学.

Km C0 C0 C ln t Vm C Vm ln C0 V C C m t 0 C Km Km
C0 C K m C0 t ln Vm Vm C C0 C Vm ln C ln C0 t Km Km C0 C Vm lg C ln C0 t 2.303K m 2.303K m (11 9)
药物
保泰松,水杨酸盐 卡那霉素,硫喷妥 甲氨蝶呤
青霉素G 抗坏血酸 水杨酸 氨基糖甙类 茶碱,乙醇
三、非线性药物动力学的特点
(1) 药物的消除不遵守简单的一级动力学过程,而遵 从Michaelis-Menten方程。
(2) 药物的消除半衰期随剂量增加而延长;
(3) 血药浓度和AUC与剂量不成正比;
4、用静脉注射后的lnC-t数据估算Km、Vm
C0 C Vm lnC lnC 0 t Km Km
在曲线尾段(低浓度时)为直线,将其外推,得直线方程为:
其中, lnC 为截距。 0 C0 C C0 所以, ln
Vm lnC lnC t Km
0
Km
C0
C0>>C,简化得:
C中
1/C中
C中/ΔC/Δt
107.0 98.5 89.5 67.5 33.2 10.65 3.20 0.975
0.0093 0.0102 0.0112 0.0148 0.0301 0.0939 0.3125 1.0256
13.375 10.944 9.944 7.714 3.952 3.704 3.765 3.707
力即达饱和,故其动力学呈现明显的剂量(浓度)
依赖性。表现为一些药物动力学参数随剂量不 同而改变,也称为剂量依赖药物动力学、容量限 制动力学或饱和动力学。

非线性药物动力学

非线性药物动力学
理论上讲,饮酒速率快,若每小时乙醇的摄入量 ﹥10g时即可发生醉酒、酒精中毒,甚至死亡。
四、非线性药物动力学的识别
判别关键:动力学参数是否随剂量的不同而变化
判别方法:iv高、中、低三个剂量,得到三组C-t 数据→进行以下数据处理→判断线性或非线性。
以各剂量AUC对相应的剂量作图,若AUC与相应的剂量呈线性关 系,则为线性动力学,否则为非线性
案例二分析
阿司匹林在体内是经酶代谢由尿排出体外的,是典型酶饱 和非线性消除动力学实例。
小剂量给药时(0.25 g),由于酶的活性与数量充足,未出现 饱和现象,其消除为一级动力学过程;当服用剂量较大 (≥1.0g)时,初始阶段消除过程在高剂量下酶达到饱和,表 现为零级消除,随着体内药量下降,消除过程逐渐脱离饱 和状态,体内药量降低到一定程度后,又恢复一级动力学 消除。
涉及容量限制系统的药物往往显示出非线性动力学
案例三
下图为乙醇体内消除速率与血药浓度曲线。从图 中可以看出:乙醇在体内的代谢速率随浓度增加 而加快,当达到一定浓度后,乙醇在体内的代谢 速率接近一个定值,且无论其浓度如何增加,乙 醇将以约10g/h的速率进行代谢。
问题:
1. 分析乙醇在体内表现 出显著的非线性药物动 力学特征的原因 2. 发生醉酒取决于饮酒 速率还是饮酒时间
过程。
二、非线性药物动力学的特点
药物消除速率符合Michaelis-Menten方程,即 低剂量(低浓度)时为一级动力学,高剂量(高浓 度)为零级动力学
药物消除半衰期随剂量增加而延长 血药浓度、AUC与剂量不成正比 其他药物可竞争酶或载体系统,影响药物的动
力学过程 药物代谢物的组成、比例可因剂量改变而变化
iv若干大小不同的剂量,以C/D(AUC/D)对t作图,曲线重叠 (比值相同)为线性,反之为非线性

非线性药物动力学

非线性药物动力学

非线性药物动力学的识别
静脉注射高中低3种剂量 高、中、低三种不同剂量,单次用药后的t1/2是否基本一致。如基本一 致则属于线性动力学药物,如t1/2明显随剂量的增加而延长,则属于非线性 动力学药物。
1、t1/2判断
2、AUC判断
可用单剂用药AUC0-或多剂用药达稳态后的AUC0- 线性:符合一级速率过程,AUC=C0/k,故AUC/剂量 高、中、低三种剂量比 值基本相等 非线性:根据非线性动力学特征,AUC/剂量 高、中、低三种剂量比值不等, 随剂量增高比值显著增大
3、Css判断
线性:Css/剂量 高、中、低三种剂量比值基本相等 非线性:Css/剂量 高、中、低三种剂量比值不等,随剂量增高比值显著增 大
4、血药浓度/剂量判断 高、中、低不同剂量给药后,取血样时间t相同,以血药浓度/剂量的比 值对时间t作图。 线性: 高、中、低三条线基本重合 非线性:高、中、低三条线不重合,如静脉给药
非线性药物动力学 (nonlinear pharmacokinetics)
掌握:
1.非线性药物动力学特点
2. 非线性药物学识别
非线性动力学
少数药物如苯妥英、双香豆素、阿司匹林、乙醇 的动力学行为遵循零级动力学或米氏动力学,即 非线性动力学。
这类药物在临床应用时应特别审慎,剂量的少许 增加会引起血药浓度的急剧增加,从而导致药物 中毒。
血 药 浓 度 /剂 量
血 药 浓 度 /剂 量
高 中

O
线性三条线基本重高 Leabharlann 低非线性三条线不重t
O
t
新药I期临床实验要在健康志愿者中进行耐受性 试验和药代动力学试验,均需进行高、中、低 三个不同剂量单次给药和连续给药试验,则可 用药代动力学试验所得的参数判断被试验药物

12 第七章 非线性药物动力学

12 第七章  非线性药物动力学

非线性动力学的原因?
药物在吸收、分布、生物转化过程中, 有些过程与酶或载体传递系统有关
吸收过程主动转运系统的饱和 分布过程中药物与血浆蛋白结合部位
的饱和 排泄过程中肾小管重吸收的饱和 病理变化而呈现出非线性动力学,如
氨基糖甙类药物
药物呈现剂量依赖动力学的吸收原因举例
原因 肠壁的可饱和转运
药物浓度,单位为浓度。
dC dt
1 2
Vm
1 2 Vm
VmC km C
km =C
当C<<km时, dC VmC dt km
令 Vm =k km
dC kC dt
在低浓度或小剂量时,由米氏方程可用一级动力学过程来描述
当C>>km时,
dC dt
Vm
消除速度与药物浓度无关,即属零级过程
药浓度对消除速度和速度常数的影响
原因 主动分泌 主动重吸收 尿pH的变化 可饱和的血浆蛋白结合 较高剂量时的肾中毒 利尿作用
药物 青霉素G 抗坏血酸 水杨酸 水杨酸 氨基糖甙类 茶碱,乙醇
药物呈现剂量依赖动力学的肾外消除原因举例
原因 容量—限制代谢,酶 饱和或协同因素的限制 可饱和的胆汁排泄
酶诱导 较高剂量时的肝中毒 可饱和的血浆蛋白结合
的影响。
100


A


10
B
1 时间
显示非线性过程(静脉注射)血药浓度-时间曲线 A:高剂量呈非线性过程 B:低剂量呈线性过程
三、非线性药物动力学方程(米氏方程)
米氏方程(Michaelis-Menten)
dC VmC dt km C
式中Vm为该过程的最大速度,单位为浓度时间-1; km为米氏常数,相当于该过程最大速度一半时的

第十一章 非线性药物动力学

第十一章 非线性药物动力学
第十一章 非线性药物动力学
第一节 概述 第二节 非线性药物动力学方程 第三节 函数方程及Vm和Km的计算 第四节 动力学参数的计算
1
第一节 概述
一、非线性药物动力学定义:
药物的体内过程不服从一级速度过程,为遵循米 氏方程的动力学过程,称为非线性动力学,也称 剂量依赖药物动力学、饱和动力学或容量限制动 力学
4)从药-时曲线中求算动力学参数,从药动学参数的
改变中评价非线性
9
第二节 非线性药物动力学方程
Michealis-Menten方程及意义
dc vm c dt km c
dc :药物在t 时间的下降速率 dt
vm :酶促过程理论最大速率
k m :米氏常数,即达最大速率一半时的血药浓度
10
vm 越大,酶活性越强,难以达到饱和
cdt km c dc vm
取从0─∞积分:
cdt
0 ( vm c )dt
0
c0
vm
则有:
AUC
c02 2vm
c0 vm
km
即AUC与剂量的平方成正比,剂量增大使AUC超比例增大。
27
本章要求
1、掌握非线性药物动力学的定义,特点与识别方法 2、熟悉非线性动力学的参数Vm与Km的估算方法 3、熟悉非线性药物动力学与线性药物动力学的清除
km 越小,剂量对酶饱和影响越大,剂量对非线
性形成有显著作用
vm km
也称药物固有的清除率(Cl int )
11
当C很小时,km c
则有:
dc vm c k c dt km
(线性过程)
当C很大时, c km
则有:
dc dt
vm c c
vm

第十一章 非线性药物动力学

第十一章  非线性药物动力学
作C-t图,如各曲线相互平行,表明在该剂量范围内为线性过
程,反之,则按非线性药动学处理
作C/X-t图,若所得各曲线明显不重叠,则可预计存在非线性 求各剂量下的AUC/X值,若明显不同,则为非线性 各数据按线性模型处理,计算药动学参数,若各剂量组的药
动学参数明显不同,则为非线性
二、非线性药动学方程

Michaelis—Menten方程
Vm C dC dt Km C
Vm为该过程的最大速率;Km为Michelis常数,相当于该过程 速率为最大消除速率一半时的血药浓度

当药物浓度很低时,Km>>C
dC Vm C dt Km
•当药物浓度很高时,C>>Km,
dC Vm dt
Km和Vm的估算
Vm C dC dt Km C
将瞬时消除速率度以间隔内的血药浓度平均变化速率 表示,C以平均血药浓度Cm(即Δt时间内开始血药浓 度与末尾血药浓度的平均值)
Km 1 1 C / t VmC中 Vm
以ΔC/Δt的倒数值对Cm的倒数作图得一直线,根据其 截距求得Vm,并根据斜率可求得Km。
AUC
AUC
0
C0 C0 C0 1 0 Cdt tdC (C0 C K m ln )dC ( K m ) C0 Vm C0 C Vm 2 X0 X0 AUC ( Km ) Vm V 2V
0
当剂量低到X0/2V<<Km时,上式可化为
X0 AUC Km Vm V
以 对C中作图可得一直线,根据直线的斜率求得Vm,同时 根据截距可求得Km
C中 C / t
两边同时乘以 (C / t )Vm ,则可得

生物药剂学与药物动力学-非线性药物动力学

生物药剂学与药物动力学-非线性药物动力学

C (Km C) Km C
当Km>>C时,
Cl Vm V KV Km
当Km<<C时,
Cl VmV C
(2)t1/2
将米氏方程重排:
dc VmC dt Km C
dC C
(C
Km
)
Vmdt
C 0
dC C
(C
Km
)
t
0 Vmdt
C
(dC)
C0
C dC C0 C Km Vm
故Vm=1/a=1/0.2444=4.092(ug/ml)h-1. Km=bVm=2.5944×4.092=10.616(ug/ml)
(三)、Cl、t1/2、V求算 1 、单具有非线性消除过程的药物
(1)Cl
Q
dc
d
X V
dX
VmC
dt dt
Vdt Km C
dX dt
VmV
VmV Cl
第十一章 非线性药物动力学
Nonlinear Pharmacokinetics
一、概述
线性药物动力学: 其基本特征是血药浓度与体内药量(包括各组织间的 转运量)成正比,药物的体内过程属于一级速度过程,可以用线性微分方程组 来描述,半衰期与剂量无关是一常数。
非线性药物动力学: 有些药物在体内的过程(吸收、分布、代谢、排泄) 有酶或载体参加,而体内的酶或载体数量均有一定限度,当给药剂量及其所 产生的体内浓度超过一定限度时,酶的催化能力和载体转运能力即达饱和, 故其动力学呈现明显的剂量(浓度)依赖性。表现为一些药物动力学参数随 剂量不同而改变(p249表11-1),因此也称为剂量依赖药物动力学、容量限制 动力学或饱和动力学
t
• 1、如用Cm/(-C/ t)对Cm作图,斜率= 1/Vm,截距=Km/Vm。

非线性药物动力学非线性动力学参数的估算

非线性药物动力学非线性动力学参数的估算

t
第十一章 非线性药物动力学
第三节 血药浓度与时间关系及参数的计算
二、非线性动力学参数的估算
(一) Km及Vm的求算:根据-dC/dt 求算
1.以血药浓度变化率求Km和Vm
瞬时速度以平均速度表示
C以平均血药浓度C中表示
dC Vm.C dt Km C
1
C /
t

Km Vm .C中
AUC
t1/2
k
X0
X0
X0
注:图中实线表示非线性,虚线表示线性
第十一章 非线性药物动力学
第一节 概述
一、非线性药物动力学现象
引起非线性药物动力学的原因 与药物代谢或生物转化有关的可饱和酶代谢过程。 与药物吸收、排泄有关的可饱和载体转运过程。 与药物分布有关的可饱和血浆/组织蛋白结合过程。 酶诱导及代谢产物抑制等其他特殊过程。
第十一章 非线性药物动力学
第一节 概述
一、非线性药物动力学现象
药物转运的速度过程
0 级速度过程
速度式
dC k dt
1 级速度过程
dC kC dt
C-t关系 C = -kt + C0 logC =kt/2.303+logC0
半衰期
t1/2 = C0 / 2K
t1/2 = 0.693 / K
第十一章 非线性药物动力学
第二节 非线性动力学方程
二、Michaelis-Menten方程的动力学特征
C

Km时,
dC dt
Vm
为零级速率过程
-dC/dt
dC Vm.C dt Km C
零级动力学 一级动力学
Km
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3、药时曲线下面积
VmC dC dt K m C VmCdt ( K m C )dC Km C Cdt dC Vm AUC0
0
Km C Cdt dC C0 Vm
0
0 C Km dC dC C0 C0 V Vm m 0
-dC/dt :药物在体内的消除速度 Vm : 理论上的最大消除速度 Km : 米氏常数,相当于消除速度为理论最大值一 半时的药物浓度 Km :的单位是浓度单位,其值为-dC/dt=1/2Vm时的 血药浓度值。
具Michaelis-Menten过程的药物动 力学特征
(1) 当km>>C时, km C km
C中
1/C中
C中/ΔC/Δt
107.0 98.5 89.5 67.5 33.2 10.65 3.20 0.975
0.0093 0.0102 0.0112 0.0148 0.0301 0.0939 0.3125 1.0256
13.375 10.944 9.944 7.714 3.952 3.704 3.765 3.707
C
0
C0 C0 C K m ln Vmt C C0 C0 C K m ln C t Vm
当t=t1/2时,则
当用药量小时,即C0<<Km,则
t1/ 2
0.693K m Vm
符合线性规律。
当用药量大时,即C0>>Km,t1/2依赖于浓度,随 剂量的增加而延长。 如阿斯匹林:剂量 0.25g 1.0g 1.5g t1/2 3.1h 7h 8h 可见剂量增加,半衰期延长,但三条曲线不管剂 量如何,当体内药物浓度充分降低后,消除总是 符合一级动力学过程。
其中,R为剂量/天或给药速度
5、根据不同给药剂量D与相应稳态血药浓度 CSS计算Km、Vm
直接计算法 将给药剂量及其对应的稳态血药浓度分别代入,得:
Vm Css1 R1 K m Css1
R2 Vm Css2 K m Css2
Km R 2 R1 R1 R2 Css1 Css2
Km C0 C0 C ln t Vm C Vm ln C0 V C C m t 0 C Km Km
C0 C K m C0 t ln Vm Vm C C0 C Vm ln C ln C0 t Km Km C0 C Vm lg C ln C0 t (11 9) 2.303K m 2.303K m
药物
保泰松,水杨酸盐 卡那霉素,硫喷妥 甲氨蝶呤
青霉素G 抗坏血酸 水杨酸 氨基糖甙类 茶碱,乙醇
三、非线性药物动力学的特点
(1) 药物的消除不遵守简单的一级动力学过程,而遵 从Michaelis-Menten方程。
(2) 药物的消除半衰期随剂量增加而延长;
(3) 血药浓度和AUC与剂量不成正比;
将米氏方程重排:
VmC dc dt K m C dC (C K m ) Vm dt C C t dC 0 C (C K m ) 0 Vm dt
dC t C0 (dC ) C0 C K m Vm t 0
C C
C C0 K m ln C C Vmt
Km 1 1 C VmCm Vm t
(11-10)
以平均速度(C/ t)代替瞬时速度(dC/dt), 以平均血药浓度C中代替C, C中为时间t内开始 血药浓度与终末血药浓度的平均值。 用1/(-C/ t)对1/Cm作图,斜率为Km/Vm,截 距为1/Vm。
2. 用Hanes-Woolf方程计算
力即达饱和,故其动力学呈现明显的剂量(浓度)
依赖性。表现为一些药物动力学参数随剂量不 同而改变,也称为剂量依赖药物动力学、容量限 制动力学或饱和动力学。
如临床上用水杨酸盐:
剂量: Css
:
0.5g/8h→1.0g/8h 1倍 → 6倍 →7天
达稳态所需时间: 2天
临床上由于药物非线性动力学所引起的这些问题, 应引起足够的重视,否则会造成药物中毒。
力即达饱和,故其动力学呈现明显的剂量(浓度)
依赖性。表现为一些药物动力学参数随剂量不 同而改变,也称为剂量依赖药物动力学、容量限 制动力学或饱和动力学。
非线性药物动力学:
有些药物在体内的过程(吸收、分布、代谢、 排泄)有酶或载体参加,而体内的酶或载体数量 均有一定限度,当给药剂量及其所产生的体内浓 度超过一定限度时,酶的催化能力和载体转运能
t 1 2 3 4 8 12 16 20 24
C Δt -ΔC -ΔC/Δt -1/ΔC/Δt 111 103 1 8.0 8.0 0.125 94 1 9.0 9.0 0.111 85 1 9.0 9.0 0.111 50 4 35.0 8.75 0.114 16.4 4 33.6 8.4 0.119 4.9 4 11.5 2.875 0.348 1.5 4 3.4 0.85 1.176 0.45 4 1.05 0.263 3.802
1 、单纯非线性消除过程的药物 (1)Cl X
dc dt d V dX VmC dt Vdt K m C
dX VmV VmV dt Cl C (Km C ) Km C
当Km>>C时,
VmV Cl Km
VmV 当Km<<C时, Cl C
(2)t1/2
行耐受性试验和药代动力学试验,均需进
行高、中、低三个不同剂量单次给药和连
续给药试验,则可用药代动力学试验所得
的参数判断被试验药物是否具有非线性动
力学性质。
Michaelis-Menten Equation
第二节 非线性药物动力学方程
VmC dC dt K m C
-dC/dt Vm 2 1 O k m C

0
C0 C0 Cdt= ( K m ) Vm 2
(二)、Km和Vm的计算
1 用Lineweaver-Burk方程计算
Vm C Km dc 1 1 dc VmC Vm dt Km C dt Km 1 1 ( p 255,11 10) C Vm Cm Vm t Cm K m Cm ( p 256,11 11) C V V m m t

dC dt

Vm C km C

Vm km
C
因此在低浓度或小剂量时,药物体内
消除呈现一级动力学特征。
消除速率常数 k Vm / km
(2) 当C>>km时,
km C C

dC dt

Vm C km C

Vm C C
Vm
在此情况下消除速度与药物浓度无
关,即药物以恒定的速度Vm消除,属零
非线性药物动力学
(nonlinear pharmacokinetics)
第一节 概述
一、药物体内过程的非线性现象
线性药物动力学的基本特征是血药浓 度与体内药物量成正比,药物在机体内的 动力学过程可用线性微分方程组来描述。
非线性药物动力学:
有些药物在体内的过程(吸收、分布、代谢、 排泄)有酶或载体参加,而体内的酶或载体数量 均有一定限度,当给药剂量及其所产生的体内浓 度超过一定限度时,酶的催化能力和载体转运能
4、血药浓度/剂量判断
高、中、低不同剂量给药后,取血样时间t相 同,以血药浓度/剂量的比值对时间t作图。 线性: 高、中、低三条线基本重合 非线性:高、中、低三条线不重合 ;如静脉给药:
血 药 浓 度 /剂 量
血 药 浓 度 /剂 量
OБайду номын сангаас
高 中

高 中 低
t
O
t
线性三条线基本重合
非线性三条线不重合
新药I期临床实验要在健康志愿者中进
Cm K m Cm C Vm Vm t
用Cm/(-C/ t)对Cm作图,斜率=1/Vm, 截距=Km/Vm
一体重50 kg的患者静注水杨酸钠500 mg,得C-t数据如下,求药 动学参数。 t (h) 1 2 3 4 8 12 16 20 24 C(μg/ml) 111 103 94 85 50 16.4 4.9 1.5 0.45
苯妥英钠治疗癫痫。
苯妥英的血药浓度:10-20ug/ml 20-30ug/ml 30-40ug/ml >40ug/ml 治疗所需浓度
出现眼球震颤 出现运动失调 出现共济失调和精神症状
当血药浓度在10-18ug/ml时已具有非线性动力学性质。
苯妥英钠:生物利用度增加10%, Css增加60%
二、引起非线性药物动力学的原因
4、用静脉注射后的lnC-t数据估算Km、Vm
C0 C Vm lnC lnC 0 t Km Km
在曲线尾段(低浓度时)为直线,将其外推,得直线方程为:
其中, lnC 为截距。 0 C0 C C0 所以, ln
Vm lnC lnC t Km
0
Km
C0
C0>>C,简化得:
级过程。
(3)当C介于以上两种情况之间的时候,
药物的消除速度随着剂量的增加而减小, 而药物的消除半衰期随着剂量的增加而增 加。
第三节 血药浓度与时间关系及参数的计算
一、血药浓度与时间的关系
静脉注射:
Vm C dc dt Km C Km dC Vm dt C Km dC dC Vm dt C C K m ln C Vm t i dC t 0, C C0 i C0 K m ln C0 C K m ln C Vm t C0 K m ln C0
C0 Km ln(C 0 / C0 )
相关文档
最新文档