七年级数学尖子生培优竞赛专题辅导第五讲一元一次方程

合集下载

【七年级数学代数培优竞赛专题】专题15 含字母的一元一次方程【含答案】

【七年级数学代数培优竞赛专题】专题15 含字母的一元一次方程【含答案】

第四章 一元一次方程章前导学本章的重点是一元一次方程及其解法和运用一元一次方程来解决实际问题.我们依据本章的重点安排了五个提高的内容:1.利用一元一次方程和一元一次方程的解的概念求方程中字母的值以及如何求解含有字母系数的方程.2.根据方程的特点,利用整体法、巧去括号、裂项等方法灵活求解方程和如何求解含绝对值的方程.3.运用一元一次方程来解决行程、销售和分档的实际问题.4.运用一元一次方程来解决钟面和数轴上的问题.5.根据实际问题的具体情况,通过间接设未知数或设辅助未知数来解决实际问题.专题15 含字母的一元一次方程知识解读1.根据方程及方程的解的概念求方程中字母的值使方程左右两边相等的未知数的值是方程的解.因此将方程的解代人方程中,方程的左右两边能够相等。

2.根据整数解求方程中字母的值 一元一次方程的解为整数,即当解为b x a =时,整数b 能被整数a 整除。

3.字母系数方程解的情况方程ax b =的解有三种情况:当0a ≠时,b x a=;当0,0a b ==时,即00x =,方程有任意解;当0,0a b =≠时,即0x b =,方程无解.培优学案典例示范1. 根据方程及方程的解的概念求方程中字母的值例1 若3223kkx k -+=是关于x 的一元一次方程,求这个方程的解. 【提示】由题意可知312k -=,且0k ≠.【技巧点评】跟踪训练1若方程(m2-1)x2-mx+8=x是关于x的一元一次方程,则代数式m2008-1m-的值为_________.例2(1)若方程121112102x xx+--=-与方程2x+62a x-=a-2的解相同,求233a a-的值;(2)关于x的方程与132m x+=4的解是2311346x m x---=的解的5倍,求m的值.【提示】(1)先求出方程121112102x xx+--=-的解,再根据题意将这个解代入后一个方程,求出a;(2)先将两个方程中的m看成已知数,求出两个方程的解(用含m的式子表示),再根据题意列出关于m的方程来求出m.【技巧点评】跟踪训练2(1)已知关于x的方程323a x bx--=的解是x=2,其中a≠0且b≠0,求代数式a bb a-的值;(2)若方程3(x一k)=2(x+1)与62k xk-=的解互为相反数,求k的值.2.根据整数解求方程中字母的值例3 若关于x的方程9x-17=kx的解为正整数,求整数k的值.【提示】先解方程,把x的值用k的代数式表示,再利用整除性求出整数k的值. 【技巧点评】跟踪训练3已知关于x的方程31223x mx-+=有整数解,求满足条件的所有整数m.3.字母系数方程解的情况例4解方程11x x m n m n mn--+-=.【提示】先将方程化成ax=b的形式,再分类讨论方程解的情况.【技巧点评】跟踪训练4问当a,b满足什么条件时,方程2x+5-a=1-b;(1)有唯一解;(2)有无数个解;(3)无解.培优训练直击中考1.★(湖南永州)x=1是关于x的方程2x﹣a=0的解,则a的值是()A.﹣2 B.2 C.﹣1 D.12.★(2017·湖北孝感)方程3123x x+-=的解是________.3.★(2017·黑龙江)已知关于x的方程3x-a=号x-1的解是非负数,那么a的取值范围是________.4.★已知关于x 的方程23x m m x -=+与12x +=3x -2的解互为倒数,求m 的值.5.★已知关于y 的方程4y +2n =3y +2和方程3y +2n =6y -1的解相同,求n 的值.6.★★当整数m 取什么数时,关于x 的方程15142323mx x ⎛⎫-=- ⎪⎝⎭的解是正整数?7.★★已知关于x 的方程a (2x -1)=3x -2无解,试求a 的值.挑战竞赛1.(江苏省竞赛试题)已知a 是任意有理数,在下面各题中结论正确的个数是( ) ①方程ax =0的解是x =1;②方程ax =a 的解是x =1;③方程ax =1的解是x 1a=;④方程|a |x =a 的解是x =±1.A .0B .1C .2D .3 2.★太(希望杯试题)当b =1时,关于x 的方程a (3x ﹣2)+b (2x ﹣3)=8x ﹣7有无数多个解,则a 等于( )A .2B .﹣2C .23-D .不存在 3.★★若k 为整数,则使得方程(k ﹣1999)x =2001﹣2000x 的解也是整数的k 的值有( ) A .4个 B .8个 C .12个 D .16个4.★★★(希望杯试题)已知p,q都是质数,并且以x为未知数的一元一次方程px+5q=97的解是1,求代数式40p+101g+4的值.5.★★★(山东省竞赛试题)如果a,b为定值,关于x的方程程2236ka x x bk+-=+无,当k取14以外的任何值时,它的解总是1,求a,b的值.。

初一奥数提高班第05讲-一元一次方程

初一奥数提高班第05讲-一元一次方程

第5讲一元一次方程一重要知识点回顾方程是中学数学中最重要的内容.最简单的方程是一元一次方程,它是进一步学习代数方程的基础,很多方程都可以通过变形化为一元一次方程来解决.本讲主要介绍一些一元一次方程的解的情况.1)只含有一个未知数(又称为一元),且其次数是1的方程叫作一元一次方程.任何一个一元一次方程总可以化为ax=b(a≠0)的形式,这是一元一次方程的标准形式(最简形式).2)解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项,化为最简形式ax=b;(5)方程两边同除以未知数的系数,得出方程的解.3)一元一次方程ax=b的解由a,b的取值来确定:(2)若a=0,且b=0,方程变为0·x=0,则方程有无数多个解;(3)若a=0,且b≠0,方程变为0·x=b,则方程无解.二.典型例题分析:例1解关于x的方程(mx-n)(m+n)=0.例2:已知(m2-1)x2-(m+1)x+8=0是关于x的一元一次方程,求代数式199(m+x)(x-2m)+m的值.例3:已知关于x的方程a(2x-1)=3x-2无解,试求a的值.例4 已知关于x的方程且a为某些自然数时,方程的解为自然数,试求自然数a的最小值.三.拓展练习(一).填空题1.若关于x 的方程x+2=a 和2x -4=3a 有相同的解,则 a= .2.一个三位数,三个数位上的数字和是17,百位上的数比十位上的数大7,个位上的数是十位上数的3倍,这个三位数是 .3.关于x的方程19x -a=0的解为19-a,则a=__________.4.若关于x 的方程5x+1=a(2x+3)无解,则a=__________5.若关于x 的方程 ︳2x -1 ︳+m=0无解,则m=____________.(二).选择题6.若2a 与1-a 互为相反数,则a 等于( )A. 0B. -1C. 1D. -27.当3<a <8时,关于x 的方程3x -8=a(x -1)的解是( )A. 无解B.正数C. 零D.负数8.要使方程ax=a 的解为1,则( )A.a 可取任何有理数B.a >0C. a <0D.a ≠09.关于x 的方程ax+3=4x+1的解为正整数,则a 的值为( )A. 2B. 3C.1或2D.2或310.关于x 的方程3x -4=a -bx 有无穷多个解,则a. b 的值应是( )A. a=4, b=-3B.a=-4, b=-3C. a=4 , b=3D.a .b 可取任意数(三)解答题11.解关于x 的方程(1) k(x -2)=3x -1 (2)ax -b=cx +d12.已知y=1是方程2- (m -y)=2y 的解,解关于x 的方程:m(x+4)=2mx -4.13.已知方程2ax=(a +1)x+6,求a 为何整数时,方程的解是正整数.1314.若(3a+2b)x2+ax+b=0是关于x的一元一次方程,且x有唯一解,求这个解.15.当k取何值时,关于x的方程3(x+1)=5-kx,分别有:(1)正数解;(2)负数解;(3)不大于1的解.四.课后作业1.解关于x的方程(1)ax=1+x2.已知关于x的方程a(2x-1)=4x+3b,当a、b为何值时:(1)方程有唯一解? (2)方程有无数解? (3)方程没有解?3.(1)关于x的方程4k(x+2)-1=2x无解,求k的值;(2)关于x的方程kx-k=2x-5的解为正数,求k的取值范围.。

七年级上册奥数竞赛题动点动角一元一次方程

七年级上册奥数竞赛题动点动角一元一次方程

七年级上册奥数竞赛题动点动角一元一次方程七年级上册奥数竞赛题中的动点动角和一元一次方程问题是一个经典而有趣的数学题型。

通过分析这类题目的具体操作方法以及推理论点,我们可以得出实践导向的结论,并进一步阐释相关问题。

本文将围绕这个主题,通过举例说明具体操作方法,分析性循序推理论点,并给出实践导向的结论,同时还会添加更多细节和深入相关信息。

动点动角问题是指在一个平面上,给定一个动点和一个初始角度,根据一定的规则,求解该动点在不同时间点上的位置。

在七年级上册的奥数竞赛中,常常出现这样的问题:已知一个动点以一定的角速度和初始角度在平面上运动,求解该动点在某个特定时间点上的位置坐标。

举一个例子,假设一个小车以每秒30度的角速度顺时针旋转,并且初始角度为0度。

那么在经过2秒后,我们可以通过一元一次方程来计算小车的位置坐标。

首先,我们可以设小车的初始坐标为原点O,然后根据角速度和时间的关系,可以得出小车在经过t秒后的角度A为A=30t。

接下来,我们需要利用三角函数的知识来求解小车的位置坐标。

在平面直角坐标系中,我们可以将小车的位置坐标表示为(x, y),其中x表示小车与y轴的距离,y表示小车与x轴的距离。

根据三角函数的定义,我们可以得出x=cosA和y=sinA。

代入A=30t,我们可以得到x=cos(30t)和y=sin(30t)。

因此,小车在经过2秒后的位置坐标可以表示为(x, y)=(cos(30*2), sin(30*2))。

通过这个例子,我们可以看出动点动角问题与一元一次方程的关联。

在解决这类问题时,我们需要将动点的运动过程转化成角度的变化,并利用三角函数的知识求解其位置坐标。

这就涉及到了一元一次方程的运用,即将时间作为未知数,通过角速度和初始角度的关系来建立方程,从而求解所需的位置坐标。

通过分析这类问题,我们可以得出以下实践导向的结论:在解决动点动角问题时,我们需要熟练掌握角速度和初始角度的概念,以及角度与位置坐标之间的关系。

七年级数学尖子生培优竞赛专题辅导第五讲 一元一次方程

七年级数学尖子生培优竞赛专题辅导第五讲 一元一次方程
(2) 是我们熟悉的式子,于是左边反用乘法分配律,提出一个x,剩下的就可以用裂项法进行化简.一般的,
二、一元一次方程根的存在性讨论
一元一次方程最终都可化成ax=b的形式
显然,当a≠0时,方程有唯一的实数根;
当a=0且b=0时,方程有无数根;
当a=0且b≠0时,方程无根。
反之亦然。
例2(第11届“希望杯”竞赛试题)Ifa2+b2>0,then theequation ax+b=0,for x has()
3.关于 的方程 有唯一解,则 应满足的条件是_______.
4.已知方程 的解在2与10之间(不包括2和10),则 的取值为____.
5.已知 ,那么 ________
6.一个六位数左端的数字是1,如果把左端的数字移到右端,那么所得的六位数等于原数的3倍,则原数为()
A.142857 B.157428 C.124875 D.175248
例2若方程(2a+1)x2+bx+c=0表示关于字母x的一元一次方程,则有().
A.a= ,b≠0,c为任意数B.a≠ ,b≠0,c=0
C.a=- ,b≠0,c≠0D.a=- ,b≠0,c为任意数
解析:∵(2a+1)x2+bx+c=0是关于x的一次方程,

∴a=- ,b≠0,对c无要求,故选D.
点评:考查一元一次方程的定义,只含个未知数,且未知数的次数是1.
A.only one root(根)B.no root
C.infinite(无数)rootsD.only one root or no root
解析:∵a2+b2>0,
∴a、b不全为零,即a≠0,b≠0,或a=0,b≠0,或a≠0,b=0

七年级数学《一元一次方程》教案

七年级数学《一元一次方程》教案

七年级数学《一元一次方程》教案七年级数学《一元一次方程》教案(精选10篇)作为一名教职工,时常要开展教案准备工作,教案有助于顺利而有效地开展教学活动。

那么优秀的教案是什么样的呢?下面是店铺收集整理的七年级数学《一元一次方程》教案,希望对大家有所帮助。

七年级数学《一元一次方程》教案篇1教学内容:人教版七年级上册3.1.1一元一次方程教学目标:知识与技能:1、理解一元一次方程,以及一元一次方程解的概念。

2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。

3、掌握检验某个数值是不是方程解的方法。

过程与方法:在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用新知识解决实际问题的能力。

情感态度和价值观:让学生体会到从算式到方程是数学的进步,体现数学和日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学生学习数学的热情。

教学重点:建立一元一次方程的概念,寻找相等关系,列出方程。

教学难点:根据具体问题中的相等关系,列出方程。

教学准备:多媒体教室,配套课件。

教学过程:设计理念:数学教学要从学生的经验和已有的知识出发,创设有助于学生自主学习的问题情景,在数学教学活动中要创造性地使用数学教材。

课程标准的建议要求教师不再是“教教材”而是“用教材”。

本节课在抓住主要目标,用活教材,针对学生实际、激活学生学习热情等方面做了有益的探索,现就几个教学片断进行探讨。

一、游戏导入,设置悬念师:同学们,老师学会了一个魔术,情你们配合表演。

请看大屏幕,这是2006年10月的日历,请你用正方形任意框出四个日期,并告诉老师这四个数字的和,老师马上就告诉你这四个数字。

生1:24,师:2,3,9,10生2:84师:17,18,24,25师:同学们想学会这个魔术吗?生:想!师:通过这节课的学习,同学们一定能学会!一些教师常用教材的章前图或者行程问题情景导入,但章前图过于平淡且较难,不易激发学生兴趣,本次课用游戏导入激发学生的求知欲,其实质是列一元一次方程x+(x+1)+(x+7)+(x+8)=任意框出的四个日期的和,x是第一个日期,这是本次课的第一个变化。

七年级一元一次方程培优

七年级一元一次方程培优

七年级一元一次方程培优--------------------------------------------------------------------------作者: _____________--------------------------------------------------------------------------日期: _____________七年级上册《一元一次方程》培优专题一:一元一次方程概念的理解:例:若()2219203m x x m --+=+是关于x 的一元一次方程,则方程的解是 。

练习:1.()()221180m x m x --+-=是关于x 的一元一次方程,则代数式()()199231101m m m +-++的值为2.若方程()()321x k x -=+与62k x k -=的解互为相反数,则k= 。

3.若k 为整数,则使得方程()199920012000k x x -=-的解也是整数的k 值有( )A.4个B.8个C.12个D.16个 专题二:一元一次方程的解法(一)利用一元一次方程的巧解:例: (1)0.2•表示无限循环小数,你能运用方程的方法将0.2•化成分数吗?(2)0.23••表示无限循环小数,你能运用方程的方法将0.23••化成分数吗?(二)方程的解的分类讨论:当方程中的系数是用字母表示时,这样的方程叫含字母系数的方程,含字母系数的一元一次方程总可以华为ax=b 的形式,继续求解时,一般要对字母系数a 、b 进行讨论。

(1)当0a ≠时,方程有唯一解b x a=;(2)当0,0a b =≠时,方程无解;(3)当0,0a b ==时,方程有无数个解。

例:已知关于x 的方程()2132a x x -=-无解,试求a 的值。

练习:1.如果a ,b 为定值,关于x 的方程2236kx a x bk +-=+,无论k 为何值,它的根总是1,求a ,b 的值。

北师大版七年级数学上册知识点归纳:第五章一元一次方程

北师大版七年级数学上册知识点归纳:第五章一元一次方程

一元一次方程知识点(一)、方程的有关概念1. 方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次),这样的方程叫做一元一次方程. 例如: 1700+50x=1800, 2(x+1.5x )=5等都是一元一次方程. (例1)3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解. (例2)注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程.⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.(二)、等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.等式的性质(1)用式子形式表示为:如果a=b ,那么a ±c=b ±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c ≠0),那么a c =b c(三)、移项法则:把等式一边的某项变号后移到另一边,叫做移项.(例3)(四)、去括号法则1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.(五)、解方程的一般步骤(例4)1. 去分母(方程两边同乘各分母的最小公倍数)2. 去括号(按去括号法则和分配律)3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4. 合并(把方程化成ax = b (a ≠0)形式)5. 系数化为1(在方程两边都除以未知数的系数a ,得到方程的解x=b a). 一.列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.二、一元一次方程的实际应用1. 和、差、倍、分问题:增长量=原有量×增长率 现在量=原有量+增长量(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.例1:兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?解:设x 年后,兄的年龄是弟的年龄的2倍,则x 年后兄的年龄是15+x ,弟的年龄是9+x .(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3•年后具有相反意义的量)2. 等积变形问题:(1)“等积变形”是以形状改变而体积不变为前提.常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积.(2) 常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S ·h =h r 2π ②长方体的体积 V =长×宽×高=abc例2 将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,π≈3.14). 解:设圆柱形水桶的高为x 毫米,依题意,得3. 工程问题:工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=1例3. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?解:设乙还需x 天完成全部工程,设工作总量为单位1,由题意得,(115+112)×3+x 12=1 4.行程问题:路程=速度×时间 时间=路程÷速度 速度=路程÷时间(1)相遇问题: 快行距+慢行距=原距(2)追及问题: 快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.例4. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

专题5.3求解一元一次方程(1)-2021年七年级数学上册尖子生同步培优题库(教师版含解析)【北师大

专题5.3求解一元一次方程(1)-2021年七年级数学上册尖子生同步培优题库(教师版含解析)【北师大

2020-2021学年七年级数学上册尖子生同步培优题典【北师大版】专题5.3求解一元一次方程(1)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•慈利县期末)已知代数式2x﹣6与3+4x的值互为相反数,那么x的值等于()A.2B.−12C.﹣2D.12【分析】利用相反数的性质列出方程,求出方程的解即可得到x的值.【解析】根据题意得:2x﹣6+3+4x=0,移项合并得:6x=3,解得:x=1 2,故选:D.2.(2019秋•沭阳县期末)方程−12x−5=0的解为()A.﹣4B.﹣6C.﹣8D.﹣10【分析】方程移项后,把x系数化为1,即可求出解.【解析】方程移项得:−12x=5,解得:x=﹣10,故选:D.3.(2019秋•赣榆区期末)已知2a+3与5互为相反数,那么a的值是() A.1B.﹣3C.﹣4D.﹣1【分析】利用相反数性质列出方程,求出方程的解即可得到a的值.【解析】根据题意得:2a+3+5=0,移项合并得:2a=﹣8,解得:a=﹣4,故选:C.4.(2019秋•沈北新区期末)在解方程3x+5=﹣2x﹣1的过程中,移项正确的是()A.3x﹣2x=﹣1+5B.﹣3x﹣2x=5﹣1C.3x+2x=﹣1﹣5D.﹣3x﹣2x=﹣1﹣5【分析】移项是解方程的一个重要步骤,主要记住移项要变号.【解析】方程3x+5=﹣2x﹣1移项得:3x+2x=﹣1﹣5.故选:C.5.(2018秋•亭湖区校级期末)下列解方程的过程中,移项错误的是()A.方程2x+6=﹣3变形为2x=﹣3+6B.方程2x﹣6=﹣3变形为2x=﹣3+6C.方程3x=4﹣x变形为3x+x=4D.方程4﹣x=3x变形为x+3x=4【分析】利用等式的基本性质1求解可得.【解析】A.方程2x+6=﹣3变形为2x=﹣3﹣6,此选项错误;B.方程2x﹣6=﹣3变形为2x=﹣3+6,此选项正确;C.方程3x=4﹣x变形为3x+x=4,此选项正确;D.方程4﹣x=3x变形为x+3x=4,此选项正确;故选:A.6.(2019秋•辛集市期末)若代数式7﹣2x和5﹣x互为相反数,则x的值为()A.2B.﹣4C.4D.0【分析】首先根据:代数式7﹣2x和5﹣x互为相反数,可得:7﹣2x=﹣(5﹣x),然后根据解一元方程的方法,求出x的值为多少即可.【解析】根据题意,可得:7﹣2x=﹣(5﹣x),去括号,可得:7﹣2x=﹣5+x,移项,合并同类项,可得:﹣3x=﹣12,系数化为1,可得:x=4.故选:C.7.(2019秋•杭州期末)将连续的奇数1、3、5、7、9、,按一定规律排成如图:图中的T字框框住了四个数字,若将T字框上下左右移动,按同样的方式可框住另外的四个数.若将T字框上下左右移动,则框住的四个数的和不可能得到的数是()A.22B.70C.182D.206【分析】由题意,设T字框内处于中间且靠上方的数为2n﹣1,则框内该数左边的数为2n﹣3,右边的为2n+1,下面的数为2n﹣1+10,故T字框内四个数的和为:8n+6.【解析】由题意,设T字框内处于中间且靠上方的数为2n﹣1,则框内该数左边的数为2n﹣3,右边的为2n+1,下面的数为2n﹣1+10,∴T字框内四个数的和为:2n﹣3+2n﹣1+2n+1+2n﹣1+10=8n+6.故T字框内四个数的和为:8n+6.A、由题意,令框住的四个数的和为22,则有:8n+6=22,解得n=2.符合题意.故本选项不符合题意;B、由题意,令框住的四个数的和为70,则有:8n+6=70,解得n=8.符合题意.故本选项不符合题意;C、由题意,令框住的四个数的和为182,则有:8n+6=182,解得n=22.符合题意.故本选项不符合题意;D、由题意,令框住的四个数的和为206,则有:8n+6=206,解得n=25.由于数2n﹣1=49,排在数表的第5行的最右边,它不能处于T字框内中间且靠上方的数,所以不符合题意.故框住的四个数的和不能等于206.故本选项符合题意;故选:D.8.(2019秋•北仑区期末)右图是“大润发”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为()A.22元B.23元C.24元D.26元【分析】设出洗发水的原价是x元,直接得出有关原价的一元一次方程,再进行求解.【解析】设洗发水的原价为x元,由题意得:0.8x=19.2,解得:x=24.故选:C.9.(2012•山西模拟)服装店同时销售两种商品,销售价都是100元,结果一种赔了20%,另一种赚了20%,那么在这次销售中,该服装店()A.总体上是赚了B.总体上是赔了C.总体上不赔不赚D.没法判断是赚了还是赔了【分析】由已知可分别列一元一次方程求出盈利和亏本商品的成本价,然后计算出赚或亏多少.盈利20%就是相当于成本价的1+20%,亏本20%就是相当于成本价的1﹣20%,由此可列方程求解.【解析】设盈利商品的成本价为x元,亏本的成本价为y元,根据题意得:(1+20%)x=100,(1﹣20%)y=100,解得:x≈83,y=125,100﹣83+(100﹣125)=﹣8,所以赔8元.故选:B.二、填空题(本大题共9小题,每小题3分,共27分)请把答案直接填写在横线上10.(2020•铜仁市)方程2x+10=0的解是x=﹣5.【分析】方程移项,把x系数化为1,即可求出解.【解析】方程2x+10=0,移项得:2x=﹣10,解得:x=﹣5.故答案为:x=﹣5.11.(2020•成都模拟)若n﹣2与n+4互为相反数,则n的值为﹣1.【分析】利用相反数的性质列出方程,求出方程的解即可得到n的值.【解析】根据题意得:n﹣2+n+4=0,移项合并得:2n=﹣2,解得:n=﹣1,故答案为:﹣1.12.(2019秋•丰台区期末)下面的框图表示了琳琳同学解方程6+3x=2x﹣1的流程:你认为琳琳同学在解这个方程的过程中从第一步开始出现问题,正确完成这一步的依据是等式的基本性质1.【分析】观察琳琳同学的过程,找出出现问题的步骤即可.【解析】我认为琳琳同学在解这个方程的过程中从第一步开始出现问题,正确完成这一步的依据是等式的基本性质1.故答案为:一;等式的基本性质113.(2019秋•武侯区期末)若m+1与﹣3互为相反数,则m的值为2.【分析】利用相反数性质列出方程,求出方程的解即可得到m的值.【解析】根据题意得:m+1﹣3=0,解得:m=2,故答案为:214.(2019秋•甘井子区期末)某工厂的产值连续增长,去年是前年的3倍,今年是去年的2倍,这三年的总产值为600万元.若前年的产值为x万元,则可列方程为x+3x+6x=600.【分析】可设前年的产值是x万元,根据题意可得去年的产值是3x万元,今年的产值是6x万元,根据等量关系:这三年的总产值为600万元,列出方程求解即可.【解析】设前年的产值是x万元,则去年的产值是2x万元,今年的产值是5x万元,依题意有x+3x+6x=600.故答案为:x+3x+6x=600.15.(2017秋•襄城区期末)用一根长60m的绳子围出一个长方形,使它的长是宽的1.5倍,那么这个长方形的长是18m.【分析】设长方形的宽为x米,则长方形的长为1.5x米.利用长方形的周长公式进行解答即可.【解析】设长方形的宽为x米,则长方形的长为1.5x米.根据题意,得2(x+1.5x)=60,解得,x=12.所以长为12×1.5=18(米).即:长方形的长是18米.故答案是:18.16.(2019秋•大名县期末)李阿姨存入银行2000元,定期一年,到期后扣除20%的利息税后得到本利和为2048元,则该种储蓄的年利率为3%.【分析】由年利率为x和扣除20%的利息税,可写出李阿姨存款一年后的本息和表达式,又因为题中已知本息和为2048,所以可列出一元一次方程.【解析】∵这种储蓄的年利率为x,∴一年到期后李阿姨的存款本息和为:2000(1+x),∵要扣除20%的利息税,∴本息和为:2000+2000x(1﹣20%),由题意可列出方程:2000+2000x(1﹣20%)=2048,将上述方程整理可得:2000(1+80%•x)=2048,解得x=3%.故答案是:3%.17.(2020•顺德区校级模拟)某学校需要购买一批电脑,有两种方案如下:方案1:到商家直接购买,每台需要7000元;方案2:学校买零部件组装,每台需要6000元,另外需要支付安装费等其它费用合计3000元.学校添置 3 台电脑时,两种方案的费用相同.【分析】设学校添置x 台电脑,根据“两种方案的费用相同”列出方程并解答.【解析】设学校添置x 台电脑,由题意,得7000x =6000x +3000,解得x =3,答:当学校添置3台电脑时,两种方案的费用相同;故答案是:3.18.(2019秋•道里区期末)几个人共同种一批树苗,如果每人种15棵,则剩下4棵树苗未种;如果每人种16棵树苗,则缺4棵树苗,则这批树苗共有 124 棵.【分析】由参与种树的人数为x 人,分别用“每人种15棵,则剩下4棵树苗未种;如果每人种16棵树苗,则缺4棵树苗”表示出树苗总棵树列方程即可.【解析】设参与种树的人数为x 人.则15x +4=16x ﹣4,x =8,这批树苗共15x +4=124.故答案是:124.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020春•新蔡县期中)解下列方程.(1)2y +3=11﹣6y(2)23x ﹣1=12x +3 【分析】(1)方程移项合并,把y 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解析】(1)移项合并得:8x =8,解得:y =1;(2)去分母得:4x ﹣6=3x +18,移项合并得:x =24.20.(2018秋•思明区校级期中)某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年总产值为550万元.前年的产值是多少?【分析】设前年的产值是x 万元,根据题意可得去年的产值是1.5x 万元,今年的产值是1.5x ×2=3x 万元,根据这三年的总产值为550万元,列出方程求解即可.【解析】设前年的产值是x万元,由题意得x+1.5x+1.5x×2=550,解得:x=100.答:前年的产值是100万元.21.(2019秋•弥勒市期末)把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.(1)这个班有多少学生?(2)这批图书共有多少本?【分析】(1)设这个班有x名学生.根据这个班人数一定,可得:3x+20=4x﹣25,解方程即可;(2)代入方程的左边或右边的代数式即可.【解析】(1)设这个班有x名学生.依题意有:3x+20=4x﹣25解得:x=45(2)3x+20=3×45+20=155答:这个班有45名学生,这批图书共有155本.22.(2018秋•洪山区期末)王芳和李丽同时采摘樱桃,王芳平均每小时采摘8kg,李丽平均每小时采摘7kg,采摘结束后王芳从她采摘的樱桃中取出0.25kg给了李丽,这时两人樱桃一样多,她们采摘用了多少时间?【分析】利用采摘结束后王芳从她采摘的樱桃中取出0.25kg给了李丽,这时两人樱桃一样多得出等式求出答案.【解析】设她们采摘用了x小时,根据题意可得:8x﹣0.25=7x+0.25,解得:x=0.5.答:她们采摘用了0.5小时.23.(2019秋•金凤区校级期中)观察下面三行数:﹣3,9,﹣27,81…①1,﹣3,9,﹣27…②﹣2,10,﹣26,82…③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)设x ,y ,z 分别为第①②③行的2012个数,求x +6y +z 的值.【分析】(1)观察可看出第一行的数分别是﹣3的1次方,二次方,三次方,四次方…且偶数项是正数,奇数项是负数,用式子表示规律为:(﹣3)n ;(2)观察②,③两行的数与第①行的联系,即可得出答案;(3)分别求得第①②③行的2012个数,得出x ,y ,z 代入求得答案即可.【解析】(1)∵﹣3,9,﹣27,81,﹣243,729…;∴第①行数是:(﹣3)1,(﹣3)2,(﹣3)3,(﹣3)4,…(﹣3)n ;(2)第②行数是第①行数相应的数乘−13即−13×(﹣3)n ,第③行数的比第①行的数大1即(﹣3)n +1.(3)∵x =32012,y =−13×32012×=﹣32011,z =32012+1,∴x +6y +z =32012+6×(﹣32011)+32012+1=1.24.(2019秋•麻城市期末)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例:将0.7化为分数形式.由于0.7⋅=0.777…,设x =0.777…,……①则10x =7.777…,……②②﹣①得9x =7,解得x =79,于是得0.7⋅=79. 同理可得,0.3⋅=39=13,1.4⋅=1+0.4⋅=1+49=139. 根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)(1)0.5= 59 ,5.8= 539 ;(2)将0.23化为分数形式,写出推导过程;(3)试比较0.9与1的大小:0.9 = 1(填“>”,“<”或“=”);【分析】(1)根据阅读材料的解答过程,类比可得;(2)根据阅读材料的解答过程,类比可得;(3)根据阅读材料的解答过程,类比可得0.9⋅=1,即可求解.【解析】(1)设x =0.5⋅=0.555…,①则10x =5.55555…,②②﹣①得9x =5,解得:x =59,设y =5.8⋅=5.88888…,①则10y =58.8888…,②∴9y =53,解得:y =539,故答案为:59,539, (2)设 x =0.2⋅3⋅=0.232323…①,则 100x =23.2323…②,②﹣①得 99x =23,解得 x =2399, ∴0.23=2399. (3)设a =0.9⋅=0.999…,则10a =9.999…,∴9a =9,∴a =1,∴0.9⋅=1,故答案为:=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档