电伴热设计初探
海洋石油平台电伴热漏电保护电路设计探讨

0 引 言
电路 设计 上 的不规 范 ,给海洋 石 油平 台 的安 全生 产
海洋 石油 平 台的管 道和设 备 在环境 温度 较低 时
一
带来 了一 定 的隐患 。本 文将结 合实 际工 程 案例 ,对
电伴 热配 电和 漏 电保 护 电路不 同的设计 方案 逐一 进 行 分 析 ,提 出合理 的设计 方案 ,并 对 国 内外 标准 提 出相应 的修 改建 议 。
电伴 热 漏 电保 护 设 计 和 国 内 外 标 准 提 出改 进 建 议 。 关 键 词 : 海 洋 石 油 平 台 : 电伴 热 ;漏 电 保 护 中图 分 类 号 :T 9 1 T 2 文 献标 识 码 :A 文 章 编 号 : 10 - 2 6 (0 )0 — 0 0 E 5 M9 0 12 0 2 1 1 2 0 1—9 1
同 。所 以 在 实 际 运 行 过 程 中 , 还 需 要 考 虑 各 种 恶 劣
作 者 简 介 : 扈 滨 ( 9 3 ) 1 8 一 ,女 ,山 东利 津 人 ,助 理 工 程
师 .2 0 0 6年 毕 业 于 南 京 师 范 大 学景 观 设 计 专 业 ,现 从 事 文
档 控 制 工作 。 收 稿 日期 :2 1 — 8 0 0 0 0 — 9;修 回 日期 :2 1- 2 2 0 10 — 2
天气情 况 ,采取 相应 的 防护措 施 。 此 外 ,C : 为一 种对 环境 有严 重 影 响 的温 室 O 作
1 2
石
油
工
程
建
设
21 0 1年 4月
一
般认 为 ,要 保证海 洋石油 平 台电伴 热安 全可
少 许 液体 渗 漏 处 也 可 能 导致 火 灾 和 爆 炸 事 故 的发
油气-管道电伴热技术研究及工程实践

油气?管道电伴热技术研究及工程实践【摘要】伴随着油气储运工程建设的蓬勃发展,电伴热系统克服了蒸汽伴热能源消耗大、维护管理费用高腐蚀管道等不足,在输油输气管道中得到了广泛的应用。
本文较为详细的介绍了油气管道电伴热技术,并结合工程实践对电伴热系统设计工作进行了探讨。
【关键词】油气管道;电伴热系统1 前言二十一世纪初期是我国油气储运建设的高潮时期,大型油气码头、大型原油成品油气库,长距离输油和输气管线陆续开工建设与投用使管道工程建设进入了前所未有的蓬勃发展的历史时期。
与此同时,电伴热系统克服了蒸汽伴热能源消耗大,维护管理费用高,腐蚀管道的不足,在输油输气管道中得到了广泛的应用。
2 电伴热技术概况电伴热是指用电能补充被伴热物体在输送工艺过程中的热损失,使流动介质温度维持在一定的工艺温度范围内。
管道电伴热有以下四种类型:2.1 阴抗伴热阴抗伴热分直流电伴热和交流电伴热两种类型。
它要求管道等径,并且加热的管段上没有副管和阀门。
阻抗伴热耗资小,施工操作方便,但具有以下弊端:①为保证工作人员的安全,需要安装变压器;②接地极的总电阻要小于管体电阻值;③伴热管道应与相邻的设备进行绝缘;④地下使用该伴热系统时,会引起电流的大量流失。
2.2 电磁感应伴热电磁感应伴热利用电磁感应原理及感应电流通过导体时产生的热效应使工件快速加热。
电磁感应伴热一般分为三类:工频电磁感应伴热、中频电磁感应伴热和高频电磁感应伴热。
电磁感应伴热效率可达到80%以上,并且加热速度极高,热流密度大,可自动控温,可消除设备发生火灾的危险(仅铁芯发热)。
电磁感应伴热的热惯性小,断电后会马上断磁、停止加热,控温性能比较准确,但设备复杂,成本很高。
2.3 柔性材料伴热柔性材料伴热是以导体通电时产生的焦耳热来加热管道,包括电缆伴热和电热带伴热两种类型。
(1)电缆伴热是以铜或铜合金制成芯线,芯线外面用具有良好的热稳定性和导热性的材料做成绝缘层,最外层为不锈钢铠装护套。
电伴热设计方案

电伴热设计方案伴热是指利用电能将热量传输到需要加热的物体表面以提供保温、加热的一种技术手段。
在工业生产、建筑暖房以及设备保温等领域被广泛应用。
为了实现高效、节能的加热效果,对电伴热设计方案的制定至关重要。
本文将从电伴热设计的原理、选择器材和方案实施几个方面进行探讨。
I. 设计原理电伴热的设计原理是通过电能转化为热能,然后将热能传导到被加热对象表面,从而提供加热效果的过程。
电伴热设计的核心是选定适当的伴热器件,合理布置以及控制系统。
伴热器件通常有加热电缆、加热带以及加热板等形式。
根据被加热对象的形状和具体需求,设计师应选择合适的伴热器件进行布置。
II. 选择器材在电伴热设计中,选择合适的器材是保证系统长期稳定运行的前提条件。
首先,需要根据被加热对象的工作环境和温度要求选择耐高温、耐腐蚀的材料。
其次,应根据被加热对象的结构和形状选择适合的伴热器件。
最后,要考虑器材的耐老化性能以及使用寿命,以保证伴热系统的可靠性和经济性。
III. 设计方案实施在电伴热设计方案的实施过程中,需要进行详细的方案设计和布置。
首先,要根据被加热对象的尺寸、形状和工作环境,确定伴热器件的型号和数量。
其次,根据实际需求绘制电伴热系统的布置图,并确定伴热器件的安装位置。
最后,要设计合理的控制系统,实现对加热功率和温度的调节,以满足被加热对象的实际需求。
IV. 系统调试和运行维护电伴热设计方案实施完成后,还需要进行系统的调试和运行维护工作。
首先,要对伴热系统进行全面检查,确保连接正常、绝缘良好。
其次,要进行功率和温度的测试,根据实际需求进行调节。
最后,要定期对系统进行检查和维护,确保系统的安全性和可靠性。
总结:电伴热设计方案的制定是保证电伴热系统高效、节能运行的基础。
通过合理选择伴热器件、选择适合的材料、制定详细的设计方案以及进行系统调试和运行维护,可以实现电伴热系统的良好加热效果。
电伴热技术的应用将为工业生产、建筑暖房等领域带来更高效、更可靠的加热解决方案。
电伴热工程方案

电伴热工程方案1.引言电伴热技术是一种通过电力加热手段实现对管道、设备、建筑物等物体进行加热的方法。
其主要应用于制药、化工、食品、暖通、环保等行业中的管道保温、设备加热、防冻防结冰等工程技术中。
本文将针对一个典型的电伴热工程进行分析和设计。
2.工程背景本工程涉及一栋位于城市化工园区的建筑物,其主要用途是进行其中一种化学生产过程。
在该建筑物内部布置了一条管道网络,用于输送化工原料。
由于该地区冬季气温较低,为了防止管道在寒冷天气下结冰,需要对管道进行加热。
3.工程设计3.1管道布局设计首先,需要根据实际情况对管道进行布局设计。
根据管道输送的化工原料以及建筑物内部的布置,确定管道的走向和连接方式,确保管道能够顺利地输送原料,并方便进行维护和管理。
3.2保温层设计为了防止管道内的原料在输送过程中受到外界温度影响而发生化学反应,需要在管道外部设置保温层。
保温层的材料选择应根据管道输送的原料性质和温度要求确定,一般可采用隔热材料如聚氨酯等。
保温层的厚度和外径应根据现场温度和热损失要求进行计算,以保证管道能够在低温环境下保持适宜的温度。
3.3加热器选择在电伴热工程中,选择合适的加热器对工程效果至关重要。
加热器的功率应根据管道输送的原料流量、温度要求、环境温度等因素进行计算,以确保加热器能够提供足够的热量。
一般可采用电热缆或电热带作为加热元件,其特点是使用方便、安全可靠。
3.4控制系统设计为了实现对加热器的精确控制,需要设计一个合适的控制系统。
该控制系统主要包括温度传感器、控制器、继电器等组成部分。
温度传感器用于感知管道表面的温度,控制器用于根据传感器信号对加热器的功率进行调节,继电器用于实现控制信号的传递。
整个控制系统应具备灵敏度高、响应速度快、稳定性好等特点。
4.施工组织与安全4.1施工组织为了保证电伴热工程的顺利实施,需要组织专业的施工队伍进行施工。
施工队伍应具备相关的电工、施工等资质,施工人员应熟悉电伴热技术的施工要求和安全规范。
电伴热设计方案

电伴热设计方案电伴热设计方案电伴热是一种利用电能发热的技术,它广泛应用于工业、建筑物和家庭中。
电伴热能够提供可靠、高效的供热和保温解决方案,可适应不同的环境和需求。
本文将探讨电伴热设计方案的原理、应用和优势。
一、原理电伴热是利用导电材料发热的原理,通过电流通过导电材料产生热能。
导电材料通常是一种具有良好导电性能和较高的电阻率的材料,如铜、铝等。
当电流通过导电材料时,由于导电材料的电阻产生了电能的损耗,这部分电能转化为热能,并在导电材料表面产生热量。
通过合适的电压和电流控制,可以使导电材料产生适当的热量,以满足特定的供热和保温需求。
二、应用1. 工业应用在工业领域,电伴热被广泛应用于各种工艺过程中,如管道加热、储罐保温、设备加热等。
电伴热可以通过将导电材料包裹在管道或设备周围,以实现对其加热的目的。
这种方法可以确保材料的温度始终保持在所需的范围内,提高工艺效率和产品质量。
2. 建筑应用在建筑领域,电伴热主要用于地暖系统和防冻系统。
地暖系统通过将导电材料安装在地板下方,利用导热和辐射热传递来实现室内供暖。
这种方法不仅能够提供舒适的室内温度,还可以避免传统散热器的占地空间,使室内空间更加整洁美观。
防冻系统主要用于户外场所,如屋顶和道路等。
通过将导电材料安装在这些表面上,可以防止积雪和冰冻,确保人员和车辆的安全。
3. 家庭应用在家庭中,电伴热常用于供暖、保温和制暖设备。
电伴热地板可以提供舒适的室内环境,使家庭成员在冬季也能享受到温暖的生活。
此外,电伴热还可用于热水器、热水樽等设备,保持水温恒定,为家庭生活提供方便。
三、优势1. 高效能电伴热具有快速反应的特点,电能转化为热能的效率非常高。
加热速度快,可以迅速达到所需的温度,节约时间和能源。
2. 灵活性电伴热的设计和安装相对简单,可以适应不同的建筑和设备要求。
导电材料可以根据需要裁剪和布置,以满足不同的形状和尺寸要求。
3. 安全性电伴热使用低电压、低电流,不存在明火和燃烧气体,具有较高的安全性。
电伴热设计说明

电伴热设计说明嘿,朋友们!今天咱来聊聊电伴热设计说明。
你想想看啊,电伴热就像是给管道啊、设备啊这些“宝贝”穿上了一件保暖的小棉袄。
它能在寒冷的冬天里,让这些家伙不至于被冻坏咯。
那电伴热设计该咋搞呢?首先呢,咱得了解清楚要伴热的对象是啥,就像给人买衣服得知道尺码一样。
不同的设备、管道,那需要的伴热可不一样哩!然后呢,要考虑环境因素,是在户外风吹日晒呢,还是在室内舒舒服服的。
这环境不一样,电伴热的要求也不同呀!咱就说,要是在户外那种冷得让人直哆嗦的地方,电伴热就得厉害点,不然怎么抵挡住那寒风的侵袭呢?这就好比冬天你出门,穿少了肯定不行,得裹得严严实实的才暖和。
还有啊,伴热的温度也得好好把控。
太高了不行,那不把东西给烤坏啦?太低了也不行,起不到伴热的效果呀!这就跟做饭似的,火候得恰到好处,不然做出来的饭不是糊了就是没熟,那能好吃吗?电伴热的材料也很重要哦!得选质量好的,耐用的,就像你买鞋子,肯定得挑结实耐穿的呀,总不能穿两天就坏了吧?要是电伴热材料不靠谱,用不了多久出问题了,那多麻烦呀!再说说安装吧,这可得找专业的人来干,可别自己瞎捣鼓。
就跟你组装家具似的,你要是不懂,硬来,最后可能装得歪七扭八的,还不安全。
电伴热安装也是这个道理,得按规矩来,不能马虎。
你说要是电伴热没设计好,会咋样?那设备、管道可能就会出问题呀,说不定哪天就罢工啦!这可不行,咱得保证它们能正常工作呀,不然损失可就大了去了。
所以啊,电伴热设计可不能小瞧,得认真对待。
咱得像照顾宝贝一样照顾好这些设备和管道,让它们在电伴热的温暖呵护下,好好工作。
你说是不是这个理儿?总之呢,电伴热设计是个细致活儿,每个环节都得考虑周全。
从要伴热的对象,到环境,到温度,再到材料和安装,都得精心策划。
只有这样,才能让电伴热发挥出最大的作用,为我们的生产和生活保驾护航!可别不当回事儿哟!原创不易,请尊重原创,谢谢!。
电伴热设计方案

引言电伴热是一种广泛应用于工业领域的加热技术。
它利用电能将热能转移到需要加热的物体表面,从而提供稳定的温度控制。
本文将介绍电伴热设计方案的基本原理、适用范围和设计要点。
1. 基本原理电伴热的基本原理是利用电阻材料在通电的情况下产生热量。
当电流通过电阻材料时,电阻材料会发热,将热量传递给周围环境或物体。
通过合理布置电阻材料,可以实现对物体表面的均匀加热。
2. 适用范围电伴热广泛应用于以下领域:•工业加热:在工业生产中,电伴热可用于加热管道、容器、储罐等设备,以保持工艺温度或防止冻结。
•仪器设备:电伴热可用于仪器设备的加热,例如实验室的试剂瓶、恒温槽等。
•电气设备:电伴热可用于电气设备的加热,例如控制柜、电缆、阀门等,以确保设备在低温环境下的正常运行。
•建筑保温:电伴热可用于建筑物的保温,例如地暖、防冻等。
3. 设计要点在进行电伴热设计时,需要注意以下几个要点:3.1 选择合适的电阻材料根据实际需求选择合适的电阻材料非常重要。
常见的电阻材料包括铜镍合金、铁铝合金等。
不同的材料具有不同的电阻-温度特性,因此需要根据需要选择合适的材料。
3.2 计算功率和导线尺寸在确定电阻材料后,需要根据需要的加热功率来计算所需的电流和电阻。
根据电流和电阻的关系,可以选择合适的导线尺寸。
3.3 设计布局和安装方式在设计电伴热布局时,需要考虑加热面积、接触面积和加热均匀性。
合理的布局可以最大程度地提高加热效果。
安装方式也需要根据实际情况进行选择,常见的安装方式包括粘贴、绕包和穿线等。
3.4 控制系统设计电伴热的控制系统设计非常重要。
根据实际需要选择合适的控制方式,例如温度控制器、定时开关等。
控制系统的设计可以使电伴热工作更加稳定和可靠。
结论电伴热设计方案是实现对物体表面加热的重要工艺。
合理的电伴热设计可以提高工艺效率、降低能耗并确保设备正常运行。
通过选择合适的电阻材料、计算功率和导线尺寸、设计合理的布局和安装方式以及优化控制系统设计,可以实现高效、稳定和可靠的电伴热加热效果。
火电厂热工仪表取样管电伴热系统的设计及实现 调查报告

火电厂热工仪表取样管电伴热系统的设计及实现调查报告在火电厂的生产运营过程中,一部分设备例如锅炉、除氧器等难免会采用露天方式进行布置,这时就需要采取必要的防冻措施,以保障火电厂的正常运营,而电伴热系统的应用与实现很好的保障了这一点。
基于此,本文主要针对火电厂热工仪表取样管电伴热系统的设计及实现进行了探讨。
火电厂热工仪表电伴热系统取样管设计实现如果火电厂当中的锅炉、除氧器以及除盐水箱等相关设备均在露天的条件当中进行存放的话,与其相关的热工自动化设备也将随之被设置在室外当中。
基于此种情况,为了能够让热共自动化设备能够正常且安全的运作,在冬季室外气温较低的施工环境下,应该对用于蒸汽、水以及燃油的导压管进行防冻处理,包括流体压力仪表、流量仪表、液位仪表的导压管等等。
此外,在设置防冻装置时需要注意采用蒸汽伴热保温与电伴热保温相结合的方式来进行,其中的电伴热保温方式是以电热元件作为最基础的热,是属于最为稳定的热方式之一,在火电厂的生产运营中起到了很好的保温防冻作用。
1 电伴热系统的工作原理电伴热即为在绝热层与被伴热管道当中用于加热之用的高分子类材料,其主要的作用是采用电热所产生的能力来对在取样过程当中丢失的热量进行填补,继而让其能够保持在一个最为合乎标准的范围当中。
电伴热电缆的组成部分如下:半导体高分子材料、合金母线(两根)、内部高分子绝缘、合金屏蔽网以及外部高分子聚合物护套。
其中,半导体高分子材料需要经过特殊的工艺手段制造而成,并且在整个结构当中起到了最为主要的发热作用。
电伴热电缆的组成材质为抗高温性极强的镀锡铜合金,其不但具有恒定功率的特性,同时还比较不会受到外界其他影响因素的干扰。
此外,含氟聚合物护套还能够为电缆带来一层额外的附加保护膜,使其能够在极度恶劣的化学环境当中也能够较好的应用。
通过热胀冷缩的原理我们能够了解到,如果伴热电缆所处环境的温度较低,那么用于导电的化学高分子材料即会形成收缩现象,继而形成能够让伴热电缆开始产生热量的电流;反之,如果伴热电缆所处环境的温度较高,高分子材料就会出现膨胀现象,并同时阻隔碳粒的相聚和回路的形成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电伴热设计初探
摘要:本文对电伴热在化学工艺中的初次设计、安装和运行进行了小结以供有关人员借鉴和参考。
1、前言
化学工艺中,有许多地方需要进行防冻。
如:浓碱、浓磷酸盐溶液在常温条件下就会结晶;在冬季,室外的取样管道、加药管道和水管道在气温低于零度时也会发生冻结;衬胶管道和设备在低于零度时会发生衬胶层龟裂而破坏等。
这一切都需要采用加热防冻工艺。
近期出现的“自限温电伴热带”产品是一种很好的用于防冻的加热产品。
但是,从工艺上来看,此技术是介于化学和电气之间的。
这里,仅将我们经历的设计、运行以及在现场使用中发现的问题介绍给大家,以供有关人员参考和改进,而起到抛砖引玉的作用。
2、“自限温电伴热带”的产品特点
自限温电伴热带的外表很象300Ω的电视机天线馈线,扁扁的。
但是,两条金属导线之间的材料可不是一般的塑料,是很特殊的,其性能很象热敏电阻材料。
当此电伴热带本身的温度低时(如10℃),则电阻小,电流大,发热量也大(常用的一种约15W/m,另一种约35W/m,也有其它品种的)。
当温度上升到85℃时(这是防冻常用的一种),则其材料的电阻急剧上升,电流下降到十几毫安,达到几乎无电力消耗效果。
这样一来,不需要另加自动控制,它自身就能根据温度的高低来自动调节发热量的功率大小,从而达到自限温的效果。
我们将它使用在防冻的设备或管道上时,当温度低到10℃及以下时,自限温电伴热带则有大电流通过,加热管道。
当电伴热带温度因加热而上升时,则“自限温电伴热带”的电流就下降使加热功率也下降,从而达到一定的平衡值。
这样一来就达到了既防冻又安全不过热的效果。
3、使用范围
●浓烧碱溶液(如40~50%)在温度低于15℃时防止溶液结晶。
●浓磷酸盐溶液(近饱和,约10%)的常温下防止结晶。
●水管道和/或设备(包括各种水管道、加药管道、取样管道以及其它的
化学低浓度溶液管道)的冬季防冻。
●衬胶设备和/或管道防冬季发生龟裂而永远损坏。
●储存离子交换树脂的设备防冻。
4、电伴热带防冻的设计
由于我们首次在设计中使用电伴热带加热技术,没有依据可查。
这里只是将我们的施工中已经证明可行的处理办法介绍下面,供大家参考:4.1、明确设计范围
根据化学工艺的实际需要(见“3”所述),首先确定需要使用电伴热带的具体设备及管道。
选定电伴热带的型号及生产厂商。
4.2、计算电伴热带的每条使用长度及保温层厚度
对于管道,首先根据环境资料计算出每米保温后的管道热损失值:
Qt={2π(T-Ta)/[1/λ×(In D0/Di+2/D0×1/α)]}×1.3 W/m T……管道表面计算温度℃
Ta……环境计算温度℃
λ……保温材料导热系数(用岩棉时λ=0.043 W/m.℃)
Di……保温层内径 m
D0……保温层外经 D0= Di+2δ m ,
δ……保温层厚度(可以按经验自定)m
α……保温层外表面向大气的放热系数 W/m2.℃
α=1.163(6+3×W0.5)
W……风速 m/s
根据以上资料,计算出每一条电伴热带的启动合闸时最大电功率及最大电流值。
4.3、画图及提资
4.3.1、防冻电伴热带连接系统示意图
●首先画出、标出需要进行伴热防冻的管道、设备示意轮廓。
●再画出电气的动力盘示意轮廓,注明动力盘编号。
●化学与电气的设计界线为电伴热带的用电接线盒。
图中首先应该分清
设计界线,然后画出从用电的接线盒起,至电伴热带终点止的每条电伴热所需要的一切连接件、伴热带和终端盒等示意图。
●列出名细表,注明所有设计材料的名称、数量和规格等。
●附加必要的设计说明。
并注意应该留有电气专业的会签位置。
4.3.2、防冻电伴热带安装布置示意图
该图中应该标明设计界线内的每一条电伴热带的安装起点及终端的坐标位置,伴热带走向。
4.3.3、电伴热带缠绕详图及保温示意图
该图中应该标明每一条电伴热带在管道的弯头、三通、四通以及法兰、阀门、泵体、压力表等处的缠绕方法详图。
电伴热带施工结束后的保温示意图。
4.3.4、电伴热带及其附件材料汇总表
将以上设计的各条电伴热带及其附件的材料进行汇总统计。
4.3.5、对电气提资
化学与电气的设计界线为电伴热带的用电接线盒。
至用电接线盒的动力连接电线属于电气专业设计范围(这有些像电动机的接线盒一样)。
化学专业提出的电伴热带的用电接线盒位置应该精确到100mm之内(包括平面及标高的三度位置)电气专业的动力电缆应该连接到此处,然后给电气专业提出每一条电伴热带的工作电压、启动功率、最大电流、控制方式以及其它要求等。
4.3.6、设计经验参考
●温度超过180℃的管道(如一些取样管道)不能使用自限温电伴热带
直接敷设在管道外壁上。
否则会发生伴热带被高温烫坏的事故。
●汽包的加磷酸盐管道在靠近汽包约20米左右的距离内不能使用电伴热
带。
否则汽包的高温会沿管道传递将电伴热带烧毁。
●给电气专业提资时,最好要求每一条电伴热带装一个电流表。
起码一
个动力盘应该有一个电流表,以观察使用中的电流变化情况。
这样一来,既可以间接判断每条电伴热带的状态好坏,又可以控制启动功率以免超载。
●电伴热带的外部保温层设计非常重要,绝不能忽视。
保温层足够的厚
度可以减少电力消耗,达到事半功倍的效果。
5、电伴热带的安装注意事项
5.1、电伴热带在安装时,一定要注意绝缘防水。
尤其是在伴热带的接头和端头位置,要特别注意作好绝缘防水处理。
5.2、电伴热带不能受力。
所以必需在管道、设备安装结束后进行。
5.3、电伴热带保温层层厚不足,还外要包铝皮时,固定铝皮的钉子过长,常常容易刺穿电伴热带,造成电伴热带损坏。
6、电伴热带的运行注意事项
6.1、应该在环境温度没有完全降至防冻温度极限值前时就投入电伴热防冻系统。
6.2、自限温电伴热带是一种热敏电阻型。
初投入时电流很大容易造成过载。
所以系统投入时,应该一条一条地合闸投入运行,不要一下子全部投上,以免造成电源过载。