2019届江苏省无锡市江阴市要塞片中考数学一模试卷(附解析)
2019年无锡市江阴中学中考数学模拟试卷含答案解析

2019年江苏省无锡市江阴中学中考数学模拟试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填写在题答题卡的相应的括号内.1.﹣2的绝对值等于()A.﹣ B.C.﹣2 D.22.使有意义的x的取值范围是()A.x>﹣B.x>C.x≥D.x≥﹣3.右图是由4个相同的小正方体组成的几何体,其俯视图为()A.B.C.D.4.为丰富学生课余活动,某校开展校园艺术节十佳歌手比赛,共有18名同学入围,他们的A.9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.605.关于x的方程mx﹣1=2x的解为正实数,则m的取值范围是()A.m≥2 B.m≤2 C.m>2 D.m<26.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.7.下列命题中,假命题是()A.经过两点有且只有一条直线B.平行四边形的对角线相等C.两腰相等的梯形叫做等腰梯形D.圆的切线垂直于经过切点的半径8.下列函数的图象在每一个象限内,y值随x值的增大而增大的是()A.y=﹣x+1 B.y=x2﹣1 C.D.9.如图正方形ABCD的边长为2,点E、F、G、H分别在AD、AB、BC、CD上的点,且AE=BF=CG=DH,分别将△AEF、△BFG、△CGH、△DHE沿EF、FG、GH、HE翻折,=y,则y关于x的函数图象大致为()得四边形MNKP,设AE=x,S四边形MNKPA.B.C.D.10.直线y=x+4分别与x轴、y轴相交于点M,N,边长为2的正方形OABC一个顶点O 在坐标系的原点,直线AN与MC相交于点P,若正方形绕着点O旋转一周,则点P到点(0,2)长度的最小值是()A.2﹣2 B.3﹣2C.D.1二、填空题(本大题共8小题,每小题2分,共16分,不需要写出解答过程,请把答案填写在答题卡的相应位置的横线上)11.因式分解:x3﹣4x=______.12.某外贸企业为参加2019年中国江阴外贸洽谈会,印制了105 000张宣传彩页.105 000这个数字用科学记数法表示为______.13.若x1,x2是方程x2+2x﹣3=0的两根,则x1+x2=______.14.如图,已知菱形ABCD的边长为5,对角线AC,BD相交于点O,BD=6,则菱形ABCD 的面积为______.15.如图,一个边长为4cm的等边三角形的高与ABC与⊙O直径相等,⊙O与BC相切于点C,⊙O与AC相交于点E,则CE的长为______.16.某商店服装销量较好,于是将一件原标价为1200元的服装加价200元销售仍畅销,在这基础上又涨了10%.现商家决定要回复原价,采用连续两次降价,每次降价的百分率相同的方法,则每次降价的百分率为______(精确到1%).17.两个完全重合的直角三角形Rt△ABC与Rt△DEF两直角边分别为3cm、4cm,点D放置在AB的中点,△DEF可以绕点D转动,当Rt△DEF旋转到一边与AB垂直时,两三角形重叠部分面积为______.18.如图,直线y=4﹣x交x轴、y轴于A、B两点,P是反比例函数y=(x>0)图象上位于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F,则AF•BE=______.三、解答题(本大题共10小题,共84分.请在答题卡题目下方空白处作答,解答时应写出文字说明、证明过程或演算步骤)19.计算(1)tan45°﹣(﹣2)2﹣|2﹣|(2)(2x﹣1)2+(x﹣2)(x+2)﹣4x(x﹣)20.(1)解方程:=2+(2)解不等式组::.21.如图,在▱ABCD中,E、F为对角线BD上的两点.(1)若AE⊥BD,CF⊥BD,证明BE=DF.(2)若AE=CF,能否说明BE=DF?若能,请说明理由;若不能,请画出反例.22.为了解江阴市七年级学生身体素质,从全市七年级学生中随机抽取部分学生进行了一次体育考试科目的测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试记录绘成如下两幅完全不同的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生数是______;(2)图1中∠n的度数是______.把图2条形统计图补充完成;(3)江阴市七年级共有9800名学生,如果全部参加这次体育科目测试,请估计不及格的人数.23.某市的育中考采取抽签决定考试项目,有甲、乙、丙三人分别擅长A:游泳;B:50米;C:1000米(假设就这三个项目研究).(1)求学生甲能抽到自己的喜欢的项目的概率;(2)如果甲乙丙三人在抽签时箱内只有个A、B、C不同项目的签,且各自抽签后将考签交给监考老师,求三人至少有一人抽到自己擅长项目的概率.24.“位似变化”是一种重要的几何变化,可以将图形放大或缩小,且与原图形相似.你能用位似变化解决下列问题吗?如图Rt△ABC中,∠C=90°,AC=12,BC=6,有矩形EFGH的一边EF在边AC上,点H 在斜边AC上,EF=2,HE=1.(1)请你用圆规和无刻度直尺在Rt△ABC内作一个最大的矩形且与矩形EFGH位似.(不要求写作法,但必须保留作图痕迹)(2)请证明你作图方法的正确性.(3)求最大矩形与矩形EFGH的面积之比.25.公司研究销售策略,如果销售10台A型和20台B型空气净化器的利润为4000元,销售20台A型和10台B型空气净化器的利润为3500元.(1)求每台A型空气净化器和B型空气净化器的销售利润;(2)该公司计划一次购进两种型号的空气净化器共100台,其中B型空气净化器的进货量不超过A型空气净化器的2倍,设购进A型空气净化器x台,这100台空气净化器的销售总利润为y元.①求y关于x的函数关系式;②该公司购进A型、B型空气净化器各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型空气净化器出厂价下调m(0<m<100)元,且限定公司最多购进A型空气净化器70台,若公司保持同种空气净化器的售价不变,请你根据以上信息及(2)中条件,设计出使这100台空气净化器销售总利润最大的进货方案.26.如图,在平面直角坐标系中,O为坐标原点,△ABC的边BC在y轴的正半轴上,点A 在x轴的正半轴上,点C的坐标为(0,8),将△ABC沿直线AB折叠,点C落在x轴的负半轴D(﹣4,0)处.(1)求直线AB的解析式;(2)点P从点A出发以每秒4个单位长度的速度沿射线AB方向运动,过点P作PQ⊥AB,交x轴于点Q,PR∥AC交x轴于点R,设点P运动时间为t(秒),线段QR长为d,求d与t的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,点N是射线AB上一点,以点N为圆心,同时经过R、Q两点作⊙N,⊙N交y轴于点E,F.是否存在t,使得EF=RQ?若存在,求出t的值,并求出圆心N的坐标;若不存在,说明理由.27.△ABC中,AB=5,AC=4,BC=6.(1)如图1,若AD是∠BAC的平分线,DE∥AB,求CE的长与的比值;(2)如图2,将边AC折叠,使得AC在AB边上,折痕为AM,再将边MB折叠,使得MB′与MC′重合,折痕为MN,求AN的长.28.如图,二次函数y=ax2+bx+c的图象过A(6,0)、C(0,﹣3).且抛物线的对称轴为直线x=2,抛物线与x轴的另一个交点为B.(1)求抛物线的解析式;(2)若点F在第四象限的抛物线上,当tan∠FAC=时,求点F的坐标.(3)若点P在第四象限的抛物线,且满足△PAC和△PBC的面积相等.是否能在抛物线上找点Q,使得∠PAQ=∠CAO,求点Q的坐标.2019年江苏省无锡市江阴中学中考数学模拟试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填写在题答题卡的相应的括号内.1.﹣2的绝对值等于()A.﹣ B.C.﹣2 D.2【考点】绝对值.【分析】根据绝对值的性质:一个负数的绝对值是它的相反数解答即可.【解答】解:根据绝对值的性质,|﹣2|=2.故选D.2.使有意义的x的取值范围是()A.x>﹣B.x>C.x≥D.x≥﹣【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,3x﹣1≥0,解得,x≥,故选:C.3.右图是由4个相同的小正方体组成的几何体,其俯视图为()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可.【解答】解:从上面看可得到从上往下两行正方形的个数依次为2,1,并且在左上方.故选C.4.为丰富学生课余活动,某校开展校园艺术节十佳歌手比赛,共有18名同学入围,他们的则入围同学决赛成绩的中位数和众数分别是()A.9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.60【考点】众数;中位数.【分析】根据中位数和众数的定义解答.第9和第10个数的平均数就是中位数,9.60出现的次数最多.【解答】解:在这一组数据中9.60是出现次数最多的,故众数是9.60,而这组数据处于中间位置的那两个数是9.60和9.60,那么由中位数的定义可知,这组数据的中位数是9.60.故选B.5.关于x的方程mx﹣1=2x的解为正实数,则m的取值范围是()A.m≥2 B.m≤2 C.m>2 D.m<2【考点】解一元一次不等式;一元一次方程的解.【分析】根据题意可得x>0,将x化成关于m的一元一次方程,然后根据x的取值范围即可求出m的取值范围.【解答】解:由mx﹣1=2x,移项、合并,得(m﹣2)x=1,∴x=.∵方程mx﹣1=2x的解为正实数,∴>0,解得m>2.故选C.6.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.7.下列命题中,假命题是()A.经过两点有且只有一条直线B.平行四边形的对角线相等C.两腰相等的梯形叫做等腰梯形D.圆的切线垂直于经过切点的半径【考点】命题与定理;直线的性质:两点确定一条直线;平行四边形的性质;等腰梯形的判定;切线的性质.【分析】根据直线的性质、平行四边形的性质、等腰梯形的性质和切线的性质判断各选项即可.【解答】解:A、经过两点有且只有一条直线,故本选项正确;B、平行四边形的对角线不一定相等,故本选项错误;C、两腰相等的梯形叫做等腰梯形,故本选项正确D、圆的切线垂直于经过切点的半径,故本选项正确.故选B.8.下列函数的图象在每一个象限内,y值随x值的增大而增大的是()A.y=﹣x+1 B.y=x2﹣1 C.D.【考点】二次函数的性质;一次函数的性质;反比例函数的性质.【分析】一次函数当k大于0时,y值随x值的增大而增大,反比例函数系数k为负时,y 值随x值的增大而增大,对于二次函数根据其对称轴判断其在区间上的单调性.【解答】解:A、对于一次函数y=﹣x+1,k<0,函数的图象在每一个象限内,y值随x值的增大而减小,故本选项错误;B、对于二次函数y=x2﹣1,当x>0时,y值随x值的增大而增大,当x<0时,y值随x值的增大而减小,故本选项错误;C、对于反比例函数,k>0,函数的图象在每一个象限内,y值随x值的增大而减小,故本选项错误;D、对于反比例函数,k<0,函数的图象在每一个象限内,y值随x值的增大而增大,故本选项正确.故选D.9.如图正方形ABCD的边长为2,点E、F、G、H分别在AD、AB、BC、CD上的点,且AE=BF=CG=DH,分别将△AEF、△BFG、△CGH、△DHE沿EF、FG、GH、HE翻折,=y,则y关于x的函数图象大致为()得四边形MNKP,设AE=x,S四边形MNKPA.B.C.D.【考点】动点问题的函数图象.【分析】根据图形得出y=S 正方形ABCD ﹣2(S △AEF +S △BGF +S △CGH +S △DEH ),根据面积公式求出y 关于x 的函数式,即可得出选项.【解答】解:∵AE=x ,∴y=S 正方形ABCD ﹣2(S △AEF +S △BGF +S △CGH +S △DEH )=2×2﹣2×[•x (2﹣x )+x (2﹣x )+x (2﹣x )+x (2﹣x )]=4x 2﹣8x +4=4(x ﹣1)2,∵0<x <2,∴0<y <4,∵是二次函数,开口向上,∴图象是抛物线,即选项A 、B 、C 错误;选项D 符合,故选D .10.直线y=x +4分别与x 轴、y 轴相交于点M ,N ,边长为2的正方形OABC 一个顶点O 在坐标系的原点,直线AN 与MC 相交于点P ,若正方形绕着点O 旋转一周,则点P 到点(0,2)长度的最小值是( )A .2﹣2B .3﹣2C .D .1【考点】一次函数图象与几何变换;一次函数图象上点的坐标特征;点、线、面、体.【分析】首先证明△MOC ≌△NOA ,推出∠MPN=90°,推出P 在以MN 为直径的圆上,所以当圆心G ,点P ,C (0,2)三点共线时,P 到C (0,2)的最小值.求出此时的PC 即可.【解答】解:在△MOC 和△NOA 中,,∴△MOC ≌△NOA ,∴∠CMO=∠ANO ,∵∠CMO +∠MCO=90°,∠MCO=∠NCP ,∴∠NCP +∠CNP=90°,∴∠MPN=90°∴MP ⊥NP∴P 在以MN 为直径的圆上,∵M (﹣4,0),N (0,4),∴圆心G为(﹣2,2),半径为2∴当圆心G,点P,C(0,2)三点共线时,P到C(0,2)的最小值,∵GN=GM,CN=CO=2,∴GC=OM=2,这个最小值为GP﹣GC=2﹣2.故选A.二、填空题(本大题共8小题,每小题2分,共16分,不需要写出解答过程,请把答案填写在答题卡的相应位置的横线上)11.因式分解:x3﹣4x=x(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式x,进而利用平方差公式分解因式得出即可.【解答】解:x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).12.某外贸企业为参加2019年中国江阴外贸洽谈会,印制了105 000张宣传彩页.105 000这个数字用科学记数法表示为 1.05×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于105 000有6位,所以可以确定n=6﹣1=5.【解答】解:105 000=1.05×105.故答案为:1.05×105.13.若x1,x2是方程x2+2x﹣3=0的两根,则x1+x2=﹣2.【考点】根与系数的关系.【分析】根据一元二次方程根与系数的关系x1+x2=﹣直接代入计算即可.【解答】解:∵x1,x2是方程x2+2x﹣3=0的两根,∴x1+x2=﹣2;故答案为:﹣2.14.如图,已知菱形ABCD的边长为5,对角线AC,BD相交于点O,BD=6,则菱形ABCD 的面积为24.【考点】菱形的性质.【分析】根据菱形的对角线互相垂直且互相平分可得出对角线AC的长度,进而根据对角线乘积的一半可得出菱形的面积.【解答】解:由题意得:AO==4,∴AC=8,故可得菱形ABCD的面积为×8×6=24.故答案为:24.15.如图,一个边长为4cm的等边三角形的高与ABC与⊙O直径相等,⊙O与BC相切于点C,⊙O与AC相交于点E,则CE的长为3cm.【考点】切线的性质;等边三角形的性质.【分析】连接OC,并过点O作OF⊥CE于F,求出等边三角形的高即可得出圆的直径,继而得出OC的长度,在Rt△OFC中,可得出FC的长,利用垂径定理即可得出CE的长【解答】解:连接OC,并过点O作OF⊥CE于F,∵△ABC为等边三角形,边长为4cm,∴△ABC的高为2cm,∴OC=cm,又∵∠ACB=60°,∴∠OCF=30°,在Rt△OFC中,可得FC=cm,即CE=2FC=3cm.故答案为:3cm.16.某商店服装销量较好,于是将一件原标价为1200元的服装加价200元销售仍畅销,在这基础上又涨了10%.现商家决定要回复原价,采用连续两次降价,每次降价的百分率相同的方法,则每次降价的百分率为 12% (精确到1%).【考点】一元二次方程的应用.【分析】设每次降价百分率为x ,根据:售价×(1﹣降价百分率)2=原价,列方程求解可得.【解答】解:设每次降价百分率为x ,根据题意,得:×(1+10%)(1﹣x )2=1200,解得:x 1≈1.88(舍),x 2≈0.12=12%,故答案为:12%.17.两个完全重合的直角三角形Rt △ABC 与Rt △DEF 两直角边分别为3cm 、4cm ,点D 放置在AB 的中点,△DEF 可以绕点D 转动,当Rt △DEF 旋转到一边与AB 垂直时,两三角形重叠部分面积为 、、 .【考点】旋转的性质. 【分析】分三种情况讨论:①如图1,当DF ⊥AB 时,重叠部分面积为梯形面积,求出MC 、DH 和CH 代入面积公式计算即可;②如图2,当DE ⊥AB 时,重叠部分面积为△DMN 的面积,求出MN 和DG 的长; ③如图3,当EF ⊥AB 时,重叠部分面积为△ADH 的面积,求出AD 和GH 的长.【解答】解:分三种情况:①如图1,当DF ⊥AB 时,则DE ⊥AC∴DE ∥CB则DE=BC=2,CH=AC=∵∠B=∠B ,∠BDM=∠BCA=90°∴△BDM ∽△BCA∴=∴=∴BM=∴CM=BC ﹣BM=4﹣=∴S 重叠部分=S 梯形CHDM =×(+2)×=②如图2,当DE ⊥AB 时,则EF ∥AB ,∴∠F=∠FDB ,过D 作DG ⊥BC ,垂足为G ,则AC ∥DG ,∵D 是BC 的中点,∴G 是BC 的中点,∴DG=AC=,BG=CG=2,∵∠F=∠B=∠FDB ,∴BN=ND ,设DN=x ,则BN=DN=x ,∴(2﹣x )2+=x 2,x=,∴BN=,由①得BM=,∴MN=BM ﹣BN=﹣=,∴S 重叠部分=S △DMN =×MN ×DG=××=; ③如图3,当EF ⊥AB 时,过H 作HG ⊥AB ,则HG ∥EF ,∵△ABC ≌△DFE ,∴∠FDE=∠CAB ,∴AH=DH ,∴DG=AG=AB=,又∵,∴=,GH=,∴S 重叠部分=S △ADH =×AD ×GH=××=;综上所述:重叠部分的面积为:、、;故答案为:、、.18.如图,直线y=4﹣x交x轴、y轴于A、B两点,P是反比例函数y=(x>0)图象上位于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F,则AF•BE=4.【考点】反比例函数与一次函数的交点问题.【分析】过点E作EC⊥OB于C,过点F作FD⊥OA于D,然后由直线y=4﹣x交x轴、y 轴于A、B两点,求得点A与B的坐标,则可得OA=OB,即可得△AOB,△BCE,△ADF是等腰直角三角形,则可得AF•BE=CE•DF=2CE•DF,又由四边形CEPN与MDFP 是矩形,可得CE=PN,DF=PM,根据反比例函数的性质即可求得答案.【解答】解:过点E作EC⊥OB于C,过点F作FD⊥OA于D,∵直线y=4﹣x交x轴、y轴于A、B两点,∴A(4,0),B(0,4),∴OA=OB,∴∠ABO=∠BAO=45°,∴BC=CE,AD=DF,∵PM⊥OA,PN⊥OB,∴四边形CEPN与MDFP是矩形,∴CE=PN,DF=PM,∵P是反比例函数图象上的一点,∴PN•PM=2,∴CE•DF=2,在Rt△BCE中,BE==CE,在Rt△ADF中,AF==DF,∴AF•BE=CE•DF=2CE•DF=4.故答案为:4.三、解答题(本大题共10小题,共84分.请在答题卡题目下方空白处作答,解答时应写出文字说明、证明过程或演算步骤)19.计算(1)tan45°﹣(﹣2)2﹣|2﹣|(2)(2x﹣1)2+(x﹣2)(x+2)﹣4x(x﹣)【考点】整式的混合运算;实数的运算;特殊角的三角函数值.【分析】(1)根据特殊角的三角函数值、幂的乘方、绝对值可以解答本题;(2)根据完全平方公式、平方差公式、单项式乘以多项式可以解答本题.【解答】解:(1)tan45°﹣(﹣2)2﹣|2﹣|=1﹣4﹣(2﹣)=1﹣4﹣2+=﹣5+;(2)(2x﹣1)2+(x﹣2)(x+2)﹣4x(x﹣)=4x2﹣4x+1+x2﹣4﹣4x2+2x=x2﹣2x﹣3.20.(1)解方程:=2+(2)解不等式组::.【考点】解分式方程;解二元一次方程组.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可确定出不等式组的解集.【解答】解:(1)去分母得:1=2x﹣6﹣x,解得:x=7,经检验x=7是分式方程的解;(2),由①得:x≥1,由②得:x<4,则不等式组的解集为1≤x<4.21.如图,在▱ABCD中,E、F为对角线BD上的两点.(1)若AE⊥BD,CF⊥BD,证明BE=DF.(2)若AE=CF,能否说明BE=DF?若能,请说明理由;若不能,请画出反例.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)证明△AEB≌△CFD,即可得出结论;(2)画出图形说明即可.【解答】解:(1)∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD,在△AEB和△CFD中,,∴△AEB≌△CFD(AAS),∴BE=DF.(2)答:不能.反例:.22.为了解江阴市七年级学生身体素质,从全市七年级学生中随机抽取部分学生进行了一次体育考试科目的测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试记录绘成如下两幅完全不同的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生数是40;(2)图1中∠n的度数是144°.把图2条形统计图补充完成;(3)江阴市七年级共有9800名学生,如果全部参加这次体育科目测试,请估计不及格的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据B级的有14人,所占的百分比是35%,据此即可求得测试的总人数;(2)利用360°乘以对应的百分比求得所在扇形的圆心角的度数;(3)利用总人数乘以对应的比例即可求解.【解答】解:(1)本次抽样测试的学生数是:14÷35%=40(人),故答案是40;(2)∠n=360×=144°,C即的人数是:40×20%=8(人),,故答案是:144°;(3)估计不及格的人数是:9800×=490(人),答:估计不及格的人数是490人.23.某市的育中考采取抽签决定考试项目,有甲、乙、丙三人分别擅长A:游泳;B:50米;C:1000米(假设就这三个项目研究).(1)求学生甲能抽到自己的喜欢的项目的概率;(2)如果甲乙丙三人在抽签时箱内只有个A、B、C不同项目的签,且各自抽签后将考签交给监考老师,求三人至少有一人抽到自己擅长项目的概率.【考点】列表法与树状图法;概率公式.【分析】(1)根据概率的定义即可解决.(2)此题需要三步完成;因为有三名学生选择餐厅,可以看做需三次完成的事件,所以需要采用树状图法.【解答】解:(1)∵只有A、B、C三个项目,∴学生甲能抽到自己的喜欢的项目A的概率=.(2)画树状图得,所以三人至少有一人抽到自己擅长项目的概率=.24.“位似变化”是一种重要的几何变化,可以将图形放大或缩小,且与原图形相似.你能用位似变化解决下列问题吗?如图Rt△ABC中,∠C=90°,AC=12,BC=6,有矩形EFGH的一边EF在边AC上,点H 在斜边AC上,EF=2,HE=1.(1)请你用圆规和无刻度直尺在Rt△ABC内作一个最大的矩形且与矩形EFGH位似.(不要求写作法,但必须保留作图痕迹)(2)请证明你作图方法的正确性.(3)求最大矩形与矩形EFGH的面积之比.【考点】作图-位似变换;矩形的性质.【分析】(1)作出△ABC的中位线MN,MD即可解决问题.(2)只要证明矩形的两边成比例即可.(3)根据矩形的面积公式求出比值即可.【解答】解:(1)①作AC的垂直平分线,TK,交AB于M,交AC于N,②过点M作MD⊥BC垂足为D,四边形MNCD就是所求.(2)∵MN⊥AC,MD⊥BC,∴∠C=∠MNC=∠CDM=90°,∴四边形MNCD是矩形,∵AN=NC,MN∥BC,∴AM=MB,∵MD∥AC,∴CD=DB,∴MD=AC=6,MN=BC=3,∴MD:CD=2,EF:HE=2,∴=,∴矩形EFGH与矩形MNCD是位似图形.(3)==9.25.公司研究销售策略,如果销售10台A型和20台B型空气净化器的利润为4000元,销售20台A型和10台B型空气净化器的利润为3500元.(1)求每台A型空气净化器和B型空气净化器的销售利润;(2)该公司计划一次购进两种型号的空气净化器共100台,其中B型空气净化器的进货量不超过A型空气净化器的2倍,设购进A型空气净化器x台,这100台空气净化器的销售总利润为y元.①求y关于x的函数关系式;②该公司购进A型、B型空气净化器各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型空气净化器出厂价下调m(0<m<100)元,且限定公司最多购进A型空气净化器70台,若公司保持同种空气净化器的售价不变,请你根据以上信息及(2)中条件,设计出使这100台空气净化器销售总利润最大的进货方案.【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)设每台A型空气净化器的销售利润为a元,每台B型空气净化器的销售利润为b元,根据给定条件“销售10台A型和20台B型空气净化器的利润为4000元,销售20台A型和10台B型空气净化器的利润为3500元”可列出关于a、b的二元一次方程组,解方程组即可得出结论;(2)①根据购进A型空气净化器的台数,找出购进B型空气净化器的台数,根据A、B间的关系可得出关于x的一元一次不等式,解不等式即可得出x的取值范围,再由销售利润=A型的利润+B型的利润,即可得出y关于x的函数关系式;②结合一次函数的性质以及x 的取值范围即可解决最值问题;(3)结合(2)找出y关于x的函数关系式,利用一次函数的性质分m﹣50<0、m﹣50=0和m﹣50>0来解决最值问题.【解答】解:(1)设每台A型空气净化器的销售利润为a元,每台B型空气净化器的销售利润为b元,依题意得:,解得:.答:每台A型空气净化器的销售利润为100元,每台B型空气净化器的销售利润为150元.(2)①设购进A型空气净化器x台,则购进B型空气净化器台,由已知得:100﹣x≤2x,解得:x≥,∴x≥34.∴y=100x+150=﹣50x+15000(x≥34,且x为正整数).②∵y=﹣50x+15000中,k=﹣50<0,∴y随x的增大而减小,∴当x=34时,y取最大值,此时100﹣x=66.故购进34台A型空气净化器和66台B型空气净化器的销售利润最大.(3)由已知得:y=x+150=(m﹣50)x+15000,当m<50时,m﹣50<0,则购进34台A型空气净化器和66台B型空气净化器的销售利润最大;当m=50时,m﹣50=0,则A、B两种空气净化器随意搭配(34≤A型号空气净化器数≤70),销售利润一样多;当m>50时,m﹣50>0,则购进70台A型空气净化器和30台B型空气净化器的销售利润最大.26.如图,在平面直角坐标系中,O为坐标原点,△ABC的边BC在y轴的正半轴上,点A 在x轴的正半轴上,点C的坐标为(0,8),将△ABC沿直线AB折叠,点C落在x轴的负半轴D(﹣4,0)处.(1)求直线AB的解析式;(2)点P从点A出发以每秒4个单位长度的速度沿射线AB方向运动,过点P作PQ⊥AB,交x轴于点Q,PR∥AC交x轴于点R,设点P运动时间为t(秒),线段QR长为d,求d与t的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,点N是射线AB上一点,以点N为圆心,同时经过R、Q两点作⊙N,⊙N交y轴于点E,F.是否存在t,使得EF=RQ?若存在,求出t的值,并求出圆心N的坐标;若不存在,说明理由.【考点】一次函数综合题.【分析】(1)由C(0,8),D(﹣4,0),可求得OC,OD的长,然后设OB=a,则BC=8﹣a,在Rt△BOD中,由勾股定理可得方程:(8﹣a)2=a2+42,解此方程即可求得B的坐标,然后由三角函数的求得点A的坐标,再利用待定系数法求得直线AB的解析式;(2)在Rt△AOB中,由勾股定理可求得AB的长,继而求得∠BAO的正切与余弦,由PR ∥AC与折叠的性质,易证得RQ=AR,则可求得d与t的函数关系式;(3)首先过点分别作NT⊥RQ于T,NS⊥EF于S,易证得四边形NTOS是正方形,然后分别从点N在第二象限与点N在第一象限去分析求解即可求得答案.【解答】解:(1)∵C(0,8),D(﹣4,0),∴OC=8,OD=4,设OB=a,则BC=8﹣a,由折叠的性质可得:BD=BC=8﹣a,在Rt△BOD中,∠BOD=90°,DB2=OB2+OD2,则(8﹣a)2=a2+42,解得:a=3,则OB=3,则B(0,3),tan∠ODB==,由折叠的性质得:∠ADB=∠ACB,则tan∠ACB=tan∠ODB=,在Rt△AOC中,∠AOC=90°,tan∠ACB==,则OA=6,则A(6,0),设直线AB的解析式为:y=kx+b,则,解得:,故直线AB的解析式为:y=﹣x+3;(2)在Rt△AOB中,∠AOB=90°,OB=3,OA=6,则AB==3,tan∠BAO==,cos∠BAO==,在Rt△PQA中,∠APQ=90°,AP=4t,则AQ==10t,∵PR∥AC,∴∠APR=∠CAB,由折叠的性质得:∠BAO=∠CAB,∴∠BAO=∠APR,∴PR=AR,∵∠RAP+∠PQA=∠APR+∠QPR=90°,∴∠PQA=∠QPR,∴RP=RQ,∴RQ=AR,∴QR=AQ=5t,即d=5t;(3)过点分别作NT⊥RQ于T,NS⊥EF于S,∵EF=QR,∴NS=NT,∴四边形NTOS是正方形,则TQ=TR=QR=t,∴NT=AT=(AQ﹣TQ)=(10t﹣t)=t,分两种情况,若点N在第二象限,则设N(n,﹣n),点N在直线y=﹣x+3上,则﹣n=﹣n+3,解得:n=﹣6,故N(﹣6,6),NT=6,即t=6,解得:t=;若点N在第一象限,设N(N,N),可得:n=﹣n+3,解得:n=2,故N(2,2),NT=2,即t=2,解得:t=.故当t=或t=时,QR=EF,N(﹣6,6)或(2,2).27.△ABC中,AB=5,AC=4,BC=6.(1)如图1,若AD是∠BAC的平分线,DE∥AB,求CE的长与的比值;(2)如图2,将边AC折叠,使得AC在AB边上,折痕为AM,再将边MB折叠,使得MB′与MC′重合,折痕为MN,求AN的长.【考点】翻折变换(折叠问题);平行线分线段成比例;相似三角形的判定与性质.【分析】(1)先判定三角形ADE是等腰三角形,再根据平行线分线段成比例定理,求得CE 的长;(2)先根据两角对应相等,判定△ABC∽△NB′C′,再根据相似三角形的对应边成比例,求得NC′与B′N的数量关系,最后结合BC′的长为1,求得NC′的长,进而得到AN的长度.【解答】解:(1)如图1,∵AD是∠BAC的平分线,DE∥AB,∴∠EAD=∠BAD=∠EDA,∴ED=EA,即三角形ADE是等腰三角形,。
2019年江苏省无锡市中考数学试题(原卷+解析)

2019年江苏省无锡市初中毕业升学考试数 学 试 题第I 卷 (选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确的选项填在相应的括号内) 1.5的相反数是A .﹣5B .5C .15-D .15【答案】A2.函数y 中的自变量x 的取值范围是A .x ≠12 B .x ≥1 C .x >12 D .x ≥12【答案】D3.分解因式224x y -的结果是A .(4)(4)x y x y +-B .4()()x y x y +-C .(2)(2)x y x y +-D .2()()x y x y +- 【答案】C4.已知一组数据:66,66,62,67,63这组数据的众数和中位数分别是 A .66,62 B .66,66 C .67,62 D .67,66 【答案】B5.一个几何体的主视图、左视图、俯视图都是长方形,这个几何体可能是A.长方体B.四棱锥C.三棱锥D.圆锥【答案】A6.下列图案中,是中心对称图形但不是轴对称图形的是【答案】C7.下列结论中,矩形具有而菱形不一定具有的性质是A.内角和为360° B.对角线互相平分C.对角线相等D.对角线互相垂直【答案】C8.如图,PA是⊙O的切线,切点为A,PO的延长线交⊙O于点B,若∠P=40°,则∠B的度数为A.20° B.25° C.40° D.50°【答案】B9.如图,已知A为反比例函数kyx=(x<0)的图像上一点,过点A作AB⊥y轴,垂足为B.若△OAB的面积为2,则k的值为A.2 B.﹣2 C.4 D.﹣4【答案】D10.某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a个零件(a为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a的值至少为A .10B .9C .8D .7第8题 第9题 第16题【答案】B二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上)11.49的平方根为 . 【答案】23±12.2019年6月29日,新建的无锡文化旅游城将盛大开业,开业后预计接待游客量约20 000000人次,这个年接待客量可以用科学记数法表示为 人次. 【答案】2×10713.计算:2(3)a += .【答案】962++a a14.某个函数具有性质:当x >0时,y 随x 的增大而增大,这个函数的表达式可以是(只要写出一个符合题意的答案即可). 【答案】2x y =xyO-6OBCA EFxy-6O15.已知圆锥的母线成为5cm ,侧面积为15πcm 2,则这个圆锥的底面圆半径为 cm . 【答案】316.已知一次函数y kx b =+的图像如图所示,则关于x 的不等式30kx b ->的解集为 .第16题 第17题 第18题【答案】x <2;17.如图,在△ABC 中,AC :BC :AB =5:12:13,⊙O 在△ABC 内自由移动,若⊙O的半径为1,且圆心O 在△ABC 内所能到达的区域的面积为103,则△ABC 的周长为 . 【答案】2518.如图,在△ABC 中,AB =AC =5,BC=D 为边AB 上一动点(B 点除外),以CD 为一边作正方形CDEF ,连接BE ,则△BDE 面积的最大值为 . 【答案】8三、解答题(本大题共10小题,共84分.请在试卷相应的区域内作答,解答时应写出文字说明、证明过程或演算步骤)A BAOOC OO I HFGE DA DE19.(本题满分8分)计算:(1)1013()2--+-; (2)3233)(2a a a -⋅.【答案】原式=3+2-1 原式=662a a -=4 =6a 20.(本题满分8分)解方程:(1)0522=--x x ; (2)1421+=-x x . 解: 15122+=+-x x 解:)2(41-=+x x (去分母)6)1(2=-x 841-=+x x61±=-x 184--=-x x∴方程的解为:61,6121-=+=x x ; 93-=-x3=x经检验:3=x 是分式方程的根.21.(本题满分8分)如图,在△ABC 中,AB =AC ,点D 、E 分别在AB 、AC 上,BD =CE ,BE 、CD 相交于点O .(1)求证:△DBC ≌△ECB ; (2)求证:OB =OC .(1)【解析】 证明:∵AB=AC , ∴∠ECB=∠DBC 在中与ECB DBC ∆∆ECB CB BC DBC CE BD ∠⎪⎩⎪⎨⎧==∠=∴ ECB DBC ∆≅∆(2)证明:由(1)知ECB DBC ∆≅∆ ∴∠DCB=∠EBC ∴OB=OC 22.(本题满分6分)某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品.(1)如果小芳只有一次摸球机会,那么小芳获得奖品的概率为 ;(2)如果小芳有两次摸球机会(摸出后不放回),求小芳获得2份奖品的概率.(请用“画树状图”或“列表”等方法写出分析过程) 【答案和解析】B(1)12(2)⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧1212221121122121黑红红黑黑红红黑黑黑红红黑黑红红开始共有等可能事件12种 其中符合题目要求获得2份奖品的事件有2种所以概率P=1623.(本题满分6分)《国家学生体质健康标准》规定:体质测试成绩达到90.0分及以上的为优秀;达到80.0分至89.9分的为良好;达到60.0分至79.9分的为及格;59.9分及以下为不及格.某校为了了解九年级学生体质健康状况,从该校九年级学生中随机抽取了10%的学生进行体质测试,测试结果如下面的统计表和扇形统计图所示.各等级学生人数分布扇形统计图不及格各等级学生平均分统计表(1)扇形统计图中“不及格”所占的百分比是 ; (2)计算所抽取的学生的测试成绩的平均分;(3)若所抽取的学生中所有不及格等级学生的总分恰好等于某一个良好等级学生的分数,请估计该九年级学生中约有多少人达到优秀等级. 【答案与解析】 (1) 4%(2)92.1×52%+85.0×26%+69.2×18%+41.3×4%=84.1(3)设总人数为n 个 , 80.0 ≤ 41.3×n×4%≤89.9 所以 48<n<54 又因为 4%n 为整数 所以n=50即优秀的学生有52%×50÷10%=260 人 24.(本题满分8分)一次函数b kx y +=的图像与x 轴的负半轴相交于点A ,与y 轴的正半轴相交于点B ,且sin ∠ABO=2.△OAB 的外接圆的圆心M 的横坐标为﹣3. (1)求一次函数的解析式; (2)求图中阴影部分的面积.【答案与解析】(1) 作MN BO ,由垂径定理得N 为OB 中点MN=12OA ∵MN=3∴OA=6,即A (-6,0)∵sin ∠,OA=6 ∴OB= 即B (0,设y kx b =+,将A 、B带入得到y x =+(2)∵第一问解得∠ABO=60°,∴∠AMO=120°所以阴影部分面积为221=434S =--π((π25.(本题满分8分)“低碳生活,绿色出行”是一种环保,健康的生活方式,小丽从甲地出发沿一条笔直的公路骑行前往乙地,她与乙地之间的距离y (km)与出发时间之间的函数关系式如图1中线段AB 所示,在小丽出发的同时,小明从乙地沿同一条公路汽骑车匀速前往甲地,两人之间的距离x (km)与出发时间t (h)之间的函数关系式如图2中折线段CD —DE —EF 所示.(1)小丽和小明骑车的速度各是多少? (2)求E 点坐标,并解释点的实际意义.【答案与解析】 (1)()()=36 2.25=16/=361-16=20/V km h V km h ÷÷小丽小明(2)93620=5914416=)559144,55km E ÷⨯⎛⎫⇒ ⎪⎝⎭(h )(实际意义为小明到达甲地26.(本题满分10分)按要求作图,不要求写作法,但要保留作图痕迹.AAD(1)如图1,A 为圆O 上一点,请用直尺(不带刻度)和圆规作出得内接正方形;(2)我们知道,三角形具有性质,三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高交于同一点,请运用上述性质,只用直尺(不带刻度)作图.①如图2,在□ABCD 中,E 为CD 的中点,作BC 的中点F ;②图3,在由小正方形组成的网格中,的顶点都在小正方形的顶点上,作△ABC 的高AH .【答案与解析】(1)连结AE 并延长交圆E 于点C ,作AC 的中垂线交圆于点B,D ,四边形ABCD 即为所求CBB(2)①法一:连结AC,BD 交于点O,连结EB 交AC 于点G,连结DG 并延长交CB 于点F , F 即为所求法二:连结AC,BD 交于点O连结EO 并延长交AB 于点G 连结GC,BE 交于点M连结OM 并延长交CB 于点F ,F 即为所求②结AC,BD 交于点O,连结EB 交AC 于点G,连结DG 并延长交CB 于点F ,F 即为所求EACB EDACBCB27.(本题满分10分)已知二次函数42-+=bx ax y (a >0)的图像与x 轴交于A 、B 两点,(A 在B 左侧,且OA <OB ),与y 轴交于点C .D 为顶点,直线AC 交对称轴于点E ,直线BE 交y 轴于点F ,AC :CE =2:1.(1)求C 点坐标,并判断b 的正负性;(2)设这个二次函数的图像的对称轴与直线AC 交于点D ,已知DC :CA =1:2,直线BD 与y 轴交于点E ,连接BC .①若△BCE 的面积为8,求二次函数的解析式;②若△BCD 为锐角三角形,请直接写出OA 的取值范围.【答案与解析】(1) 令x=0,则4-=y ,∴C (0,-4)∵ OA <OB ,∴对称轴在y 轴右侧,即02φab-∵a >0,∴b <0 (2)①过点D 作DM ⊥oy ,则21===CO MC OA DM CA DC , ∴AO DM 21=设A (-2m ,0)m >0,则AO=2m,DM=m ∵OC=4,∴CM=2∴D (m ,-6),B (4m ,0) A 型相似可得OBBNOE DN = ∴OE=884421BEF △=⨯⨯=m S∴1=m∴A (-2,0),B (4,0) 设)4)(2(-+=x x a y即a ax ax y 822--= 令x=0,则y=-8a ∴C (0,-8a )∴-8a=-4,a=21 ∴4212--=x x y ②易知:B (4m ,0)C (0,-4)D (m ,-6),通过分析可得∠CBD 一定为锐角计算可得2222221616,4,936CB m CD m DB m =+=+=+1°当∠CDB 为锐角时,222CD DB CB +>22249361616m m m ++++>,解得2m 2-<<2°当∠BCD 为锐角时,222CD CB DB +>22241616936m m m ++++>,解得m m <m 2<,m 42<∴4OA <28.(本题满分10分)如图1,在矩形ABCD 中,BC =3,动点P 从B 出发,以每秒1个单位的速度,沿射线BC 方向移动,作△PAB 关于直线PA 的对称△PAB′,设点P 的运动时间为t (s).(1)若AB=2,当点B′落在AC 上时,显然△PAB′是直角三角形,求此时t 的值;②是否存在异于图2的时刻,使得△PCB′是直角三角形?若存在,请直接写出所有符合题意的t 的值?若不存在,请说明理由.(2)当P 点不与C 点重合时,若直线PB′与直线CD 相交于点M ,且当t <3时存在某一时刻有结论∠PAM =45°成立,试探究:对于t >3的任意时刻,结论∠PAM =45°是否总是成立?请说明理由.【答案与解析】(1)①勾股求的易证'CBACB P△∽△,''4B P=解得②1°如图,当∠PCB’=90 °时,在△PCB’中采用勾股得:222(3)t t+-=,解得t=22°如图,当∠PCB’=90 °时,在△PCB’中采用勾股得:222(3)t t+-=,解得t=63-ttB'B'CBA ADPD33ABP ’为正方形,解得(2)如图∵∠PAM=45°∴∠2+∠3=45°,∠1+∠4=45° 又∵翻折∴∠1=∠2,∠3=∠4 又∵∠ADM=∠AB’M (AAS ) ∴AD=AB’=AB即四边形ABCD 是正方形 如图,设∠APB=xB'CA BD A DP∴∠PAB=90°-x ∴∠DAP=x易证△MDA ≌△B’AM (HL ) ∴∠BAM=∠DAM ∵翻折∴∠PAB=∠PAB’=90°-x ∴∠DAB’=∠PAB’-∠DAP=90°-2x∴∠DAM=21∠DAB’=45°-x ∴∠MAP=∠DAM+∠PAD=45°4321MB'BCB'A D PP。
2019年江苏省无锡市江阴市澄要片中考数学模拟试卷(5月份)(解析版)

2019年江苏省无锡市江阴市澄要片中考数学模拟试卷(5月份)一、选择题(本大题共10小题,共30.0分)1.-5的倒数是()A. 5B.C.D.2.下列运算正确的是()A. B. C. D.3.如图,所给图形中是中心对称图形但不是轴对称图形的是()A.B.C.D.4.一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法错误的是()A. 极差是20B. 中位数是91C. 众数是98D. 平均数是915.若一个多边形的内角和等于1620°,则这个多边形的边数为()A. 9B. 10C. 11D. 126.如图,在⊙O中,∠BOD=120°,则∠BCD的度数是()A.B.C.D.7.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A. B. C. D.8.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A. B. C. D.9.如图,点A在反比例函数y=(x>0)图象上,点B在y轴负半轴上,连结AB交x轴于点C,若△AOC的面积为1,则△BOC的面积为()A. B. C. D. 110.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A. ①②③B. 仅有①②C. 仅有①③D. 仅有②③二、填空题(本大题共8小题,共24.0分)11.分解因式:a2b-4ab+4b=______.12.函数y=中,自变量x的取值范围是______.13.今年清明假期全国铁路发送旅客约41000000人次,将41000000用科学记数法表示为______.14.在-2、1、-3这三个数中,任选两个数的积作为k的值,使正比例函数y=kx的图象在第一、三象限的概率是______15.如图,等腰△ABC中,AB=AC,∠C=65°,AB的垂直平分线MN交AC于点D,则∠DBC的度数是______.16.如图,斜坡AB的长为200米,其坡角为45°.现把它改成坡角为30°的斜坡AD,那么BD=______米.(结果保留根号)17.在平面直角坐标系xOy中,点A的坐标为(1,0),P是第一象限内任意一点,连接PO,PA,若∠POA=m°,∠PAO=n°,则我们把(m°,n°)叫做点P的“双角坐标”.例如,点(1,1)的“双角坐标”为(45°,90°).(1)点(,)的“双角坐标”为______;(2)若点P到x轴的距离为,则m+n的最小值为______.18.在四边形ABCD中,AB∥CD,BC⊥CD,AB=2,CD=3,在BC上取点P(P与B、C不重合)连接PA延长至E,使PA=2AE,连接PD并延长至F,使PD=3FD,以PE、PF为边作平行四边形,另一个顶点为G,则PG长度的最小值为______.三、计算题(本大题共1小题,共8.0分)19.某工厂有甲种原料69千克,乙种原料52千克,现计划用这两种原料生产A,B两种型号的产品共80件,已知每件A型号产品需要甲种原料0.6千克,乙种原料0.9千克;每件B型号产品需要甲种原料1.1千克,乙种原料0.4千克.请解答下列问题:(1)该工厂有哪几种生产方案?(2)在这批产品全部售出的条件下,若1件A型号产品获利35元,1件B型号产品获利25元,(1)中哪种方案获利最大?最大利润是多少?(3)在(2)的条件下,工厂决定将所获利润的25%全部用于再次购进甲、乙两种原料,要求每种原料至少购进4千克,且购进每种原料的数量均为整数.若甲种原料每千克40元,乙种原料每千克60元,请直接写出购买甲、乙两种原料之和最多的方案.四、解答题(本大题共9小题,共76.0分)20.计算或化简(1)-3tan30(2)(x+3)(x-3)-(x-2)221.(1)解不等式组:<(2)解方程:22.如图,点D是△ABC的边AB上一点,点E为AC的中点,过点C作CF∥AB交DE延长线于点F.(1)求证:AD=CF.(2)连接AF,CD,求证:四边形ADCF为平行四边形.23.今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点,某校学生会为了调查学生对雾霾天气知识的了解程度,随机抽取了该校的n名学生做了一次跟踪调查,将调查结果分为四个等级:(A)非常了解.(B)比较了解.(C)基本了解.(D)不了解,并将调查结果绘制成如下两幅不完整统计图.根据统计图提供的信息,解答下列问题:(1)求n的值;(2)在调查的n名学生中,对雾霾天气知识不了解的学生有______人,并将条形统计图补充完整.(3)估计该校1500名学生中,对雾霾天气知识比较了解的学生人数.24.小红参加学校组织的庆祝党的十九大胜利召开知识竞赛,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,可是小红这两道题都不会,不过竞赛规则规定每位选手有两次求助机会,使用“求助”一次可以让主持人去掉其中一题的一个错误选项,主持人提醒小红可以使用两次“求助”.(1)如果小红两次“求助”都在第一道题中使用,那么小红通关的概率是______.(2)如果小红将每道题各用一次“求助”,请用树状图或者列表来分析她顺序通关的概率.25.如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.(1)证明:DE为⊙O的切线;(2)连接OE,若BC=4,求△OEC的面积.26.已知,如图,在边长为10的菱形ABCD中,cos∠B=,点E为BC边上的中点,点F为边AB边上一点,连接EF,过点B作EF的对称点B′,(1)在图(1)中,用无刻度的直尺和圆规作出点B′(不写作法,保留痕迹);(2)当△EFB′为等腰三角形时,求折痕EF的长度.(3)当B′落在AD边的中垂线上时,求BF的长度.27.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为______;②∠AMB的度数为______.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.28.如图①,在平面直角坐标系中,二次函数y=-x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(-3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.(1)填空:b=______,c=______;(2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由;(3)在x轴下方,该二次函数的图象上是否存在点M,使△PQM是以点P为直角顶点的等腰直角三角形?若存在,请求出运动时间t;若不存在,请说明理由;(4)如图②,点N的坐标为(-,0),线段PQ的中点为H,连接NH,当点Q关于直线NH的对称点Q′恰好落在线段BC上时,请直接写出点Q′的坐标.答案和解析1.【答案】D【解析】解:-5的倒数是-.故选:D.根据倒数的定义可直接解答.本题考查的是倒数的定义,即乘积是1的两数互为倒数.2.【答案】A【解析】解:A、原式=x,符合题意;B、原式=x5,不符合题意;C、原式不能合并,不符合题意;D、原式不能合并,不符合题意,故选:A.各项计算得到结果,即可作出判断.此题考查了同底数幂的乘除法,合并同类项,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.3.【答案】C【解析】解:A、不是轴对称图形,也不是中心对称图形.故A选项错误;B、是轴对称图形,也是中心对称图形.故B选项错误;C、不是轴对称图形,是中心对称图形.故C选项正确;D、是轴对称图形,不是中心对称图形.故D选项错误.故选:C.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心,进行分析可以选出答案.此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.4.【答案】D【解析】解:将数据从小到大排列为:78,85,91,98,98,A、极差为98-78=20,说法正确,故本选项错误;B、中位数是91,说法正确,故本选项错误;C、众数是98,说法正确,故本选项错误;D、平均数是=90,说法错误,故本选项正确;故选:D.根据极差、中位数、众数及平均数的定义,结合数据进行分析即可.本题考查了极差、中位数、众数及平均数的知识,属于基础题,解答本题的关键是掌握各部分的定义.5.【答案】C【解析】解:设多边形的边数为n,由题意得:180(n-2)=1620,解得:n=11,故选:C.首先设多边形的边数为n,再根据多边形内角和公式可得方程180(n-2)=1620,再解即可.此题主要考查了多边形的内角与外角,关键是掌握多边形内角和定理:(n-2)•180 (n≥3)且n为整数).6.【答案】C【解析】解:∵对的圆周角是∠A,对的圆心角是∠DOB,又∵∠BOD=120°,∴∠A=∠DOB=60°,∵A、B、C、D四点共圆,∴∠A+∠BCD=180°,∴∠BCD=180°-60°=120°,故选:C.根据圆周角定理得出∠A=∠DOB=60°,根据圆内接四边形的性质得出∠A+∠BCD=180°,代入求出即可.本题考查了圆周角定理和圆内接四边形的性质,能根据定理求出∠A=∠DOB和∠A+∠BCD=180°是解此题的关键.7.【答案】B【解析】解:由三视图可知此几何体为圆锥,∴圆锥的底面半径为3,母线长为5,∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×3=6π,∴圆锥的侧面积==×6π×5=15π,故选:B.根据三视图可以判定此几何体为圆锥,根据三视图的尺寸可以知圆锥的底面半径为3,圆锥的母线长为5,代入公式求得即可.本题考查了圆锥的侧面积的计算,解题的关键是正确的理解圆锥的底面周长等于圆锥的侧面展开扇形的面积.8.【答案】C【解析】解:连接OD,在Rt△OCD中,OC=OD=2,∴∠ODC=30°,CD==2,∴∠COD=60°,∴阴影部分的面积=-×2×2=π-2,故选:C.连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.9.【答案】B【解析】解:如图1所示,过点A作AH垂直x轴,垂足为点H,设点A的坐标为(m ,),∴AH=,∵△AOC的面积是1,∴OC••=1,解得OC=,∴CH=OH-OC=,∵△OBC∽△AHC,∴,即解得OB=,∴OB•OC•=,故选:B.设点A的坐标,表示OC的长度,利用相似表述出线段OB的长度,从而得到△OBC的面积.此题考查了反比例函数上的点坐标的特征,找出相似三角形为解题关键.10.【答案】A【解析】解:甲的速度为:8÷2=4(米/秒);乙的速度为:500÷100=5(米/秒);b=5×100-4×(100+2)=92(米);5a-4×(a+2)=0,解得a=8,c=100+92÷4=123(秒),∴正确的有①②③.故选:A.易得乙出发时,两人相距8m,除以时间2即为甲的速度;由于出现两人距离为0的情况,那么乙的速度较快.乙100s跑完总路程500可得乙的速度,进而求得100s时两人相距的距离可得b 的值,同法求得两人距离为0时,相应的时间,让两人相距的距离除以甲的速度,再加上100即为c的值.考查一次函数的应用;得到甲乙两人的速度是解决本题的突破点;得到相应行程的关系式是解决本题的关键.11.【答案】b(a-2)2【解析】解:a2b-4ab+4b=b(a2-4a+4)=b(a-2)2考查了对一个多项式因式分解的能力.本题属于基础题,当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式继续分解.此题应先提公因式,再用完全平方公式.本题考查因式分解的概念,注意必须将式子分解到不能分解为止.完全平方公式:a2±2ab+b2=(a±b)2.12.【答案】x≥1且x≠2【解析】解:根据题意得:,解得:x≥1且x≠2.故答案为:x≥1且x≠2.根据二次根式的性质和分式的意义,被开方数大于等于0,可知x-1≥0;分母不等于0,可知:x-2≠0,则可以求出自变量x的取值范围.本题考查了函数自变量的范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.13.【答案】4.1×107【解析】解:41 000000=4.1×107,故答案为:4.1×107.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.【答案】【解析】解:画树状图得:∵共有6种等可能的结果,任选两个数的积作为k的值,使正比例函数数y=kx的图象在第一、三象限的有2种情况,∴任选两个数的积作为k的值,使正比例函数y=kx的图象在第一、三象限的概率是=,故答案为:.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与任选两个数的积作为k的值,使正比例函数y=kx的图象在第一、三象限的情况,再利用概率公式即可求得答案.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.15.【答案】15°【解析】解:∵AB的垂直平分线MN交AC于点D,∴AD=BD,∴∠ABD=∠A,∵等腰△ABC中,AB=AC,∴∠ABC=∠C=65°,∴∠A=180°-∠ABC+∠C=50°,∴∠DBC=∠ABC-∠ABD=15°.故答案为:15°.由AB的垂直平分线MN交AC于点D,可得AD=BD,继而证得∠ABD=∠A,然后由等腰△ABC 中,AB=AC,∠C=65°,求得∠ABC=∠C=65°,又由三角形内角和定理,得方程:∠A=∠ABD=50°,继而求得答案.此题考查了线段垂直平分线的性质以及等腰三角形的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.16.【答案】100(-)【解析】解:由题意可得:BC=AC=AB•sin45°=100(m),则tan30°=,故DC==100×=100(m),则BD=100(-)m.故答案为:100(-).直接利用锐角三角函数关系得出AC,BC的长,进而得出DC的长,即可得出答案.此题主要考查了解直角三角形的应用,正确运用锐角三角函数关系是解题关键.17.【答案】(60°,60°)90【解析】解:(1)∵P (,),OA=1,∴tan∠POA==,tan∠PAO==,∴∠POA=60°,∠PAO=60°,即点P的“双角坐标”为(60°,60°),故答案为:(60°,60°);(2)根据三角形内角和定理知若要使m+n取得最小值,即∠POA+∠PAO取得最小值,则∠OPA需取得最大值,如图,∵点P到x轴的距离为,OA=1,∴OA中点为圆心,为半径画圆,与直线y=相切于点P,在直线y=上任取一点P′,连接P′O、P′A,P′O交圆于点Q,∵∠OPA=∠1>∠OP′A,此时∠OPA最大,∠OPA=90°,∴m+n的最小值为90,故答案为:90.(1)分别求出tan∠POA、tan∠PAO即可得∠POA、∠PAO的度数,从而得出答案;(2)根据三角形内角和定理知若要使m+n取得最小值,即∠POA+∠PAO取得最小值,则∠OPA 需取得最大值,OA中点为圆心,为半径画圆,与直线y=相切于点P,由∠OPA=∠1>∠OP′A 知此时∠OPA最大,∠OPA=90°,即可得出答案.本题主要考查坐标与图形的性质、锐角的三角函数、三角形的内角和定理、外角的性质及圆周角定理,根据内角和定理推出m+n取得最小值即为∠OPA取得最大值,且找到满足条件的点P 位置是关键.18.【答案】7【解析】解:连接PG、EF交于点O,PG交AD于点K,过点A作AM∥EO交PG于点M,过点D作DN∥FO交PG于点N.∵PA=2AE,PD=3FD,∴,.∵AM∥EO,DN∥FO,∴△POE∽△PMA,△POF∽△PND,∴=,,∴MP=OP,NP=OP,AM=EO,DN=FO,又∵在平行四边形PEGF中,OE=OF,∴,∵AM∥DN,∴,∵,∴,解得:OP=PK.由题意可知,PG必过点K,当KP⊥BC时,PG最小,此时PK=,∴OP=PK=,∴PG=2OP=7.故答案为:7.作如下辅助线:连接PG、EF交于点O,PG交AD于点K,过点A作AM∥EO交PG于点M,过点D作DN∥FO交PG于点N,由此可得△POE∽△PMA,△POF∽△PND,△AKM∽△DKN,利用对应边成比例即可求出平行四边形的对角线PG必过点K,且,当KP⊥BC时,PG的长度最小,此时PK=,所以OP==,PG=2OP=7.本题考查了平行四边形的性质、相似三角形的判定及性质的利用,作平行线构造相似三角形是解题的关键.19.【答案】解:(1)设生产A型号产品x件,则生产B型号产品(80-x)件,由题意,得,解得:38≤x≤40.∵x为整数,∴x=38,39,40,∴有3种生产方案:方案1,生产A型号产品38件,生产B型号产品42件;方案2,生产A型号产品39件,生产B型号产品41件;方案3,生产A型号产品40件,生产B型号产品40件.(2)设生产A型号产品x件,所获利润为W元,由题意,得W=35x+25(80-x),即W=10x+2000,∵k=10>0,∴W随x的增大而增大,又∵38≤x≤40,∴当x=40时,W最大=2400元.∴生产A型号产品40件,B型号产品40件时获利最大,最大利润为2400元.(3)设购买甲种原料m千克,购买乙种原料n千克,由题意,得40m+60n=2400×25%,即2m+3n=30,∵m+n要最大,∴n要最小.∵m≥4,n≥4,∴n=4.∴m=9.∴购买甲种原料9千克,乙种原料4千克.【解析】(1)设生产A型号产品x件,则生产B型号产品(80-x)件,根据原材料的数量与每件产品的用量建立不等式组,求出其解即可;(2)设所获利润为W元,根据总利润=A型号产品的利润+B型号产品的利润建立W与x之间的函数关系式,求出其解即可;(3)根据(2)的结论,设购买甲种原料m千克,购买乙种原料n千克,建立方程,根据题意只有n最小,m最大才可以得出m+n最大得出结论.本题考查了列一元一次不等式组解实际问题的运用,一元一次不等式组的解法的运用,一次函数的解析式的运用,二元一次不定方程的解法的运用.解答时由一次函数的解析式求解是关键.20.【答案】解:(1)原式=2-3×-4=2--4=-4;(2)原式=x2-9-x2+4x-4=4x-13.【解析】(1)先根据二次根式的性质,特殊角的三角函数值,负整数指数幂进行计算,再求出即可;(2)先算乘法,再换上同类项即可.本题考查了二次根式的性质,特殊角的三角函数值,负整数指数,整式的混合运算等知识点,能求出每一部分的值是解(1)的关键,能正确根据整式的运算法则进行化简是解此题的关键.21.【答案】解:(1)由①得x>0,由②得x≤3,∴原不等式组的解为0<x≤3;(2)去分母,得(x-3)2+2x(x-3)=3x2,去括号,得x2-6x+9+2x2-6x=3x2,解得x=,经检验x=是原分式方程的根,故原方程的解为x=.【解析】(1)先求出其中各不等式的解集,再求出这些解集的公共部分;(2)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.本题考查了解一元一次不等式组以及解分式方程,熟练掌握一元一次不等式组与分式方程的解法是解题的关键.22.【答案】解:(1)证明:∵CF∥AB,∴∠ADE=∠F,∠FCE=∠A.∵点E为AC的中点,∴AE=EC.∵在△ADE和△CFE中,,∴△ADE≌△CFE(AAS).∴AD=CF;(2)∵△ADE≌△CFE,∴DE=FE.∵AE=EC,∴四边形ADCF为平行四边形.【解析】(1)根据CF∥AB就可以得出∠A=∠ECF,∠ADE=∠F,证明△ADE≌△CFE就可以求出结论;(2)由△ADE≌△CFE就可以得出DE=FE,又有AE=CE于是就得出结论.本题考查了中点的旋转的运用于,全等三角形的判定及性质的运用,平行四边形的判定方法的运用,解答时证明三角形全等是关键.23.【答案】140【解析】解:(1)由条形图可知,非常了解的人数是20人,由扇形统计图可知,非常了解的人数占5%,则n=20÷5%=400(人);(2)400-20-60-180=140,则对雾霾天气知识不了解的学生有140人.故答案为:140;(3)1500×=225(人).答:该校1500名学生中,对雾霾天气知识比较了解的学生人数有225人.(1)根据条形统计图和扇形统计图得到人数和百分比,计算即可;(2)根据样本容量等于频数之和计算;(3)用样本估计总体即可.本题考查的是条形统计图、扇形统计图和用样本估计总体,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.24.【答案】【解析】解:(1)第一道肯定能对,第二道对的概率为,所以通关的概率为;故答案为:;(2)画树状图为:∴共有6种等可能的结果,其中顺利通关的只有1种情况,∴顺利通关的概率为:P(通关)=.(1)小红两次“求助”都在第一道题中使用,第一道肯定能对,第二道对的概率为,即可得出结果;(2)用树状图得出共有6种等可能的结果,顺利通关的只有1种情况,即可得出结果.此题考查了列表法或树状图法求概率.当有两个元素时,可用树形图列举,也可以列表列举.用到的知识点为:概率=所求情况数与总情况数之比.25.【答案】(1)证明:连接OD,CD,∵BC为⊙O直径,∴∠BDC=90°,即CD⊥AB,∵△ABC是等腰三角形,∴AD=BD,∵OB=OC,∴OD是△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵D点在⊙O上,∴DE为⊙O的切线;(2)解:∵∠A=∠B=30°,BC=4,∴CD=BC=2,BD=BC•cos30°=2,∴AD=BD=2,AB=2BD=4,∴S△ABC=AB•CD=×4×2=4,∵DE⊥AC,∴DE=AD=×2=,AE=AD•cos30°=3,∴S△ODE=OD•DE=×2×=,S△ADE=AE•DE=××3=,∵S△BOD=S△BCD=×S△ABC=×4=,∴S△OEC=S△ABC-S△BOD-S△ODE-S△ADE=4---=.【解析】(1)首先连接OD,CD,由以BC为直径的⊙O,可得CD⊥AB,又由等腰三角形ABC的底角为30°,可得AD=BD,即可证得OD∥AC,继而可证得结论;(2)首先根据三角函数的性质,求得BD,DE,AE的长,然后求得△BOD,△ODE,△ADE以及△ABC的面积,继而求得答案.此题考查了切线的判定、三角形中位线的性质、等腰三角形的性质、圆周角定理以及三角函数等知识.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.26.【答案】解:(1)点B′的位置如图所示.(2)①当B’E=EF时,EF=5,②图1中,当B’E=B’F时,即BE=BF,作FH⊥BE于H.在Rt△BFH中,cos B==,第11页,共14页∴BH = ,FH = =,EH =BE -BH =,∴EF = ==③图2中,当EF =B ’F 时,即FE =FB ,作FH ⊥BE ,则BH =HE =.在Rt △BFH 中,cos B = =, ∴BF =∴EF =BF = .综上:EF =5, ,.(3)如图3中,取AD 中点M ,作MN ⊥AD 交BC 于N ,连接BB ′,作FH ⊥BC 于H ,作AG ⊥BC 于G ,则四边形AMNG 是矩形,AM =GN =5.在Rt △ABG 中,cos B = =,∴BG =3,CN =10-3-5=2,EN =EC -CN =3, 在Rt △EB ′N 中,NB ′= =4,设BF =10k ,则BH =3k ,FH = k ,EH =5-3k , ∵∠HFE +∠FEH =90°,∠FEH +∠NBB ′=90°, ∴∠EFH =∠NBB ′, ∴tan ∠EFH =tan ∠NBB ′=, ∴ =, 解得k =, ∴BF =.【解析】(1)分别以E 、F 为圆心BE 、FB 为半径弧两弧的交点即为B′; (2)分三种情形分别求解即可;(3)如图3中,取AD 中点M ,作MN ⊥AD 交BC 于N ,连接BB′,作FH ⊥BC 于H ,作AG ⊥BC 于G ,则四边形AMNG 是矩形,AM=GN=5.根据tan ∠EFH=tan ∠NBB′=,列出方程即可解决问题;本题考查作图-轴对称变换、线段的垂直平分线的性质、菱形的性质、等腰三角形的性质、解直角三角形、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.27.【答案】1 40° 【解析】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°, ∴∠COA=∠DOB ,∵OC=OD ,OA=OB , ∴△COA ≌△DOB (SAS ), ∴AC=BD , ∴=1,②∵△COA ≌△DOB , ∴∠CAO=∠DBO ,∵∠AOB=40°, ∴∠OAB+∠ABO=140°, 在△AMB 中,∠AMB=180°-(∠CAO+∠OAB+∠ABD )=180°-(∠DBO+∠OAB+∠ABD )=180°-140°=40°, 故答案为:①1;②40°; (2)类比探究 如图2,=,∠AMB=90°,理由是:Rt △COD 中,∠DCO=30°,∠DOC=90°, ∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°-(∠MAB+∠ABM)=180°-(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x-2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2-x-6=0,(x-3)(x+2)=0,x1=3,x2=-2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x-6=0,(x+3)(x-2)=0,x1=-3,x2=2,∴AC=2;综上所述,AC的长为3或2.(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°-(∠DBO+∠OAB+∠ABD)=180°-140°=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC∽△BOD,则∠AMB=90°,,可得AC的长.本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:△AOC∽△BOD,根据相似三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.28.【答案】 4【解析】解:(1)设抛物线的解析式为y=a(x+3)(x-4).将a=-代入得:y=-x2+x+4,∴b=,c=4.(2)在点P、Q运动过程中,△APQ不可能是直角三角形.理由如下:连结QC.∵在点P、Q运动过程中,∠PAQ、∠PQA始终为锐角,∴当△APQ是直角三角形时,则∠APQ=90°.将x=0代入抛物线的解析式得:y=4,∴C(0,4).∵AP=OQ=t,∴PC=5-t,∵在Rt△AOC中,依据勾股定理得:AC=5,在Rt△COQ中,依据勾股定理可知:CQ2=t2+16,在第12页,共14页Rt△CPQ中依据勾股定理可知:PQ2=CQ2-CP2,在Rt△APQ中,AQ2-AP2=PQ2,∴CQ2-CP2=AQ2-AP2,即(3+t)2-t2=t2+16-(5-t)2,解得:t=4.5.∵由题意可知:0≤t≤4,∴t=4.5不合题意,即△APQ不可能是直角三角形.(3)如图所示:过点P作DE∥x轴,分别过点M、Q作MD⊥DE、QE⊥DE,垂足分别为D、E,MD交x轴与点F,过点P作PG⊥x轴,垂足为点G,则PG∥y轴,∠E=∠D=90°.∵PG∥y轴,∴△PAG∽△ACO,∴==,即==,∴PG=t,AG=t,∴PE=GQ=GO+OQ=AO-AG+OQ=3-t+t=3+t,DF=GP=t.∵∠MPQ=90°,∠D=90°,∴∠DMP+∠DPM=∠EPQ+∠DPM=90°,∴∠DMP=∠EPQ.又∵∠D=∠E,PM=PQ,∴△MDP≌△PEQ,∴PD=EQ=t,MD=PE=3+t,∴FM=MD-DF=3+t-t=3-t,OF=FG+GO=PD+OA-AG=3+t-t=3+t,∴M(-3-t,-3+t).∵点M在x轴下方的抛物线上,∴-3+t=-×(-3-t)2+×(-3-t)+4,解得:t=.∵0≤t≤4,∴t=.(4)如图所示:连结OP,取OP的中点R,连结RH,NR,延长NR交线段BC于点Q′.yu∵点H为PQ的中点,点R为OP的中点,∴RH=QO=t,RH∥OQ.∵A(-3,0),N(-,0),∴点N为OA的中点.又∵R为OP的中点,∴NR=AP=t,∴RH=NR,∴∠RNH=∠RHN.∵RH∥OQ,∴∠RHN=∠HNO,∴∠RNH=∠HNO,即NH是∠QNQ′的平分线.设直线AC的解析式为y=mx+n,把点A(-3,0)、C(0,4)代入得:,解得:m=,n=4,∴直线AC的表示为y=x+4.同理可得直线BC的表达式为y=-x+4.设直线NR的函数表达式为y=x+s,将点N的坐标代入得:×(-)+s=0,解得:s=2,∴直线NR的表述表达式为y=x+2.将直线NR和直线BC的表达式联立得:,解得:x=,y=,∴Q′(,).第13页,共14页(1)设抛物线的解析式为y=a(x+3)(x-4).将a=-代入可得到抛物线的解析式,从而可确定出b、c的值;(2)连结QC.先求得点C的坐标,则PC=5-t,依据勾股定理可求得AC=5,CQ2=t2+16,接下来,依据CQ2-CP2=AQ2-AP2列方程求解即可;(3)过点P作DE∥x轴,分别过点M、Q作MD⊥DE、QE⊥DE,垂足分别为D、E,MD交x轴与点F,过点P作PG⊥x轴,垂足为点G,首先证明△PAG∽△ACO,依据相似三角形的性质可得到PG=t,AG=t,然后可求得PE、DF的长,然后再证明△MDP≌PEQ,从而得到PD=EQ=t,MD=PE=3+t,然后可求得FM和OF的长,从而可得到点M的坐标,然后将点M的坐标代入抛物线的解析式求解即可;(4)连结:OP,取OP的中点R,连结RH,NR,延长NR交线段BC与点Q′.首先依据三角形的中位线定理得到RH=QO=t,RH∥OQ,NR=AP=t,则RH=NR,接下来,依据等腰三角形的性质和平行线的性质证明NH是∠QNQ′的平分线,然后求得直线NR和BC的解析式,最后求得直线NR和BC的交点坐标即可.本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、相似三角形的性质和判定、全等三角形的性质和判定,依据勾股定理列出关于t的方程是解答问题(2)的关键;求得点M的坐标(用含t的式子表示)是解答问题(3)的关键;证得NH为∠QHQ′的平分线是解答问题(4)的关键.第14页,共14页。
2019年江苏省无锡市江阴一中中考数学一模试卷 解析版

2019年江苏省无锡市江阴一中中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)tan60°的值等于( )A .1B .C .D .22.(3分)下列运算正确的是( )A .(ab )3=a 3bB .C .a 6÷a 2=a 3D .(a +b )2=a 2+b 23.(3分)在函数y =中,自变量x 的取值范围是( ) A .x >﹣5 B .x ≥﹣5 C .x >0 D .x ≥04.(3分)如图,所给图形中是中心对称图形但不是轴对称图形的是( )A .B .C .D . 5.(3分)某学习小组为了解本城市100万成年人中大约有多少人吸烟,随机调查了50个成年人,结果其中有10个成年人吸烟.对于这个数据收集与处理的问题,下列说法正确的是( )A .该调查的方式是普查B .样本容量是50C .本城市只有40个成年人不吸烟D .本城市一定有20万人吸烟6.(3分)如图,P 为平行四边形ABCD 的边AD 上的一点,E ,F 分别为PB ,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为S ,S 1,S 2.若S =3,则S 1+S 2的值为( )A .24B .12C .6D .37.(3分)在平面几何中,下列命题为真命题的是( )A .四边相等的四边形是正方形B .四个角相等的四边形是矩形C.对角线相等的四边形是菱形D.对角线互相垂直的四边形是平行四边形8.(3分)数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.9.(3分)如图,坐标平面上,A、B两点分别为圆P与x轴、y轴的交点,有一直线L通过P点且与AB垂直,C点为L与y轴的交点.若A、B、C的坐标分别为(a,0),(0,4),(0,﹣5),其中a<0,则a的值为何?()A.﹣2B.﹣2C.﹣8D.﹣710.(3分)如图,四边形ABCD的顶点都在坐标轴上,若AB∥CD,△ABD与△ACD的面积分别为3和6,若双曲线y=恰好经过BC的中点E,则k的值为()A.﹣2B.2C.﹣1D.1二、填空题:本大题共8小题,每小题2分,共16分11.(2分)因式分解:2a2﹣8a+8=.12.(2分)0.0002011用科学记数法可表示为.13.(2分)已知一组数据1,a,3,6,7,它的平均数是5,这组数据的中位数是.14.(2分)若一元二次方程x2﹣3x+1=0的两根为x1和x2,则x1+x2=.15.(2分)要制作一个圆锥模型,其侧面是由一个半径为3cm,圆心角为150°的扇形纸板制成的,那么这个圆锥模型的侧面积为cm2.16.(2分)反比例函数y=的图象经过点(2,3),则k的值等于.17.(2分)如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点D.若∠A=32°,则∠D=度.18.(2分)如图,在边长为5cm的正方形纸片ABCD中,点F在边BC上,已知FB=2cm.如果将纸折起,使点A落在点F上,则tan∠GEA=.三、解答题:本大题共10小题,共84分19.(8分)计算:(1)计算:(+π)0﹣|﹣3|+()﹣1(2)化简:(1﹣)÷.20.(8分)解方程与不等式组:(1)解方程:;(2)解不等式组:21.(7分)如图,正方形ABCD中,点E在对角线AC上,连接EB、ED.(1)求证:△BCE≌△DCE;(2)延长BE交AD于点F,若∠DEB=140°,求∠AFE的度数.22.(8分)某校九年级所有学生参加2011年初中毕业英语口语、听力自动化考试,我们从中随机抽取了部分学生的考试成绩,将他们的成绩进行统计后分为A、B、C、D四等,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:25分~30分;B级:20分~24分;C级:15分~19分;D级:15分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所占的百分比是;(3)扇形统计图中A级所在的扇形的圆心角度数是;(4)若该校九年级有850名学生,请你估计全年级A级和B级的学生人数共约为人.23.(7分)4件同型号的产品中,有1件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;(3)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?24.(8分)如图,平面直角坐标系中,已知点B的坐标为(6,4).(1)请用直尺(不带刻度)和圆规作一条直线AC,它与x轴和y轴的正半轴分别交于点A和点C,且使∠ABC=90°,△ABC与△AOC的面积相等.(作图不必写作法,但要保留作图痕迹.)(2)问:(1)中这样的直线AC是否唯一?若唯一,请说明理由;若不唯一,请在图中画出所有这样的直线AC,并写出与之对应的函数表达式.25.(8分)某地质公园为了方便游客,计划修建一条栈道BC连接两条进入观景台OA的栈道AC和OB,其中AC⊥BC,同时为减少对地质地貌的破坏,设立一个圆形保护区⊙M (如图所示),M是OA上一点,⊙M与BC相切,观景台的两端A、O到⊙M上任意一点的距离均不小于80米.经测量,OA=60米,OB=170米,tan∠OBC=.(1)求栈道BC的长度;(2)当点M位于何处时,可以使该圆形保护区的面积最大?26.(10分)某发电厂共有6台发电机发电,每台的发电量为300万千瓦/月.该厂计划从今年7月开始到年底,对6台发电机各进行一次改造升级.每月改造升级1台,这台发电机当月停机,并于次月再投入发电,每台发电机改造升级后,每月的发电量将比原来提高20%.已知每台发电机改造升级的费用为20万元.将今年7月份作为第1个月开始往后算,该厂第x(x是正整数)个月的发电量设为y(万千瓦).(1)求该厂第2个月的发电量及今年下半年的总发电量;(2)求y关于x的函数关系式;(3)如果每发1千瓦电可以盈利0.04元,那么从第1个月开始,至少要到第几个月,这期间该厂的发电盈利扣除发电机改造升级费用后的盈利总额ω1(万元),将超过同样时间内发电机不作改造升级时的发电盈利总额ω2(万元)?27.(10分)如图,在平面直角坐标系xOy内,正方形AOBC顶点C的坐标为(2,2),过点B的直线∥OC,P是直线上一个动点,抛物线y=ax2+bx过O、C、P三点.(1)填空:直线的函数解析式为;a,b的关系式是.(2)当△PBC是等腰Rt△时,求抛物线的解析式;(3)当抛物线的对称轴与正方形有交点时,直接写出点P横坐标x的取值范围.28.(10分)操作:小明准备制作棱长为1cm的正方体纸盒,现选用一些废弃的纸片进行如下设计:说明:方案一:图形中的圆过点A、B、C;方案二:直角三角形的两直角边与展开图左下角的正方形边重合,斜边经过两个正方形的顶点纸片利用率=×100%发现:(1)方案一中的点A、B恰好为该圆一直径的两个端点.你认为小明的这个发现是否正确,请说明理由.(2)小明通过计算,发现方案一中纸片的利用率仅约为38.2%.请帮忙计算方案二的利用率,并写出求解过程.探究:(3)小明感觉上面两个方案的利用率均偏低,又进行了新的设计(方案三),请直接写出方案三的利用率.说明:方案三中的每条边均过其中两个正方形的顶点.2019年江苏省无锡市江阴一中中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)tan60°的值等于()A.1B.C.D.2【分析】根据记忆的特殊角的三角函数值即可得出答案.【解答】解:tan60°=.故选:C.【点评】本题考查了特殊角的三角函数值,一些特殊角的三角函数值是需要我们熟练记忆的内容.2.(3分)下列运算正确的是()A.(ab)3=a3b B.C.a6÷a2=a3D.(a+b)2=a2+b2【分析】分别根据完全平方公式以及积的乘方和同底数幂的乘法运算公式求出即可.【解答】解:A、(ab)3=a3b3,故此选项错误;B、==﹣1,故此选项正确;C、a6÷a2=a4,故此选项错误;D、(a+b)2=a2+b2+2ab,故此选项错误.故选:B.【点评】此题主要考查了完全平方公式以及积的乘方和同底数幂的乘法运算公式等知识,熟练掌握相关定义是解题关键.3.(3分)在函数y=中,自变量x的取值范围是()A.x>﹣5B.x≥﹣5C.x>0D.x≥0【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x+5>0,解得x>﹣5.故选:A.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.(3分)如图,所给图形中是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:C.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.(3分)某学习小组为了解本城市100万成年人中大约有多少人吸烟,随机调查了50个成年人,结果其中有10个成年人吸烟.对于这个数据收集与处理的问题,下列说法正确的是()A.该调查的方式是普查B.样本容量是50C.本城市只有40个成年人不吸烟D.本城市一定有20万人吸烟【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A、是抽查,故A错误;B、抽查50人,故B正确;C、样本中有40人不抽烟,故C错误;D 、说法太绝对,故D 错误;故选:B .【点评】解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.(3分)如图,P 为平行四边形ABCD 的边AD 上的一点,E ,F 分别为PB ,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为S ,S 1,S 2.若S =3,则S 1+S 2的值为( )A .24B .12C .6D .3【分析】过P 作PQ 平行于DC ,由DC 与AB 平行,得到PQ 平行于AB ,可得出四边形PQCD 与ABQP 都为平行四边形,进而确定出△PDC 与△PCQ 面积相等,△PQB 与△ABP 面积相等,再由EF 为△BPC 的中位线,利用中位线定理得到EF 为BC 的一半,且EF 平行于BC ,得出△PEF 与△PBC 相似,相似比为1:2,面积之比为1:4,求出△PBC 的面积,而△PBC 面积=△CPQ 面积+△PBQ 面积,即为△PDC 面积+△PAB 面积,即为平行四边形面积的一半,即可求出所求的面积.【解答】解:过P 作PQ ∥DC 交BC 于点Q ,由DC ∥AB ,得到PQ ∥AB ,∴四边形PQCD 与四边形APQB 都为平行四边形,∴△PDC ≌△CQP ,△ABP ≌△QPB ,∴S △PDC =S △CQP ,S △ABP =S △QPB ,∵EF 为△PCB 的中位线,∴EF ∥BC ,EF =BC ,∴△PEF ∽△PBC ,且相似比为1:2,∴S △PEF :S △PBC =1:4,S △PEF =3,∴S △PBC =S △CQP +S △QPB =S △PDC +S △ABP =S 1+S 2=12.故选:B .【点评】此题考查了平行四边形的性质,相似三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.7.(3分)在平面几何中,下列命题为真命题的是()A.四边相等的四边形是正方形B.四个角相等的四边形是矩形C.对角线相等的四边形是菱形D.对角线互相垂直的四边形是平行四边形【分析】根据平行四边形、矩形、菱形的判定分别对每一项进行分析判断即可.【解答】解:A、四边相等的四边形是菱形,故本选项错误;B、四个角相等的四边形是矩形,正确;C、对角线互相垂直的平行四边形是菱形,故本选项错误;D、对角线互相平分的四边形是平行四边形,故本选项错误;故选:B.【点评】此题考查了命题与定理,用到的知识点是平行四边形、矩形、菱形的判定,关键是熟练掌握每种四边形的判定方法.8.(3分)数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.【分析】A、根据作法无法判定PQ⊥l;B、以P为圆心大于P到直线l的距离为半径画弧,交直线l,于两点,再以两点为圆心,大于它们的长为半径画弧,得出其交点,进而作出判断;C、根据直径所对的圆周角等于90°作出判断;D、根据全等三角形的判定和性质即可作出判断.【解答】解:根据分析可知,选项B、C、D都能够得到PQ⊥l于点Q;选项A不能够得到PQ⊥l于点Q.故选:A.【点评】此题主要考查了过直线外以及过直线上一点作已知直线的垂线,熟练掌握基本作图方法是解题关键.9.(3分)如图,坐标平面上,A、B两点分别为圆P与x轴、y轴的交点,有一直线L通过P点且与AB垂直,C点为L与y轴的交点.若A、B、C的坐标分别为(a,0),(0,4),(0,﹣5),其中a<0,则a的值为何?()A.﹣2B.﹣2C.﹣8D.﹣7【分析】连接AC,根据线段垂直平分线的性质得到AC=BC,根据勾股定理求出OA,得到答案.【解答】解:连接AC,由题意得,BC=OB+OC=9,∵直线L通过P点且与AB垂直,∴直线L是线段AB的垂直平分线,∴AC=BC=9,在Rt△AOC中,AO==2,∵a<0,∴a=﹣2,故选:A.【点评】本题考查的是垂径定理、坐标与图形的性质以及勾股定理,掌握垂径定理的推论是解题的关键.10.(3分)如图,四边形ABCD的顶点都在坐标轴上,若AB∥CD,△ABD与△ACD的面积分别为3和6,若双曲线y=恰好经过BC的中点E,则k的值为()A.﹣2B.2C.﹣1D.1【分析】根据AB∥CD,设==m;==n,得出OC=mn•OB,OD=n•OB,进而表示出△ABD与△ACD的面积,表示出E点坐标,进而得出k的值.【解答】解:因为AB∥CD,设==m;==n,得到:OA=mOB,OC=n•OA=n•m•OB=mn•OB,OD=n•OB,△ABD与△ACD的面积分别为3和6,△ABD的面积=(OA•BD)=OA•(OB+OD)=(m•OB)•(OB+n•OB)=m •(n+1)•OB2=3,△ACD的面积=(AC•OD)=OD•(OA+OC)=(n•OB)•(m•OB+mn•OB)=m•n•(n+1)•OB2=6,两个等式相除,得到n=2,代入得到m•OB2=2,BC的中点E点坐标为:(﹣OB,﹣OC),k=x•y=﹣OB•(﹣OC)=OB•m•n•OB=××2×m•OB2=×2=1.故选:D.【点评】本题考查了反比例函数综合题应用,根据已知得出OC、OD、OB的关系,进而表示出△ABD与△ACD的面积是解题关键.二、填空题:本大题共8小题,每小题2分,共16分11.(2分)因式分解:2a2﹣8a+8=2(a﹣2)2.【分析】首先提取公因式2,进而利用公式法分解因式即可.【解答】解:2a2﹣8a+8=2(a2﹣4a+4)=2(a﹣2)2.故答案为:2(a﹣2)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练利用公式法分解因式是解题关键.12.(2分)0.0002011用科学记数法可表示为 2.011×10﹣4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【解答】解:0.000 201 1=2.011×10﹣4.故答案为:2.011×10﹣4.【点评】此题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.(2分)已知一组数据1,a,3,6,7,它的平均数是5,这组数据的中位数是6.【分析】根据题目中的平均数可以求得a的值,然后将这组数据按照从小到大的顺序排列即可得到这组数的中位数.【解答】解:∵一组数据1,a,3,6,7,它的平均数是5,∴1+a+3+6+7=5×5,解得,a=8,∴这组数据按照从小打到排列为:1,3,6,7,8,∴这组数据的中位数是6,故答案为:6.【点评】本题考查中位数、算术平均数,解答本题的关键是明确中位数的含义,会求一组数据的中位数.14.(2分)若一元二次方程x2﹣3x+1=0的两根为x1和x2,则x1+x2=3.【分析】本题要求算出x1+x2的结果,x1+x2正好与两根之和公式一致,根据两根之和公式(韦达定理)可以求出x1+x2的值.【解答】解:∵一元二次方程x2﹣3x+1=0的两根为x1和x2,∴x1+x2=3.故答案为:3.【点评】本题考查了一元二次方程根与系数的关系.若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.15.(2分)要制作一个圆锥模型,其侧面是由一个半径为3cm,圆心角为150°的扇形纸板制成的,那么这个圆锥模型的侧面积为cm2.【分析】根据这个圆锥模型的侧面积为扇形的面积,即可解答.【解答】解:这个圆锥模型的侧面积为:=(cm2),故答案为:.【点评】本题考查了圆锥的计算,解决本题的关键是熟记圆锥侧面积是扇形.16.(2分)反比例函数y=的图象经过点(2,3),则k的值等于8.【分析】把点(2,3)代入已知函数解析式,列出关于k的方程,通过解方程即可求得k 的值.【解答】解:∵反比例函数y=的图象经过点(2,3),∴3=,解得,k=8.故答案为8.【点评】本题主要考查反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.17.(2分)如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点D.若∠A=32°,则∠D=26度.【分析】连接OC,根据圆周角定理得到∠COD=2∠A,根据切线的性质计算即可.【解答】解:连接OC,由圆周角定理得,∠COD=2∠A=64°,∵CD为⊙O的切线,∴OC⊥CD,∴∠D=90°﹣∠COD=26°,故答案为:26.【点评】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.18.(2分)如图,在边长为5cm的正方形纸片ABCD中,点F在边BC上,已知FB=2cm.如果将纸折起,使点A落在点F上,则tan∠GEA=.【分析】如图作GM⊥AB于M,连接FG、AG,设AE=EF=x,在RT△BEF中利用勾股定理求出AE,设DG=y,利用AG=GF,列出方程求出DG,在RT△EGM中即可解决问题.【解答】解:如图作GM⊥AB于M,连接FG、AG.∵四边形EGHF是由四边形EGDA翻折得到,∴EF =EA ,GF =AG ,设EF =AE =x ,在RT △EFB 中,∵EF 2=BF 2+BE 2,∴x 2=22+(5﹣x )2,∴x =,∴AE =EF =, 设DG =y ,则y 2+52=(5﹣y )2+32,∴y =,∵∠D =∠DAB =∠AMG =90°,∴四边形DAMG 是矩形,∴AM =DG =,EM =AE ﹣AM =2,GM =AD =5,∴tan ∠AEG ==.故答案为.【点评】本题考查翻折变换、勾股定理等知识,添加辅助线构造直角三角形是解决问题的关键,学会利用勾股定理列出方程,用方程的思想解决问题,属于中考常考题型.三、解答题:本大题共10小题,共84分19.(8分)计算:(1)计算:(+π)0﹣|﹣3|+()﹣1(2)化简:(1﹣)÷. 【分析】(1)先计算零指数幂、绝对值和负整数指数幂,然后计算加减法;(2)先计算括号内的算式,化除法为乘法进行计算.【解答】解:(1)原式=1﹣3+2=0;(2)原式=×=x +1.【点评】本题综合考查了分式的混合运算,实数的运算,零指数幂、绝对值和负整数指数幂.通分、因式分解和约分是解答的关键.20.(8分)解方程与不等式组:(1)解方程:;(2)解不等式组:【分析】(1)将分式方程转化为整式方程,解整式方程求出x 的值,再检验即可得; (2)分别求出每个不等式的解集,依据“大小小大中间找”可得答案.【解答】解:(1)3(x ﹣3)=2﹣8x ,3x ﹣9=2﹣8x ,3x +8x =2+9,11x =11,x =1,检验:x =1时,3x =3≠0,∴分式方程的解为x =1;(2)解不等式3x ﹣4≤x ,得:x ≤2,解不等式x +3>x ﹣1,得:x >﹣8,则不等式组的解集为﹣8<x ≤2.【点评】本题考查了分式方程的解法和步骤及一元一次不等式组的解法和过程.在解答中注意分式方程要验根,不等式组的解集在表示的时候有等无等要分清楚.21.(7分)如图,正方形ABCD 中,点E 在对角线AC 上,连接EB 、ED . (1)求证:△BCE ≌△DCE ;(2)延长BE 交AD 于点F ,若∠DEB =140°,求∠AFE 的度数.【分析】(1)根据正方形的性质得出BC=DC,∠BCE=∠DCE=45°,根据SAS推出即可;(2)根据全等求出∠DEC=∠BEC=70°,根据三角形内角和定理求出∠FBC,根据平行线的性质求出即可.【解答】(1)证明:∵正方形ABCD中,E为对角线AC上一点,∴BC=DC,∠BCE=∠DCE=45°,在△BCE和△DCE中∴△BCE≌△DCE(SAS);(2)解:由全等可知,∠BEC=∠DEC=∠DEB=×140°=70°,∵在△BCE中,∠CBE=180°﹣70°﹣45°=65°,∴在正方形ABCD中,AD∥BC,有∠AFE=∠CBE=65°.【点评】本题考查了正方形的性质,全等三角形的性质和判定,三角形内角和定理,平行线的性质的应用,解此题的关键是求出△BCE≌△DCE,难度适中.22.(8分)某校九年级所有学生参加2011年初中毕业英语口语、听力自动化考试,我们从中随机抽取了部分学生的考试成绩,将他们的成绩进行统计后分为A、B、C、D四等,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:25分~30分;B级:20分~24分;C级:15分~19分;D级:15分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所占的百分比是10%;(3)扇形统计图中A级所在的扇形的圆心角度数是72°;(4)若该校九年级有850名学生,请你估计全年级A级和B级的学生人数共约为561人.【分析】(1)抽查人数可由B等所占的比例为46%,根据总数=某等人数÷比例来计算,然后可由总数减去A、B、C的人数求得D等的人数,再画直方图;(2)根据总比例为1计算出D等的比例.(3)由总比例为1计算出A等的比例,对应的圆心角=360°×比例.(4)用九年级学生数乘以这次考试中A级和B级的学生所占百分比即可.【解答】解:(1)抽查的人数为:23÷46%=50,∴D等的人数所占的比例为:1﹣46%﹣24%﹣20%=10%;D等的人数为:50×10%=5,(2)扇形统计图中D级所占的百分比是1﹣46%﹣24%﹣20%=10%;(3)扇形统计图中A级所在的扇形的圆心角度数是:20%×360°=72°.(4)估计达到A级和B级的学生数=(A等人数+B等人数)÷50×850=(10+23)÷50×850=561人.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.(7分)4件同型号的产品中,有1件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;(3)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?【分析】(1)用不合格品的数量除以总量即可求得抽到不合格品的概率;(2)令不合格产品为甲,合格产品为乙、丙、丁,则随机抽2件的情况只有甲乙,甲丙,甲丁,乙丙,乙丁,丙丁,6种情况,合格的有3种情形,再根据概率公式计算即可;(3)根据频率估计出概率,利用概率公式列式计算即可求得x的值;【解答】解:(1)∵4件同型号的产品中,有1件不合格品,∴P(不合格品)=;(2)令不合格产品为甲,合格产品为乙、丙、丁,则随机抽2件的情况只有甲乙,甲丙,甲丁,乙丙,乙丁,丙丁,6种情况.合格的有3种情形P(抽到的都是合格品)==;(3)∵大量重复试验后发现,抽到合格品的频率稳定在0.95,∴抽到合格品的概率等于0.95,∴=0.95,解得:x=16.【点评】本题考查了概率的公式、列表法与树状图法及用频率估计概率的知识,解题的关键是了解大量重复试验中事件发生的频率可以估计概率.24.(8分)如图,平面直角坐标系中,已知点B的坐标为(6,4).(1)请用直尺(不带刻度)和圆规作一条直线AC,它与x轴和y轴的正半轴分别交于点A和点C,且使∠ABC=90°,△ABC与△AOC的面积相等.(作图不必写作法,但要保留作图痕迹.)(2)问:(1)中这样的直线AC是否唯一?若唯一,请说明理由;若不唯一,请在图中画出所有这样的直线AC,并写出与之对应的函数表达式.【分析】(1)①作线段OB的垂直平分线AC,满足条件,②作矩形OA′BC′,直线A′C′,满足条件;(2)分两种情形分别求解即可解决问题;【解答】(1)解:如图△ABC即为所求;(2)解:这样的直线不唯一.①作线段OB的垂直平分线AC,满足条件,此时直线的解析式为y=﹣x+.②作矩形OA′BC′,直线A′C′,满足条件,此时直线A′C′的解析式为y=﹣x+4.【点评】本题考查作图﹣复杂作图,待定系数法等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.(8分)某地质公园为了方便游客,计划修建一条栈道BC连接两条进入观景台OA的栈道AC和OB,其中AC⊥BC,同时为减少对地质地貌的破坏,设立一个圆形保护区⊙M (如图所示),M是OA上一点,⊙M与BC相切,观景台的两端A、O到⊙M上任意一点的距离均不小于80米.经测量,OA=60米,OB=170米,tan∠OBC=.(1)求栈道BC的长度;(2)当点M位于何处时,可以使该圆形保护区的面积最大?【分析】(1)过C点作CE⊥OB于E,过A作AF⊥CE于F,设出AF,然后通过解直角三角形求得CE,进一步得到BE,然后由勾股定理得出答案;(2)设BC与⊙M相切于Q,延长QM交直线BO于P,设OM=x,把PB、PQ用含有x的代数式不是,再结合观景台的两端A、O到⊙M上任意一点的距离均不小于80米列式求得x的范围,得到x取最小值时圆的半径最大,即圆形保护区的面积最大.【解答】解:(1)如图1,过C点作CE⊥OB于E,过A作AF⊥CE于F,∵∠ACB=90°∠BEC=90°,∴∠ACF=∠CBE,∴tan∠ACF=tan∠OBC=,设AF=4x,则CF=3x,∵∠AOE=∠AFE=∠OEF=90°,∴OE=AF=4x,EF=OA=60,∴CE=3x+60,∵tan∠OBC=.∴BE=CE=x+45,∴OB=OE+BE=4x+x+45,∴4x+x+45=170,解得:x=20,∴CE=120(米),BE=90(米),∴BC==150(米).(2)如图2,设BC与⊙M相切于Q,延长QM交直线BO于P,∵∠POM=∠PQB=90°,∴∠PMO =∠CBO ,∴tan ∠OBC =.∴tan ∠PMO =.设OM =x ,则OP =x ,PM =x ,∴PB =x +170,在RT △PQB 中,tan ∠PBQ ==.∴=,∴PQ =(x +170)=x +136, 设⊙M 的半径为R ,∴R =MQ =x +136﹣x =136﹣x ,∵A 、O 到⊙M 上任意一点的距离均不小于80米,∴R ﹣AM ≥80,R ﹣OM ≥80,∴136﹣x ﹣(60﹣x )≥80,136﹣x ﹣x ≥80,解得:10≤x ≤35,∴当且仅当x =10时R 取最大值,∴OM =10米时,保护区的面积最大.【点评】本题考查了圆的切线,考查了直线和圆的位置关系,解题的关键在于对题意的理解.26.(10分)某发电厂共有6台发电机发电,每台的发电量为300万千瓦/月.该厂计划从今年7月开始到年底,对6台发电机各进行一次改造升级.每月改造升级1台,这台发电机当月停机,并于次月再投入发电,每台发电机改造升级后,每月的发电量将比原来提高20%.已知每台发电机改造升级的费用为20万元.将今年7月份作为第1个月开始往后算,该厂第x(x是正整数)个月的发电量设为y(万千瓦).(1)求该厂第2个月的发电量及今年下半年的总发电量;(2)求y关于x的函数关系式;(3)如果每发1千瓦电可以盈利0.04元,那么从第1个月开始,至少要到第几个月,这期间该厂的发电盈利扣除发电机改造升级费用后的盈利总额ω1(万元),将超过同样时间内发电机不作改造升级时的发电盈利总额ω2(万元)?【分析】(1)由题意可以知道第1个月的发电量是300×5万千瓦,第2个月的发电量为[300×4+300(1+20%)]万千瓦,第3个月的发电量为[300×3+300×2×(1+20%)]万千瓦,第4个月的发电量为[300×2+300×3×(1+20%)]万千瓦,第5个月的发电量为[300×1+300×4×(1+20%)]万千瓦,第6个月的发电量为[300×5×(1+20%)]万千瓦,将6个月的总电量加起来就可以求出总电量.(2)分两种情形求解:①1≤x≤6由总发电量=各台机器的发电量之和根据(1)的结论设y与x之间的关系式为y=kx+b建立方程组求出其解即可;②x>6;(3)由总利润=发电盈利﹣发电机改造升级费用,分别表示出ω1,ω2,再根据条件建立不等式求出其解即可.【解答】解:(1)由题意,得第2个月的发电量为:300×4+300(1+20%)=1560(万千瓦),。
2019学年江苏省无锡市九年级中考一模数学试卷【含答案及解析】

2019学年江苏省无锡市九年级中考一模数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. -5的倒数是()A.5 B.-5 C. D.2. 下列运算正确的是()A. B. C. D.3. 式子在实数范围内有意义,则x的取值范围是()A. B. C. D.4. 一组数据2,7,6,3,4, 7的众数和中位数分别是()A.7和4.5 B.4和6 C.7和4 D.7和55. 反比例函数和正比例函数的图象如图所示.由此可以得到方程的实数根为()A.x﹦1 B.x﹦2 C., D.,6. 一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的高和底面边长分别为()A.3, B.2, C.3,2 D.2,37. 如图,在等边△ABC中,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=1,那么△ABC的面积()A.3 B. C.4 D.8. 如图,直线a、b、c、d互不平行,对它们截出的一些角的数量关系描述错误的是()A.∠1+∠6﹦∠2 B.∠4+∠5﹦∠2C.∠1+∠3+∠6﹦180° D.∠1+∠5+∠4﹦180°9. 根据下列表格中的对应值,•判断方程(,a,b,c为常数)的根的个数是()A.0 B.1 C.2 D.1或210. 如图1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,E是AB的中点,连结CE并延长交AD于F,如图2,现将四边形ACBD折叠,使D与C重合,HK为折痕,则sin∠ACH的值为()A. B. C. D.二、填空题11. 分解因式:﹦.12. 用科学记数法表示0.000031的结果是.13. 写出的一个同类二次根式.14. 若一个圆锥底面圆的半径为3,高为4,则这个圆锥的侧面积为.15. 某小组8位学生一次数学测试的分数为121,123,123,124,126,127,128,128,那么这个小组测试分数的标准差是.16. 如图,△ABC是⊙O的内接三角形,∠C=50°,则∠OAB=.17. 已知A是双曲线在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为边作等边三角形ABC,点C在第四象限,已知点C的位置始终在一函数图像上运动,则这个函数解析式为__________________.18. 如图,抛物线与x轴交于O、A两点.半径为1的动圆⊙P,圆心从O点出发沿抛物线向靠近点A的方向移动;半径为2的动圆⊙Q,圆心从A点出发沿抛物线向靠近点O的方向移动.两圆同时出发,且移动速度相等,当运动到P、Q两点重合时同时停止运动.设点P的横坐标为t.若⊙P与⊙Q相离,则t的取值范围是.三、解答题19. (本题8分)计算:(1);(2)20. (本题满分8分)(1)解方程:;(2)解不等式组:.21. (本题满分6分)如图,在□ABCD中,E、F为BC上的两点,且 BE=CF,AF=DE.求证:(1)△ABF≌△DCE;(2)四边形ABCD是矩形.22. (本题8分)某校八年级所有学生参加2013年初中生物竞赛,我们从中随机抽取了部分学生的考试成绩,将他们的成绩进行统计后分为A、B、C、D四等,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:25分~30分;B级:20分~24分;C级:15分~19分;D级:15分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所占的百分比是 _______ ;(3)扇形统计图中A级所在的扇形的圆心角度数是 _______ ;(4)若该校九年级有850名学生,请你估计全年级A级和B级的学生人数共约为 ______ 人.23. (本题满分8分)甲、乙两商场同时开业,为了吸引顾客,都举办有奖酬宾活动,凡购物满100元,均可得到一次摸奖的机会.在一个纸盒里装有2个红球和2个白球,除颜色外,其他全部相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券的多少(如下表).(1)请你用列表法(或画树状图)求出摸到一红一白的概率;(2)如果只考虑中奖因素,你将会选择去哪个商场购物?请说明理由.24. (本题满分8分)如图,大海中有A和B两个岛屿,为测量它们之间的距离,在海岸线PQ上点E处测得∠AEP=74°,∠BEQ=30°;在点F处测得∠AFP=60°,∠BFQ=60°,EF=1km.(1)判断线段AB与AE的数量关系,并说明理由;(2)求两个岛屿A和B之间的距离(结果精确到0.1km).25. (本题满分8分)已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC 交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=4,cosC=时,求⊙O的半径.26. (本题满分10分)某校校园超市老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y(个)与甲品牌文具盒的数量x(个)之间的函数关系如图所示.当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200元.(1)根据图象,求y与x之间的函数关系式;(2)求甲、乙两种品牌的文具盒进货单价;(3)若该超市每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可获利9元,根据学生需求,超市老板决定,准备用不超过6300元购进甲、乙两种品牌的文具盒,且这两种品牌的文具盒全部售出后获利不低于1795元,问该超市有几种进货方案?哪种方案能使获利最大?最大获利为多少元?27. (本题满分8分)动手实验:利用矩形纸片(图1)剪出一个正六边形纸片;利用这个正六边形纸片做一个如图(2)无盖的正六棱柱(棱柱底面为正六边形);(1)做一个这样的正六棱柱所需最小的矩形纸片的长与宽的比为多少?(2)在(1)的前提下,当矩形的长为2时,要使无盖正六棱柱侧面积最大,正六棱柱的高为多少?并求此时矩形纸片的利用率?(矩形纸片的利用率=无盖正六棱柱的表面积/矩形纸片的面积)28. (本题10分)如图1,矩形ABCD中,点P从A出发,以3cm/s的速度沿边A→B→C→D→A匀速运动;同时点Q从B出发,沿边B→C→D匀速运动,当其中一个点到达终点时两点同时停止运动,设点P运动的时间为t s.△APQ的面积s(cm2)与t(s)之间函数关系的部分图像由图2中的曲线段OE与线段EF给出.(1)点Q运动的速度为 cm/s,a﹦ cm2;(2)若BC﹦3cm,① 求t>3时S的函数关系式;② 在图(2)中画出①中相应的函数图像.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】第27题【答案】第28题【答案】。
2019届江苏省无锡市江阴市要塞片中考数学一模试卷(附解析)

2019届江苏省无锡市江阴市要塞片中考数学一模试卷(附解析)2019届江苏省无锡市江阴市要塞片中考数学一模试卷(附解析)一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.(3分)一个数的立方等于它本身,这个数不可能是()A.1B.0C.2D.﹣12.(3分)函数y=中自变量x的取值范围是()A.x>4B.x≥4C.x≤4D.x≠43.(3分)分式可变形为()A.B.﹣C.D.﹣4.(3分)初三(3)班13名同学练习定点投篮,每人各投10次,进球数统计如下:A.2B.3C.3.5D.45.(3分)下列图案中,是轴对称图形但不是中心对称图形的是()A.B.C.D.6.(3分)如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.a+b>0B.ab>0C.a﹣b>0D.|a|﹣|b|>07.(3分)如图,AB∥CD,则根据图中标注的角,下列关系中成立的是()A.∠1=∠3B.∠2+∠3=180°C.∠2+∠4<180°D.∠3+∠5=180°8.(3分)如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()A.B.C.D.9.(3分)如图,平行四边形ABCD中,AB=4,AD=6,∠ABC=60°,∠BAD与∠ABC的平分线AE、BF交于点P,连接PD,则tan∠ADP的值为()A.B.C.D.10.(3分)如图,D是△ABC的边AB上一点(不与点A、B重合),DE∥BC,交AC于点E,连接BE,已知△ABC的面积为9,则△BDE面积的最大值为()A.3B.C.D.二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)11.(2分)不等式﹣x﹣1>0的解集为.12.(2分)分解因式:4x2﹣16=.13.(2分)2018年我国国民生产总值约900300亿元,这个数据用科学记数法可表示为亿元.14.(2分)请写出一个矩形具有而菱形不一定具有的性质:.15.(2分)已知点A(2,﹣4)和B(﹣1,n)在同一个反比例函数图象上,则n的值为.16.(2分)如图,AB是⊙O的直径,点D在⊙O上,∠AOD=130°,BC∥OD交⊙O 于C,则∠A=度.17.(2分)一渔船在河中逆流而上,于某桥下遗失救生圈,被水冲走.渔船继续向前行驶了15min发现救生圈遗失,立即返回,在距该桥2km处追到救生圈.由此可知水流速度为km/h.18.(2分)已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=交点C的横坐标为3,点D为线段OA上一点,∠ACD=∠AOC.若x轴正半轴上一点E到直线CD和直线CO的距离相等,则点E的坐标为.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)计算:(1)(﹣5)0﹣()2+|﹣3|;(2)(a+b)(a﹣b)﹣a(a﹣b).20.(8分)(1)解方程:=;(2)解方程组:.21.(8分)已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.22.(8分)某市对九年级学生进行了一次学业水平测试,成绩评定分A、B、C、D四个等第.为了解这次数学测试成绩情况,相关部门从该市的农村、县镇、城市三类群体的学生中共抽取2000名学生的数学成绩进行统计分析,相应数据的统计图表如下:各类学生成绩人数比例统计表:290(1)请将上面表格中缺少的三个数据补充完整;(2)若该市九年级共有60000名学生参加测试,试估计该市学生成绩合格以上(含合格)的人数.23.(8分)甲、乙两人都想去买一本某种辞典,到书店后,发现书架上只有一本该辞典,于是两人都想把书让给对方先买,为此两人发生了“争执”.最后两人商定,用掷一枚各面分别标有数字1,2,3,4的正四面体骰子来决定谁先买.若甲赢,则乙买;若乙赢,则甲买.具体规则是:“每人各掷一次,若甲掷得的数字比乙大,则甲赢;若甲掷得的数字不比乙大,则乙赢”.请你用“画树状图”的方法帮他们分析一下,这个规则对甲、乙双方是否公平?24.(8分)在平面直角坐标系中,过一点分別作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则称这个点为强点.例如,图中过点P分別作x轴,y轴的垂线与坐标轴围成矩形OAPB的周长与面积相等,则点P是强点.(1)点M(l,2),N(4,4),Q(6,﹣3)中,是强点的有;(2)若强点P(a,3)在直线y=﹣x+b(b为常数)上,求a 和b的值.25.(8分)如图,△ABC中,∠ACB=90°,(1)请作出经过点A,圆心在AB上且与BC边相切于点D的⊙O (尺规作图,不写作法,保留作图痕迹,标上相应字母);(2)若(1)中所作⊙O与边AB交于点E(异于点A),DE=,AC=4,求CD 的长.26.(8分)某公司生产一种纪念品,去年9月份以前,每天的产量与销售量均为400箱,进入9月份后,每天的产量保持不变,市场需求量却不断增加.如图是9月前后一段时期库存量y(箱)与生产时间x(月份)之间的函数图象.(1)该厂月份开始出现供不应求的现象;9月份的平均日销售量为箱?(2)为满足市场需求,该厂打算在投资不超过200万元的情况下,购买10台新设备,使扩大生产规模后的日总产量不低于9月份的平均日销售量.现有A、B两种型号的设备可供选择,其价格与两种设备的日产量如下表:(3)在(2)的条件下(市场日平均需求量与9月相同),若安装设备需三天(即10月4日新设备开始生产),指出何时开始该厂会有库存?27.(10分)抛物线y=x2﹣mx﹣2m2(m>0)与x轴相交于A、B两点(A在B的左侧),M是抛物线第四象限上一动点,C是OM上一点,且OC=2CM,连接BC并延长交AM于点D.(1)求;(2)若M、A到y轴的距离之比为3:2,S=,求抛物线的解析式.△MCD28.(10分)已知矩形ABCD中,AB=2,BC=m,点E是边BC上一点,BE=1,连接AE.(1)沿AE翻折△ABE使点B落在点F处,①连接CF,若CF∥AE,求m的值;②连接DF,若≤DF≤,求m的取值范围.(2)△ABE绕点A顺时针旋转得△AB1E1,点E1落在边AD上时旋转停止.若点B1落在矩形对角线AC上,且点B1到AD的距离小于时,求m的取值范围.2019年江苏省无锡市江阴市要塞片中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.(3分)一个数的立方等于它本身,这个数不可能是()A.1B.0C.2D.﹣1【分析】根据﹣1的奇次幂是负数,偶次幂是正数;1的任何次幂都是其本身解答.【解答】解:立方等于本身的数是﹣1、1、0,故选:C.【点评】本题考查的是有理数的乘方,即负数的奇数次幂是负数,负数的偶数次幂是正数;﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.2.(3分)函数y=中自变量x的取值范围是()A.x>4B.x≥4C.x≤4D.x≠4【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣4≥0,可求x的范围.【解答】解:x﹣4≥0解得x≥4,故选:B.【点评】此题主要考查函数自变量的取值范围,解决本题的关键是当函数表达式是二次根式时,被开方数为非负数.3.(3分)分式可变形为()A.B.﹣C.D.﹣【分析】根据分式的性质,分子分母都乘以﹣1,分式的值不变,可得答案.【解答】解:分式的分子分母都乘以﹣1,得﹣,故选:D.【点评】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变.4.(3分)初三(3)班13名同学练习定点投篮,每人各投10次,进球数统计如下:A.2B.3C.3.5D.4【分析】根据中位数的定义求解即可.【解答】解:∵一共13个数据,其中位数为第7个数据,∴由表中数据知这组数据的中位数为4个,故选:D.【点评】本题考查了中位数的知识,属于基础题,解答本题的关键是熟练掌握中位数的定义.5.(3分)下列图案中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故本选项正确;B、既是轴对称图形,又是中心对称图形,故本选项错误;C、既不是轴对称图形,又不是中心对称图形,故本选项错误;D、不是轴对称图形,但是中心对称图形,故本选项错误.故选:A.【点评】本题考查的是中心对称图形,熟知轴对称图形与中心对称图形的性质是解答此题的关键.6.(3分)如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.a+b>0B.ab>0C.a﹣b>0D.|a|﹣|b|>0【分析】本题要先观察a,b在数轴上的位置,得b<﹣1<0<a <1,然后对四个选项逐一分析.【解答】解:A、∵b<﹣1<0<a<1,∴|b|>|a|,∴a+b<0,故选项A错误;B、∵b<﹣1<0<a<1,∴ab<0,故选项B错误;C、∵b<﹣1<0<a<1,∴a﹣b>0,故选项C正确;D、∵b<﹣1<0<a<1,∴|a|﹣|b|<0,故选项D错误.故选:C.【点评】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.7.(3分)如图,AB∥CD,则根据图中标注的角,下列关系中成立的是()A.∠1=∠3B.∠2+∠3=180°C.∠2+∠4<180°D.∠3+∠5=180°【分析】根据平行线的性质对各选项分析判断利用排除法求解.【解答】解:A、∵OC与OD不平行,∴∠1=∠3不成立,故本选项错误;B、∵OC与OD不平行,∴∠2+∠3=180°不成立,故本选项错误;C、∵AB∥CD,∴∠2+∠4=180°,故本选项错误;D、∵AB∥CD,∴∠3+∠5=180°,故本选项正确.故选:D.【点评】本题考查了平行线的性质,是基础题,熟记性质是解题的关键.8.(3分)如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()A.B.C.D.【分析】根据正方体的表面展开图进行分析解答即可.【解答】解:根据正方体的表面展开图,两条黑线在一列,故A 错误,且两条相邻成直角,故B错误,正视图的斜线方向相反,故C 错误,只有D选项符合条件,故选:D.【点评】本题主要考查了几何体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.9.(3分)如图,平行四边形ABCD中,AB=4,AD=6,∠ABC=60°,∠BAD与∠ABC的平分线AE、BF交于点P,连接PD,则tan∠ADP的值为()A.B.C.D.【分析】作PH⊥AD于H,根据四边形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,从而得到PH=,DH=5,然后利用锐角三角函数的定义求解即可.【解答】解:作PH⊥AD于H,∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAE=∠AEB.∵AE是角平分线,∴∠DAE=∠BAE.∴∠BAE=∠AEB.∴AB=BE.同理AB=AF.∴AF=BE.∴四边形ABEF是平行四边形.∵AB=BE,∴四边形ABEF是菱形.∵∠ABC=60°,AB=4,∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,∴AP=AB=2,∴PH=,DH=5,∴tan∠ADP==.故选:A.【点评】本题考查了菱形的判定及平行四边形的性质,解题的关键是牢记菱形的几个判定定理,难度不大.10.(3分)如图,D是△ABC的边AB上一点(不与点A、B重合),DE∥BC,交AC于点E,连接BE,已知△ABC的面积为9,则△BDE面积的最大值为()A.3B.C.D.【分析】设△BDE面积为y,,则△ADE面积为,根据△ADE∽△ABC,可得,即y=9x(1﹣x),根据二次函数的性质即可得出△BDE面积的最大值.【解答】解:设△BDE面积为y,,则△ADE面积为,∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴y=9x(1﹣x)=﹣9(x﹣)2+,∴当x=时,y最大值为.故选:B.【点评】本题主要考查了相似三角形的性质和判定,三角形面积的计算方法,二次函数的最值问题,熟练掌握相似三角形的判定和性质定理是解题的关键.二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)11.(2分)不等式﹣x﹣1>0的解集为x<﹣2.【分析】根据不等式的性质:先移项,再系数化1即可求得不等式的解集.【解答】解:不等式移项得,﹣x>1,系数化1得,x<﹣2;所以,不等式﹣x﹣1>0的解集为x<﹣2,故答案为x<﹣2.【点评】本题主要考查不等式的解法,在移项的过程中注意变号.12.(2分)分解因式:4x2﹣16=4(x+2)(x﹣2).【分析】先提取公因式4,再对剩余项x2﹣4利用平方差公式继续进行因式分解.【解答】解:4x2﹣16,=4(x2﹣4),=4(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,关键在于提取公因式后继续利用平方差公式继续进行二次因式分解,分解因式一定要彻底.13.(2分)2018年我国国民生产总值约900300亿元,这个数据用科学记数法可表示为9.003×105亿元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将900300亿元用科学记数法表示为:9.003×105.故答案是:9.003×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(2分)请写出一个矩形具有而菱形不一定具有的性质:对角线相等(答案不唯一).【分析】根据菱形的性质与矩形的性质可求解.【解答】解:∵矩形对角线相等,四个角为直角∴故答案为:对角线相等(答案不唯一)【点评】本题考查了菱形的性质,矩形的性质,熟练掌握两个图形的性质是解题的关键.15.(2分)已知点A(2,﹣4)和B(﹣1,n)在同一个反比例函数图象上,则n的值为8.【分析】将A坐标代入反比例解析式求出m的值,确定出反比例解析式,将B坐标代入反比例解析式即可求出n的值.【解答】解:设反比例函数的解析式为y=,将A(2,﹣4)代入反比例解析式得:m=﹣8,∴反比例解析式为y=﹣;将B(﹣1,n)代入反比例解析式得:n=8,故答案为8.【点评】本题考查了反比例函数图象上的坐标特征,图象上的点的坐标适合解析式.16.(2分)如图,AB是⊙O的直径,点D在⊙O上,∠AOD=130°,BC∥OD交⊙O 于C,则∠A=40度.【分析】已知∠AOD的度数,即可求出其补角∠BOD的度数;根据平行线的内错角相等,易求得∠B的度数;由于AB是直径,由圆周角定理知∠ACB是直角,则∠A、∠B互余,由此得解.【解答】解:∵∠AOD=130°,∴∠BOD=50°;∵BC∥OD,∴∠B=∠BOD=50°;∵AB是⊙O的直径,∴∠ACB=90°;∴∠A=90°﹣∠B=40°.【点评】此题主要考查了平行线的性质以及圆周角定理的应用.17.(2分)一渔船在河中逆流而上,于某桥下遗失救生圈,被水冲走.渔船继续向前行驶了15min发现救生圈遗失,立即返回,在距该桥2km处追到救生圈.由此可知水流速度为4km/h.【分析】如果设该河水流的速度是每小时x千米,游泳者在静水中每小时游a千米.那么游泳者自桥下逆流游了(a﹣x)千米,他再返回追到救生圈用了小时,这个时间比救生圈在遗失后漂流时间小时少小时.由此列出方程,求得问题的解.【解答】解:设该河水流的速度是每小时x千米,游泳者在静水中每小时游a千米.由题意,得=﹣.解得:x=4.经检验,x=4是原方程的解.答:这条河的水流速度为4千米/小时.【点评】本题考查分式方程的应用.分析题意,找到合适的等量关系是解决问题的关键.本题需注意顺流速度与逆流速度的表示方法.另外,本题求解时设的未知数a,在解方程的过程中抵消.这种方法在解复杂的应用题时常用来帮助分析数量关系,便于解题.18.(2分)已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=交点C的横坐标为3,点D为线段OA上一点,∠ACD=∠AOC.若x轴正半轴上一点E到直线CD和直线CO的距离相等,则点E的坐标为(4﹣,0)或(4+,0).【分析】根据题意直接求出C点坐标,再把C点坐标代入y=﹣x+b求出A、B两点坐标,依题意画出符合题意的图象,根据角度的计算,等量角的代换以及角平分线的性质,邻补角的性质,等腰直角三角形的性质,等角对等边等性质求解即可.【解答】解:如图,∵C点横坐标为3,且C在函数y=上∴把x=3代入y=中,解得,y=1.∴C点坐标为(3,1).又∵C点在函数y=﹣x+b上∴把x=3,y=1代入上式得,1=﹣3+b解得,b=4.∴y=﹣x+4.∴A点坐标为(4,0),B点坐标为(0,4).依题意画图象,设G为OC延长线上一点,F(0,1),H(3,0),连接CF,CH.由OA=OB=4,且OB⊥OA.∴∠BAO=45°,即∠CAH=45°又∵CH⊥AH∴△CAH为等腰直角三角形.∴CH=HA=1,AC=.又∵CF∥x轴∴∠FCO=∠AOC又∵∠ACD=∠AOC。
初中数学无锡江阴市要塞片中考模拟数学第一次模拟考试题含答案.docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:﹣4的倒数是()A.4 B. C. D.﹣试题2:下列运算正确的是()A. B. C. D.试题3:PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,也称为可入肺颗粒物,它含有大量的有害物质,对人体健康和大气环境质量有很大危害.0.0000025用科学记数法可表示为()A.2.5×10-5 B.0.25×10-6 C.2.5×10-6 D.25×10-5试题4:下列调查中,不适合采用抽样调查的是()A.了解江阴市中小学生的睡眠时间 B.了解无锡市初中生的兴趣爱好C.了解江苏省中学教师的健康状况 D.了解“天宫二号”飞行器各零部件的质量试题5:下列图形中,是中心对称图形但不是轴对称图形的是()A.等边三角形 B.平行四边形 C.正五边形 D.圆试题6:若点A(2,-3)、B(-3,n)在同一个反比例函数的图像上,则n的值为()A.-2 B.2 C.-6 D.6试题7:如图,直线m∥n,Ð1=70°,∠2=30°,则∠A等于()A.30°B.35°C.40°D.50°试题8:如图,A、B、C是⊙O上的三点,且∠ABC=70°,则∠AOC的度数是()A.35° B.140° C.70° D.70°或140°试题9:股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天涨停,之后两天时间又跌回到原价.若这两天此股票股价的平均下降率为x,则x满足的方程是()A.(1﹣x)2=B.(1﹣x)2= C.1﹣2x=D.1﹢2x=试题10:如图,⊙O的半径为1,弦AB=1,点P为优弧A B上一动点,AC⊥AP交直线PB于点C,则△ABC的最大面积是()A.1 B.C . D.试题11:因式分解:.试题12:在函数中,自变量x的取值范围是.试题13:请写出一个概率是的随机事件:.试题14:六边形的外角和等于°.试题15:.半径为10cm半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的底面半径为cm.试题16:二次函数y=-x2+bx+c的图象如图所示,若y>0,则x的取值范围是.试题17:一个包装盒的设计方法如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE = FB = xcm. 若广告商要求包装盒侧面积最大,则x应取的值为cm.试题18:如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(6,0),B(0,8),点C在OB上运动,过点C作CE⊥AB于点E;D是x轴上一点,作菱形CDEF,当顶点F恰好落在y轴正半轴上时,点C的纵坐标的值为.试题19:(-2)2+(-π)0+;试题20:(x+1)(x-1)-(x-2)2试题21:解方程:;试题22:解不等式组:试题23:如图,在□ABCD中,E是AD边上的中点,连接BE并延长交CD的延长线于点F.(1)证明:FD=AB;(2)当平行四边形ABCD的面积为8时,求△FED的面积.试题24:学校为了解学生参加体育活动的情况,对学生“平均每天参加体育活动的时间”进行了随机抽样调查,下图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答以下问题:(1)“平均每天参加体育活动的时间”为“0.5~1小时”部分的扇形统计图的圆心角为°;(2)本次一共调查了名学生;(3)将条形统计图补充完整;(4)若该校有2000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.试题25:有A、B两只不透明的布袋,A袋中有四个除标号外其他完全相同的小球,标号分别为0、1、2、3;B袋中有三个除标号外其他完全相同的小球,标号分别为-2、-1、0. 小明先从A袋中随机取出一小球,用m表示该球的标号,再从B袋中随机取出一球,用n表示该球的标号。
2019年江苏省无锡市中考数学一模试题附解析

2019年江苏省无锡市中考数学一模试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下面几何体的俯视图正确的是( )A .B .C .D . 2.反比例函数的图象在第一象限内经过点A ,过点A 分别向x 轴,y 轴引垂线,垂足分别为P Q ,,已知四边形APOQ 的面积为4,那么这个反比例函数的解析式为( )A .4y x =B .4x y =C .4y x =D .2y x= 3.在美丽的南湖广场中心地带整修工程中,计划采用同一种正多边形地板砖铺设地面,在下面的地板砖:①正方形;②正五边形;③正六边形;④正八边形,能够铺满地面的地板砖的种数有( )A .1种B .2种C .3种D .4种4.某地区A 医院获得2008年10月在该院出生的20名初生婴儿的体重数据.现在要了解这20名初生婴儿的体重分布情况,需考察哪一个特征数( )A.极差B.平均数C.方差D.频数5.化简1(1)1a a −−−的结果为( ) A .1a − B .1a − C .1a −−D . 1a −−6.如果等腰三角形的一个外角等于100°,那么它的顶角等于( )A .100°B .80°C .80°或40°D .80°或20°7.代数式1m −的值大于一 1,又不大于 3,则m 的取值范围是( )A .13m −<≤B .31m −≤<C .22m −≤<D .22m −<≤ 8.能够刻画一组数据离散程度的统计量是( ) A .平均数B .众数C .中位数D .方差 9.下列各组数中①⎩⎨⎧==22y x ;②⎩⎨⎧==12y x ;③⎩⎨⎧−==22y x ;④⎩⎨⎧==61y x ,是方程104=+y x 的解的有( )A .1组B .2组C .3组D .4组10.如果2(1)()23x x a x x −+=+−,那么 a 的值是( )A .3B .-2C .2D .3 11.若一个长方形的周长为 40cm ,一边长为l cm ,则这个长方形的面积是( ) A .(40)l l − cm 2 B .1(40)2l l − cm 2 C .(402)l l − cm 2 D . (20)l l − cm 212.给出下述几种说法,其中正确的说法有( )①763万精确到万位;②1.2亿精确到0.1;③8067保留2个有效数字的近似值是8.1 ×103;④22.20精确到0.01.A .3个B .2个C .1个D .0个二、填空题将一直径为17cm 的圆形纸片(图①)剪成如图②所示形状的纸片,再将纸片沿虚线折叠得到正方体(图③)形状的纸盒,则这样的纸盒体积最大为 cm 3.解答题14.已知正三角形的周长是 6,则它的面积为 .15.在如图所示的4×4的方格中,每格小方格的边长都为1.在所有以格点为端点的线段中,线段长度共有 种不同的取值.解答题16.菱形的面积为24 cm 2,一对角线长为6 cm ,则这个菱形的边长为 .17.求下列各式中的m 的值:(1)1216m =,则m= ; (2)3327m =,则m= ;(3)(3)1m π−=,则m= .(4)0.000l 10m −=−,则m= .18.如图所示,点E ,F 在△ABC 的BC 边上,点D 在BA 的延长线上,则∠DAC= + ,∠AFC=∠B+ =∠AEF+ .19.直角三角形的两个锐角的平分线AD ,BE 交于点0,则∠AOB= .三、解答题20.用小正方体木块搭一个几何体,使得它的主视图、俯视图如图所示,这样的几何体只有一种吗?它最少需要多少个小正方体木块?最多需要多少个小正方体?21.小明正在操场上放风筝(如图所示),风筝线拉出长度为200m,风筝线与水平地面所成的角度为62°,他的风筝飞得有多高? (精确到lm)22.某商场今年二月份的营业额为400万元,三月份的营业额比二月份增加10%,五月份的营业额达到633.6万元.求三月份到五月份营业额的平均月增长率.23.从甲、乙、丙三个厂家生产的同一种产品中,各抽出8件产品,对其使用寿命进行跟踪调查,结果如下(单位:年):甲:3,4,5,6,8,8,8,10;乙:4,6,6,6,8,9,12,13;丙:3,3,4,7,9,10,11,12.三家在广告中都称该种产品的使用寿命是8年,请根据调查结果判断厂家在广告中分别运用了平均数、众数、中位数的的哪一种集中趋势的特征数.24.一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥放置在圆柱上底面的正中间)摆在讲桌上,请画出这个几何体的三视图.25. 请你先将分式2211x x x x x −−−+化简. 再选取一个使原式有意义,而你又喜爱的数代入求值.26.计算:(1)25xy 3÷(-5y ) (2)(2a 3b 4)2÷(-3a 2b 5)(3)5a 2b ÷(-13ab )·(2ab 2) (4)(2x -y )6÷(y -2x )427. 用简便方法计算:(1)10.39.7⨯;(2)2347349348⨯−28.已知方程4316a b +=.(1)用关于a 的代数式表示b ;(2)写出方程的三个解;(3)求方程的非负整数解.29.计算:(1)222468a a a a −++− (2) 3(m -2n)-2(-2n+3m)30.图,旋转方格纸中的图形,使点0是它的旋转中心,顺时针旋转90°,画出旋转后的图形.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.B4.D5.C6.D7.C8.D9.B10.D11.D12.A二、填空题13.14.15.1416.5cm17.(1)-4 ;(2)1;(3)0;(4)-418.∠B ,∠C ,∠BAF ,∠EAF19.135°三、解答题20.这样的几何体不唯一,它最少需要l0个小正方体木块,最多需要l6个小正方体木块,其中,从下数第一层7块,第二层至少2块,至多6块,第三层至少1块,至多3块. 21.如图,Rt △ABC 中,00sin 62200sin 62177BC AB =⋅=⋅≈(m)22.20%23.甲使用了众数,乙使用了平均数,丙使用了中位数24.略25.22x −(代入0,1x ≠−的数都可以)26.(1)-5xy 2;(2) 3434b a −;(3)2230b a −;(4)2244y xy x +−. 27.(1)原式=(100.3)(100.3)99.91=+−=;(2)原式=2(3481)(3481)3481−+−=− 28. (1)41633b a =−+;(2)40x y =⎧⎨=⎩,543x y =⎧⎪⎨=−⎪⎩,683x y =⎧⎪⎨=−⎪⎩,…,(3)14x y =⎧⎨=⎩,40x y =⎧⎨=⎩ 29.(1)244a a −;(2)-3m-2n 30.略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019届江苏省无锡市江阴市要塞片中考数学一模试卷(附解析)一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.(3分)一个数的立方等于它本身,这个数不可能是()A.1B.0C.2D.﹣12.(3分)函数y=中自变量x的取值范围是()A.x>4B.x≥4C.x≤4D.x≠43.(3分)分式可变形为()A.B.﹣C.D.﹣4.(3分)初三(3)班13名同学练习定点投篮,每人各投10次,进球数统计如下:A.2B.3C.3.5D.45.(3分)下列图案中,是轴对称图形但不是中心对称图形的是()A.B.C.D.6.(3分)如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.a+b>0B.ab>0C.a﹣b>0D.|a|﹣|b|>07.(3分)如图,AB∥CD,则根据图中标注的角,下列关系中成立的是()A.∠1=∠3B.∠2+∠3=180°C.∠2+∠4<180°D.∠3+∠5=180°8.(3分)如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()A.B.C.D.9.(3分)如图,平行四边形ABCD中,AB=4,AD=6,∠ABC=60°,∠BAD与∠ABC的平分线AE、BF交于点P,连接PD,则tan∠ADP的值为()A.B.C.D.10.(3分)如图,D是△ABC的边AB上一点(不与点A、B重合),DE∥BC,交AC于点E,连接BE,已知△ABC的面积为9,则△BDE面积的最大值为()A.3B.C.D.二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)11.(2分)不等式﹣x﹣1>0的解集为.12.(2分)分解因式:4x2﹣16=.13.(2分)2018年我国国民生产总值约900300亿元,这个数据用科学记数法可表示为亿元.14.(2分)请写出一个矩形具有而菱形不一定具有的性质:.15.(2分)已知点A(2,﹣4)和B(﹣1,n)在同一个反比例函数图象上,则n的值为.16.(2分)如图,AB是⊙O的直径,点D在⊙O上,∠AOD=130°,BC∥OD交⊙O 于C,则∠A=度.17.(2分)一渔船在河中逆流而上,于某桥下遗失救生圈,被水冲走.渔船继续向前行驶了15min发现救生圈遗失,立即返回,在距该桥2km处追到救生圈.由此可知水流速度为km/h.18.(2分)已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=交点C的横坐标为3,点D为线段OA上一点,∠ACD=∠AOC.若x轴正半轴上一点E到直线CD和直线CO的距离相等,则点E的坐标为.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)计算:(1)(﹣5)0﹣()2+|﹣3|;(2)(a+b)(a﹣b)﹣a(a﹣b).20.(8分)(1)解方程:=;(2)解方程组:.21.(8分)已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.22.(8分)某市对九年级学生进行了一次学业水平测试,成绩评定分A、B、C、D四个等第.为了解这次数学测试成绩情况,相关部门从该市的农村、县镇、城市三类群体的学生中共抽取2000名学生的数学成绩进行统计分析,相应数据的统计图表如下:各类学生成绩人数比例统计表:290(1)请将上面表格中缺少的三个数据补充完整;(2)若该市九年级共有60000名学生参加测试,试估计该市学生成绩合格以上(含合格)的人数.23.(8分)甲、乙两人都想去买一本某种辞典,到书店后,发现书架上只有一本该辞典,于是两人都想把书让给对方先买,为此两人发生了“争执”.最后两人商定,用掷一枚各面分别标有数字1,2,3,4的正四面体骰子来决定谁先买.若甲赢,则乙买;若乙赢,则甲买.具体规则是:“每人各掷一次,若甲掷得的数字比乙大,则甲赢;若甲掷得的数字不比乙大,则乙赢”.请你用“画树状图”的方法帮他们分析一下,这个规则对甲、乙双方是否公平?24.(8分)在平面直角坐标系中,过一点分別作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则称这个点为强点.例如,图中过点P分別作x轴,y轴的垂线与坐标轴围成矩形OAPB的周长与面积相等,则点P是强点.(1)点M(l,2),N(4,4),Q(6,﹣3)中,是强点的有;(2)若强点P(a,3)在直线y=﹣x+b(b为常数)上,求a和b的值.25.(8分)如图,△ABC中,∠ACB=90°,(1)请作出经过点A,圆心在AB上且与BC边相切于点D的⊙O(尺规作图,不写作法,保留作图痕迹,标上相应字母);(2)若(1)中所作⊙O与边AB交于点E(异于点A),DE=,AC=4,求CD 的长.26.(8分)某公司生产一种纪念品,去年9月份以前,每天的产量与销售量均为400箱,进入9月份后,每天的产量保持不变,市场需求量却不断增加.如图是9月前后一段时期库存量y(箱)与生产时间x(月份)之间的函数图象.(1)该厂月份开始出现供不应求的现象;9月份的平均日销售量为箱?(2)为满足市场需求,该厂打算在投资不超过200万元的情况下,购买10台新设备,使扩大生产规模后的日总产量不低于9月份的平均日销售量.现有A、B两种型号的设备可供选择,其价格与两种设备的日产量如下表:(3)在(2)的条件下(市场日平均需求量与9月相同),若安装设备需三天(即10月4日新设备开始生产),指出何时开始该厂会有库存?27.(10分)抛物线y=x2﹣mx﹣2m2(m>0)与x轴相交于A、B两点(A在B的左侧),M是抛物线第四象限上一动点,C是OM上一点,且OC=2CM,连接BC并延长交AM于点D.(1)求;(2)若M、A到y轴的距离之比为3:2,S=,求抛物线的解析式.△MCD28.(10分)已知矩形ABCD中,AB=2,BC=m,点E是边BC上一点,BE=1,连接AE.(1)沿AE翻折△ABE使点B落在点F处,①连接CF,若CF∥AE,求m的值;②连接DF,若≤DF≤,求m的取值范围.(2)△ABE绕点A顺时针旋转得△AB1E1,点E1落在边AD上时旋转停止.若点B1落在矩形对角线AC上,且点B1到AD的距离小于时,求m的取值范围.2019年江苏省无锡市江阴市要塞片中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.(3分)一个数的立方等于它本身,这个数不可能是()A.1B.0C.2D.﹣1【分析】根据﹣1的奇次幂是负数,偶次幂是正数;1的任何次幂都是其本身解答.【解答】解:立方等于本身的数是﹣1、1、0,故选:C.【点评】本题考查的是有理数的乘方,即负数的奇数次幂是负数,负数的偶数次幂是正数;﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.2.(3分)函数y=中自变量x的取值范围是()A.x>4B.x≥4C.x≤4D.x≠4【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣4≥0,可求x的范围.【解答】解:x﹣4≥0解得x≥4,故选:B.【点评】此题主要考查函数自变量的取值范围,解决本题的关键是当函数表达式是二次根式时,被开方数为非负数.3.(3分)分式可变形为()A.B.﹣C.D.﹣【分析】根据分式的性质,分子分母都乘以﹣1,分式的值不变,可得答案.【解答】解:分式的分子分母都乘以﹣1,得﹣,故选:D.【点评】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变.4.(3分)初三(3)班13名同学练习定点投篮,每人各投10次,进球数统计如下:A.2B.3C.3.5D.4【分析】根据中位数的定义求解即可.【解答】解:∵一共13个数据,其中位数为第7个数据,∴由表中数据知这组数据的中位数为4个,故选:D.【点评】本题考查了中位数的知识,属于基础题,解答本题的关键是熟练掌握中位数的定义.5.(3分)下列图案中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故本选项正确;B、既是轴对称图形,又是中心对称图形,故本选项错误;C、既不是轴对称图形,又不是中心对称图形,故本选项错误;D、不是轴对称图形,但是中心对称图形,故本选项错误.故选:A.【点评】本题考查的是中心对称图形,熟知轴对称图形与中心对称图形的性质是解答此题的关键.6.(3分)如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.a+b>0B.ab>0C.a﹣b>0D.|a|﹣|b|>0【分析】本题要先观察a,b在数轴上的位置,得b<﹣1<0<a<1,然后对四个选项逐一分析.【解答】解:A、∵b<﹣1<0<a<1,∴|b|>|a|,∴a+b<0,故选项A错误;B、∵b<﹣1<0<a<1,∴ab<0,故选项B错误;C、∵b<﹣1<0<a<1,∴a﹣b>0,故选项C正确;D、∵b<﹣1<0<a<1,∴|a|﹣|b|<0,故选项D错误.故选:C.【点评】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.7.(3分)如图,AB∥CD,则根据图中标注的角,下列关系中成立的是()A.∠1=∠3B.∠2+∠3=180°C.∠2+∠4<180°D.∠3+∠5=180°【分析】根据平行线的性质对各选项分析判断利用排除法求解.【解答】解:A、∵OC与OD不平行,∴∠1=∠3不成立,故本选项错误;B、∵OC与OD不平行,∴∠2+∠3=180°不成立,故本选项错误;C、∵AB∥CD,∴∠2+∠4=180°,故本选项错误;D、∵AB∥CD,∴∠3+∠5=180°,故本选项正确.故选:D.【点评】本题考查了平行线的性质,是基础题,熟记性质是解题的关键.8.(3分)如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()A.B.C.D.【分析】根据正方体的表面展开图进行分析解答即可.【解答】解:根据正方体的表面展开图,两条黑线在一列,故A错误,且两条相邻成直角,故B错误,正视图的斜线方向相反,故C错误,只有D选项符合条件,故选:D.【点评】本题主要考查了几何体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.9.(3分)如图,平行四边形ABCD中,AB=4,AD=6,∠ABC=60°,∠BAD与∠ABC的平分线AE、BF交于点P,连接PD,则tan∠ADP的值为()A.B.C.D.【分析】作PH⊥AD于H,根据四边形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,从而得到PH=,DH=5,然后利用锐角三角函数的定义求解即可.【解答】解:作PH⊥AD于H,∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAE=∠AEB.∵AE是角平分线,∴∠DAE=∠BAE.∴∠BAE=∠AEB.∴AB=BE.同理AB=AF.∴AF=BE.∴四边形ABEF是平行四边形.∵AB=BE,∴四边形ABEF是菱形.∵∠ABC=60°,AB=4,∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,∴AP=AB=2,∴PH=,DH=5,∴tan∠ADP==.故选:A.【点评】本题考查了菱形的判定及平行四边形的性质,解题的关键是牢记菱形的几个判定定理,难度不大.10.(3分)如图,D是△ABC的边AB上一点(不与点A、B重合),DE∥BC,交AC于点E,连接BE,已知△ABC的面积为9,则△BDE面积的最大值为()A.3B.C.D.【分析】设△BDE面积为y,,则△ADE面积为,根据△ADE∽△ABC,可得,即y=9x(1﹣x),根据二次函数的性质即可得出△BDE面积的最大值.【解答】解:设△BDE面积为y,,则△ADE面积为,∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴y=9x(1﹣x)=﹣9(x﹣)2+,∴当x=时,y最大值为.故选:B.【点评】本题主要考查了相似三角形的性质和判定,三角形面积的计算方法,二次函数的最值问题,熟练掌握相似三角形的判定和性质定理是解题的关键.二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)11.(2分)不等式﹣x﹣1>0的解集为x<﹣2.【分析】根据不等式的性质:先移项,再系数化1即可求得不等式的解集.【解答】解:不等式移项得,﹣x>1,系数化1得,x<﹣2;所以,不等式﹣x﹣1>0的解集为x<﹣2,故答案为x<﹣2.【点评】本题主要考查不等式的解法,在移项的过程中注意变号.12.(2分)分解因式:4x2﹣16=4(x+2)(x﹣2).【分析】先提取公因式4,再对剩余项x2﹣4利用平方差公式继续进行因式分解.【解答】解:4x2﹣16,=4(x2﹣4),=4(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,关键在于提取公因式后继续利用平方差公式继续进行二次因式分解,分解因式一定要彻底.13.(2分)2018年我国国民生产总值约900300亿元,这个数据用科学记数法可表示为9.003×105亿元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将900300亿元用科学记数法表示为:9.003×105.故答案是:9.003×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(2分)请写出一个矩形具有而菱形不一定具有的性质:对角线相等(答案不唯一).【分析】根据菱形的性质与矩形的性质可求解.【解答】解:∵矩形对角线相等,四个角为直角∴故答案为:对角线相等(答案不唯一)【点评】本题考查了菱形的性质,矩形的性质,熟练掌握两个图形的性质是解题的关键.15.(2分)已知点A(2,﹣4)和B(﹣1,n)在同一个反比例函数图象上,则n的值为8.【分析】将A坐标代入反比例解析式求出m的值,确定出反比例解析式,将B坐标代入反比例解析式即可求出n的值.【解答】解:设反比例函数的解析式为y=,将A(2,﹣4)代入反比例解析式得:m=﹣8,∴反比例解析式为y=﹣;将B(﹣1,n)代入反比例解析式得:n=8,故答案为8.【点评】本题考查了反比例函数图象上的坐标特征,图象上的点的坐标适合解析式.16.(2分)如图,AB是⊙O的直径,点D在⊙O上,∠AOD=130°,BC∥OD交⊙O 于C,则∠A=40度.【分析】已知∠AOD的度数,即可求出其补角∠BOD的度数;根据平行线的内错角相等,易求得∠B的度数;由于AB是直径,由圆周角定理知∠ACB是直角,则∠A、∠B互余,由此得解.【解答】解:∵∠AOD=130°,∴∠BOD=50°;∵BC∥OD,∴∠B=∠BOD=50°;∵AB是⊙O的直径,∴∠ACB=90°;∴∠A=90°﹣∠B=40°.【点评】此题主要考查了平行线的性质以及圆周角定理的应用.17.(2分)一渔船在河中逆流而上,于某桥下遗失救生圈,被水冲走.渔船继续向前行驶了15min发现救生圈遗失,立即返回,在距该桥2km处追到救生圈.由此可知水流速度为4km/h.【分析】如果设该河水流的速度是每小时x千米,游泳者在静水中每小时游a千米.那么游泳者自桥下逆流游了(a﹣x)千米,他再返回追到救生圈用了小时,这个时间比救生圈在遗失后漂流时间小时少小时.由此列出方程,求得问题的解.【解答】解:设该河水流的速度是每小时x千米,游泳者在静水中每小时游a千米.由题意,得=﹣.解得:x=4.经检验,x=4是原方程的解.答:这条河的水流速度为4千米/小时.【点评】本题考查分式方程的应用.分析题意,找到合适的等量关系是解决问题的关键.本题需注意顺流速度与逆流速度的表示方法.另外,本题求解时设的未知数a,在解方程的过程中抵消.这种方法在解复杂的应用题时常用来帮助分析数量关系,便于解题.18.(2分)已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=交点C的横坐标为3,点D为线段OA上一点,∠ACD=∠AOC.若x轴正半轴上一点E到直线CD和直线CO的距离相等,则点E的坐标为(4﹣,0)或(4+,0).【分析】根据题意直接求出C点坐标,再把C点坐标代入y=﹣x+b求出A、B两点坐标,依题意画出符合题意的图象,根据角度的计算,等量角的代换以及角平分线的性质,邻补角的性质,等腰直角三角形的性质,等角对等边等性质求解即可.【解答】解:如图,∵C点横坐标为3,且C在函数y=上∴把x=3代入y=中,解得,y=1.∴C点坐标为(3,1).又∵C点在函数y=﹣x+b上∴把x=3,y=1代入上式得,1=﹣3+b解得,b=4.∴y=﹣x+4.∴A点坐标为(4,0),B点坐标为(0,4).依题意画图象,设G为OC延长线上一点,F(0,1),H(3,0),连接CF,CH.由OA=OB=4,且OB⊥OA.∴∠BAO=45°,即∠CAH=45°又∵CH⊥AH∴△CAH为等腰直角三角形.∴CH=HA=1,AC=.又∵CF∥x轴∴∠FCO=∠AOC又∵∠ACD=∠AOC∴∠FCO=∠ACD.又∵x轴正半轴上一点E到直线CD和直线CO的距离相等∴当E点在D点左边时,CE平分∠OCD.∴∠OCE=∠DCE.∴∠OCE+∠OCF=∠DCE+∠ACD.又∵∠OCF=∠COE∴∠OCE+∠COE=∠DCE+∠ACD即∠CEA=∠ACE.∴AE=AC=.此时OE=OA﹣AE=4﹣,即E点坐标为(4﹣,0).当E在D点右边时,记作E'点.此时CE'平分∠DCG.∴∠DCE'=∠GCE'又∵∠OCD+∠DCG=180°∴∠ECD+∠E'CD=90°又∵∠CAE=45°,AC=AE∴∠ACE=∠AEC=67.5°∴∠ACE'=90°﹣∠ACE=90°﹣67.5°=22.5°∴∠AE'C=∠CAE﹣∠ACE'=45°﹣22.5°=22.5°∴AC=AE'=.∴OE'=OA+AE'=4+,即E'点坐标为(4+,0).故答案为(4﹣,0)或(4+,0).【点评】本题考查了根据题意画图象、利用待定系数法求一次函数的解析式、利用平行线的性质,角度互补与互余,角平分线的性质,等腰直角三角形与等腰三角等多方面性质来探索求解题目的能力.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)计算:(1)(﹣5)0﹣()2+|﹣3|;(2)(a+b)(a﹣b)﹣a(a﹣b).【分析】(1)先计算零指数幂,取绝对值等,然后计算加减法;(2)利用平方差公式和单项式乘多项式法则解答.【解答】解:(1)原式=1﹣3+3=1;(2)原式=a2﹣b2﹣a2+ab=﹣b2+ab.【点评】考查了平方差公式,实数的运算,零指数幂以及单项式乘多项式,属于基础计算题.20.(8分)(1)解方程:=;(2)解方程组:.【分析】(1)方程两边都乘以(2x﹣1)(x+2)得出5(x+2)=3(2x﹣1),求出方程的解,最后进行检验即可;(2)将方程组整理成一般式,再利用加减消元法求解可得.【解答】解:(1)方程两边都乘以(2x﹣1)(x+2),得5(x+2)=3(2x﹣1),解这个方程,得x=13.检验:把x=13代入(2x﹣1)(x+2)≠0,∴x=13是原方程的解.(2)由②,得x﹣y=,③①﹣③,得x=,把x=代入③,得y=4.∴原方程组的解为【点评】本题考查了解分式方程和解二元一次方程组.关键是掌握方程组解法中的加减消元法和代入法;能把分式方程转化成整式方程,注意解分式方程一定要进行检验.21.(8分)已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.【分析】(1)根据CE=DE得出∠ECD=∠EDC,再利用平行线的性质进行证明即可;(2)根据SAS证明△AEC与△BED全等,再利用全等三角形的性质证明即可.【解答】证明:(1)∵AB∥CD,∴∠AEC=∠ECD,∠BED=∠EDC,∵CE=DE,∴∠ECD=∠EDC,∴∠AEC=∠BED;(2)∵E是AB的中点,∴AE=BE,在△AEC和△BED中,,∴△AEC≌△BED(SAS),∴AC=BD.【点评】本题主要考查了全等三角形的判定以及全等三角形的性质,平行线的性质等知识,解题的关键是灵活运用准确寻找全等三角形解决问题,属于中考常考题型.22.(8分)某市对九年级学生进行了一次学业水平测试,成绩评定分A、B、C、D四个等第.为了解这次数学测试成绩情况,相关部门从该市的农村、县镇、城市三类群体的学生中共抽取2000名学生的数学成绩进行统计分析,相应数据的统计图表如下:各类学生成绩人数比例统计表:290(1)请将上面表格中缺少的三个数据补充完整;(2)若该市九年级共有60000名学生参加测试,试估计该市学生成绩合格以上(含合格)的人数.【分析】(1)根据扇形图可分别求出农村人口、县镇人口、城市人口,进而求出缺少的数据即可;(2)利用样本来估计总体即可.【解答】解:(1)∵农村人口=2000×40%=800,∴农村A等第的人数=800﹣200﹣240﹣80=280;∵县镇人口=2000×30%=600,∴县镇D等第的人数=600﹣290﹣132﹣130=48;∵城市人口=2000×30%=600,∴城市B等第的人数=600﹣240﹣132﹣48=180故分别填:280,48,180.(3分)(2)抽取的学生中,成绩不合格的人数共有(80+48+48)=176,所以成绩合格以上的人数为2000﹣176=1824,估计该市成绩合格以上的人数为×60000=54720.答:估计该市成绩合格以上的人数约为54720人.(8分)【点评】本题是一道利用统计知识解答实际问题的重点考题.主要考查利用统计图表,处理数据的能力和利用样本估计总体的思想.解答这类题目,观察图表要细致,对应的图例及其关系不能错位,计算要认真准确.23.(8分)甲、乙两人都想去买一本某种辞典,到书店后,发现书架上只有一本该辞典,于是两人都想把书让给对方先买,为此两人发生了“争执”.最后两人商定,用掷一枚各面分别标有数字1,2,3,4的正四面体骰子来决定谁先买.若甲赢,则乙买;若乙赢,则甲买.具体规则是:“每人各掷一次,若甲掷得的数字比乙大,则甲赢;若甲掷得的数字不比乙大,则乙赢”.请你用“画树状图”的方法帮他们分析一下,这个规则对甲、乙双方是否公平?【分析】游戏是否公平,关键要看是否游戏双方各有50%赢的机会,本题中即甲赢与乙赢的概率是否相等,求出概率比较,即可得出结论.【解答】解:树状图如下:(4分)∵所有可能出现的结果共有16个,这些结果出现的可能性相等,P(甲赢)=;(5分)P(乙赢)=.(6分)∵P(甲赢)<P(乙赢),∴这个规则对甲、乙双方不公平.(7分)【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.24.(8分)在平面直角坐标系中,过一点分別作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则称这个点为强点.例如,图中过点P分別作x轴,y轴的垂线与坐标轴围成矩形OAPB的周长与面积相等,则点P是强点.(1)点M(l,2),N(4,4),Q(6,﹣3)中,是强点的有N,Q;(2)若强点P(a,3)在直线y=﹣x+b(b为常数)上,求a和b的值.【分析】(1)利用矩形的周长公式、面积公式结合强点的定义,即可找出点N,Q 是强点;(2)分a>0及a<0两种情况考虑:①当a>0时,利用强点的定义可得出关于a 的一元一次方程,解之可得出a的值,再利用一次函数图象上点的坐标特征可求出b 值;②当a<0时,利用强点的定义可得出关于a的一元一次方程,解之可得出a的值,再利用一次函数图象上点的坐标特征可求出b值.综上,即可得出结论.【解答】解:(1)∵(4+4)×2=4×4,(6+3)×2=6×3,∴点N,Q是强点.故答案为:N,Q.(2)分两种情况考虑:①当a>0时,(a+3)×2=3a,∴a=6.∵点P(6,3)在直线y=﹣x+b上,∴3=﹣6+b,∴b=9;②当a<0时,(﹣a+3)×2=﹣3a,∴a=﹣6.∵点P(﹣6,3)在直线y=﹣x+b上,∴3=6+b,∴b=﹣3.综上所述:a=6,b=9或a=﹣6,b=﹣3.【点评】本题考查了一次函数图象上点的坐标特征、矩形的周长及面积以及解一元一次方程,解题的关键是:(1)利用强点的定义找出点N,Q是强点;(2)分a>0及a<0两种情况,求出a,b的值.25.(8分)如图,△ABC中,∠ACB=90°,(1)请作出经过点A,圆心在AB上且与BC边相切于点D的⊙O(尺规作图,不写作法,保留作图痕迹,标上相应字母);(2)若(1)中所作⊙O与边AB交于点E(异于点A),DE=,AC=4,求CD 的长.【分析】(1)作∠BAC的平分线交BC于D,作AD的垂直平分线交AB于O,以O 为圆心,OA为半径作⊙O.(2)过D作DF⊥AB交AB于F,设DF=x,EF=y.构建方程组即可解决问题.【解答】解:(1)作∠BAC的平分线交BC于D,作AD的垂直平分线交AB于O,以O为圆心,OA为半径作⊙O.(2)过D作DF⊥AB交AB于F,设DF=x,EF=y.∵∠DAC=∠DAF,∠ACD=∠AFD=90°,AD=AD,∴△ADC≌△ADF(AAS),∴AF=AC=4,CD=DF,∵AE是直径,∴∠ADE=90°,∵DF⊥AE,∴△AFD∽△DFE,∴DF2=AF•EF,∴x2=4y,∵x2+y2=()2,∴x=2,y=1,∴CD=DF=2.【点评】本题考查作图﹣复杂作图,切线的判定和性质等知识,解题的关键是学会利用参数构建方程组即可解决问题.26.(8分)某公司生产一种纪念品,去年9月份以前,每天的产量与销售量均为400箱,进入9月份后,每天的产量保持不变,市场需求量却不断增加.如图是9月前后一段时期库存量y(箱)与生产时间x(月份)之间的函数图象.(1)该厂10月份开始出现供不应求的现象;9月份的平均日销售量为620箱?(2)为满足市场需求,该厂打算在投资不超过200万元的情况下,购买10台新设备,使扩大生产规模后的日总产量不低于9月份的平均日销售量.现有A、B两种型号的设备可供选择,其价格与两种设备的日产量如下表:(3)在(2)的条件下(市场日平均需求量与9月相同),若安装设备需三天(即10月4日新设备开始生产),指出何时开始该厂会有库存?【分析】(1)根据题意和函数图象中的数据可以解答本题;(2)根据题意和表格中的数据可以得到相应的不等式组,从而可以求得购买方案,然后根据一次函数的性质即可设计一种购买设备的方案,使日总产量最大;(3)根据(2)中的方案和题意可以得到相应的不等式,从而可以解答本题.【解答】解:(1)由图象可得,该厂10月份开始出现供不应求的现象,9月份的平均日销售量为:400+6600÷30=400+220=620(台),故答案为:10,620;(2)设A型x台,则B型(10﹣x)台,,解得,2≤x≤4∵x为整数,∴x=2,3或4,W=400+30x+20(10﹣x)=10x+600,日总产量当x=4时,W最大为640台,即购买A型号的设备4台,B型号的设备6台,可以使得日总产量最大;(3)设10月4日开始的第x天会有库存,400×3+640x﹣620(x+3)>0解得,x>33所以10月4日开始的第34天开始有库存(或者11月6日开始有库存).【点评】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.27.(10分)抛物线y=x2﹣mx﹣2m2(m>0)与x轴相交于A、B两点(A在B的左侧),M是抛物线第四象限上一动点,C是OM上一点,且OC=2CM,连接BC并延长交AM于点D.(1)求;(2)若M、A到y轴的距离之比为3:2,S=,求抛物线的解析式.△MCD【分析】(1)由y=0,得出的一元二次方程的解就是A、B两点的横坐标.由此可求出A、B的坐标.得出OA、OB长,通过构建相似三角形求解,过M作MH∥BD 交BE于H,那么可得出两组相似三角形:△BOC∽△HMC、△ADB∽△MDH,可分别用这两组相似三角形得出OB与HM的比例关系、HM与AB的比例关系,从而得出AM、MD的比例关系.(3)求抛物线的解析式,就要先确定m的值,已知了M、A到y轴的距离之比为3:2,可得出M的坐标为(m,﹣m2).连接OD,可根据(1)中线段的比例关系可求出△AOM的面积,根据A、M两点的坐标即可表示出三角形AOM的面积,由此可确定m的值.【解答】解:过M点作MH∥AB,交BD延长线于H点,∵抛物线y=x2﹣mx﹣2m2(m>0)与x轴相交于A、B两点(A在B的左侧),当y=0时,x2﹣mx﹣2m2=0,解得x1=﹣m,x1=2m,∴OA=m,OB=2m,AB=3m,∵△BOC∽△HMC,OC=2CM∴,∴HM=m又∵△ADB∽△MDH,∴==3.∴AD=3MD,∴=;(2)连接OD,∵=;OC=2CM∴S△AOM =4S△DMO=12S△MCD,∴S△AOM=5,M、A到y轴的距离之比为3:2,故M的坐标为(m,﹣m2).∴S△AOM==,∴=5∴m=2,∴抛物线的解析式y=x2﹣2x﹣8【点评】本题着重考查了相似三角形和二次函数的综合应用等知识点,综合性较强,考查学生数形结合的数学思想方法.28.(10分)已知矩形ABCD中,AB=2,BC=m,点E是边BC上一点,BE=1,连接AE.(1)沿AE翻折△ABE使点B落在点F处,①连接CF,若CF∥AE,求m的值;②连接DF,若≤DF≤,求m的取值范围.(2)△ABE绕点A顺时针旋转得△AB1E1,点E1落在边AD上时旋转停止.若点B1落在矩形对角线AC上,且点B1到AD的距离小于时,求m的取值范围.。