【数字图像处理】概念和原理题

合集下载

数字图像处理北民大试题

数字图像处理北民大试题

1.什么是数字图像?答:在空间坐标x,y处的值f(x,y)表示亮度或灰度,f(x,y)在空间上是离散的,在幅值上也离散的。

经过数字化后的图像称为数字图像(或离散图像)。

2.什么是数字图像处理?答:图像处理就是对图像信息进行加工处理,以满足人的视觉心理和实际应用的要求。

如:放大、缩小、转置、增强、边界分割......3.一般来说,图像采样间距越大,图像数据量_少__,质量_差;反之亦然。

4.什么是采样和量化?答:对图像在空间坐标(x,y)的数字化称为图像采样,幅值数字化被称为灰度级量化。

5.什么是二值图像?答:二值图像就是只有黑白两个灰度级。

6.判断:图像处理就是对图像信息进行加工处理,以满足人的视觉心理和实际应用的要求。

(√)答:正确7.如果一幅图像尺寸为200×300,每个像素点的灰度为64级,则这幅图像的存储空间为(B)。

答:BA、200×300×4 B 200×300×6C、200×300×8 D、200×300×642.如果一幅图像尺寸为200×300,每个像素点的灰度为32级,则这幅图像的存储空间为(B)。

答:BA、200×300×4B、200×300×5C、200×300×8D、200×300×329.如果一幅图像尺寸为200×300,每个像素点的灰度为16级,则这幅图像的存储空间为(A)。

答:AA、200×300×4B、200×300×5C、200×300×8D、200×300×1612.若采样4个数,大小分别为4.56 0.23 7.94 16.55。

现用三位二进制数进行量化,则量化后的值分别为多少?答:5 0 7 7 (三位二进制数的最大值为7)13.若采样4个数,大小分别为4.56 0.23 7.94 16.55。

遥感数字图像处理题库

遥感数字图像处理题库

理论部分一、概念解释题1.数字图像:用计算机存储和处理的图像,是一种空间坐标和灰度均不连续、以离散数学原理表达的图像2.数字图像处理:对一个物体的数字表示施加一系列的操作,以得到所期望的结果3.扫描:将一个数学虚拟网格覆盖在一幅图像上,图像的平面空间被离散化成一个个的有序的格子,然后按照格子的排列顺序依次读取图像的信息的过程4数字化:一幅图像从其原来的形式转换为数字形式的处理过程4.采样:将空间上连续的图像变换成离散点(即像素)的操作5.量化:采样后图像被分割成空间上离散的像素,但其灰度值没有改变。

量变是将像素灰度值转化成整数灰度级的过程6.采样定理:说明采样频率与信号频谱之间的关系,是连续信号离散化的基本依据7.直方图:是灰度级的描述,描述的是图像中各个灰度级像素的个数8.邻域:中心像素的行列成为该像素的领域9.特征空间:把从图像提取的m个特征量y1,y 2,…,y m,用m维的向量Y=[y1 y2…y m]t表示称为特征向量。

另外,对应于各特征量的m维空间叫做特征空间10.几何纠正:将含有畸变的图像纳入到某种地图投影11.内方位元素:表示摄影中心与相片之间相关位置的参数12.外方位元素:确定摄影光束在摄影瞬间的空间位置和姿态的参数13.GCP点:多项式纠正法地面控制点14.灰度重采样:像元灰度值根据周围阵列像元的灰度确定15.正射校正:16.辐射校正:消除图像数据中依附在辐亮度中的各种失真的过程17.大气校正:消除主要由大气散射、吸收引起的辐射误差的处理过程18.地形校正:19.图像镶嵌:将多个具有重叠部分的图像制作成一个没有重叠的新图像20.辐射增强:通过改变像元的亮度值来改变图像像元的对比度,从而改善图像质量的图像处理方法21.空间域增强:通过改变单个像元及相邻像元的灰度值来增强图像22.频率域增强:将图像经傅立叶变换后的频谱成分进行处理,然后逆傅立叶变换获得所需的图像23.直方图均衡化:对原始图像的像素灰度做某种映射变换,使变换后图像的灰度级均匀分布24.直方图规定化:为了使单波段图像的直方图变成规定形状的直方图而对图像进行转换的增强方法25.中值滤波:将窗口内的所有像素值按大小排序后,取中值作为中心像素的新值26.同态滤波:减少低频增加高频,对照度进行低通滤波,对反射度进行高通滤波,从而减少光照变化并锐化边缘或细节的图像滤波方法27.假彩色增强:对一幅自然彩色图像或同一景物的多光谱图像,通过映射函数变换成新的三基色分量28.HIS模型:色调H是描述纯色的颜色属性,而饱和度S提供了白光冲淡纯色程度的亮度29.植被指数:是基于植被叶绿素在红色波段的强烈吸收以及在近红外波段的强烈反射,通过红和近红外波段的比值或线性组合实现对植被信息状态的表达30.主成份变换:针对多波段图像进行的数学变换方法,常用于数据的压缩或噪声的去除31.缨帽变换:适用于LANDSAT图像的多波段经验性变换方法,变换结果可以较好的突出主体地物特征32.图像融合:采用一定的方法将不同类型的数据“融合”成一幅图像,可以同时达到高的光谱分辨率和空间分辨率33.计算机分类:对遥感图像上的地物进行属性的识别和分类34.模式识别:在图像分割的基础上提取特征,对图像中的内容进行判决分类35.监督分类:即先选择有代表性的验训练区,用已知地面的各种地物光谱特征来训练计算机,取得识别分类判别规则,并以此做标准对未知地区的遥感数据进行自动分类识别36.非监督分类:即按照灰度值向量或波谱样式在特征空间聚集的情况划分点群或类别37.最大似然度:38.Mahalanobis距离:是一种加权的欧式距离,它通过协方差矩阵来考虑变量的相关性39.ISODATA法分类:迭代式自组织数据分析算法40.分类后处理:为了解决光谱类和地物类的关系以及其他一些专业及专业制图的技术问题,分类后还需进行的各种处理41.生产者精度:表示实际的任意一个随机样本与分类图上同一地点的分类结果相一致的条件概率,用于比较各分类方法的好坏42.用户精度:表示从分类结果图中任取一个随机样本,其所具有的类型与地面的实际类型相同的条件概率,表示分类结果中各类别的可信度43.Kappa系数:测定两幅图之间吻合度或精度的指标二、简答题1.简述模拟图像处理和数字图像处理的区别。

(完整版)数字图像处理试题集复习题

(完整版)数字图像处理试题集复习题

(完整版)数字图像处理试题集复习题⼀.填空题1. 数字图像是⽤⼀个数字阵列来表⽰的图像。

数字阵列中的每个数字,表⽰数字图像的⼀个最⼩单位,称为像素。

2. 数字图像处理可以理解为两个⽅⾯的操作:⼀是从图像到图像的处理,如图像增强等;⼆是从图像到⾮图像的⼀种表⽰,如图像测量等。

3. 图像可以分为物理图像和虚拟图像两种。

其中,采⽤数学的⽅法,将由概念形成的物体进⾏表⽰的图像是虚拟图像。

4. 数字图像处理包含很多⽅⾯的研究内容。

其中,图像重建的⽬的是根据⼆维平⾯图像数据构造出三维物体的图像。

5、量化可以分为均匀量化和⾮均匀量化两⼤类。

6. 图像因其表现⽅式的不同,可以分为连续图像和数字离散图像两⼤类。

5. 对应于不同的场景内容,⼀般数字图像可以分为⼆值图像、灰度图像和彩⾊图像三类。

8. 采样频率是指⼀秒钟内的采样次数。

10. 采样所获得的图像总像素的多少,通常称为图像分辨率。

11. 所谓动态范围调整,就是利⽤动态范围对⼈类视觉的影响的特性,将动态范围进⾏压缩,将所关⼼部分的灰度级的变化范围扩⼤,由此达到改善画⾯效果的⽬的。

12 动态范围调整分为线性动态范围调整和⾮线性动态范围调整两种。

13. 直⽅图均衡化的基本思想是:对图像中像素个数多的灰度值进⾏展宽,⽽对像素个数少的灰度值进⾏归并,从⽽达到清晰图像的⽬的。

14. 数字图像处理包含很多⽅⾯的研究内容。

其中,图像增强的⽬的是将⼀幅图像中有⽤的信息进⾏增强,同时将⽆⽤的信息进⾏抑制,提⾼图像的可观察性。

15. 我们将照相机拍摄到的某个瞬间场景中的亮度变化范围,即⼀幅图像中所描述的从最暗到最亮的变化范围称为动态范围。

16. 灰级窗,是只将灰度值落在⼀定范围内的⽬标进⾏对⽐度增强,就好像开窗观察只落在视野内的⽬标内容⼀样。

17. 图像的基本位置变换包括了图像的平移、镜像及旋转。

18. 最基本的图像形状变换包括了图像的放⼤、缩⼩和错切。

19. 图像经过平移处理后,图像的内容不发⽣变化。

(完整版)数字图像处理每章课后题参考答案

(完整版)数字图像处理每章课后题参考答案

数字图像处理每章课后题参考答案第一章和第二章作业:1.简述数字图像处理的研究内容。

2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?3.列举并简述常用表色系。

1.简述数字图像处理的研究内容?答:数字图像处理的主要研究内容,根据其主要的处理流程与处理目标大致可以分为图像信息的描述、图像信息的处理、图像信息的分析、图像信息的编码以及图像信息的显示等几个方面,将这几个方面展开,具体有以下的研究方向:1.图像数字化,2.图像增强,3.图像几何变换,4.图像恢复,5.图像重建,6.图像隐藏,7.图像变换,8.图像编码,9.图像识别与理解。

2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?答:图像工程是一门系统地研究各种图像理论、技术和应用的新的交叉科学。

根据抽象程度、研究方法、操作对象和数据量等的不同,图像工程可分为三个层次:图像处理、图像分析、图像理解。

图像处理着重强调在图像之间进行的变换。

比较狭义的图像处理主要满足对图像进行各种加工以改善图像的视觉效果。

图像处理主要在图像的像素级上进行处理,处理的数据量非常大。

图像分析则主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息从而建立对图像的描述。

图像分析处于中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式描述。

图像理解的重点是进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行为。

图像理解主要描述高层的操作,基本上根据较抽象地描述进行解析、判断、决策,其处理过程与方法与人类的思维推理有许多相似之处。

第三章图像基本概念1.图像量化时,如果量化级比较小时会出现什么现象?为什么?答:当实际场景中存在如天空、白色墙面、人脸等灰度变化比较平缓的区域时,采用比较低的量化级数,则这类图像会在画面上产生伪轮廓(即原始场景中不存在的轮廓)。

数字图像处理试题集

数字图像处理试题集

A、图像镜像
B、图像旋转
C、图像放大
) D、图像缩小
2、假设 是原始图像
的像素点坐标;图像的大小是 M*N;
是使用公式
对图像 F 进行变换得到的新图像
A、图像镜像
B、图像旋转
的像素点坐标。该变换过程是()
C、图像放大
D、图像缩小
3、关于图像缩小处理,下列说法正确的是:(

A、图像的缩小只能按比例进行。

A、基于像素的图像增强方法是一种线性灰度变换;
B、基于像素的图像增强方法是基于空间域的图像增强方法的一种;
C、基于频域的图像增强方法由于常用到傅里叶变换和傅里叶反变换,所以总比基于图 像域的方法计算复杂较高;
D、基于频域的图像增强方法比基于空域的图像增强方法的增强效果好。
2、伪彩色处理和假彩色处理是两种不同的色彩增强处理方法,说出下面属于伪彩色增强的

5、数字图像坐标系可以定义为矩阵坐标系。(

6、图像中虚假轮廓的出现就其本质而言是由于图像的灰度级数不够多造成的。(

7、图像中虚假轮廓的出现就其本质而言是由于图像的空间分辨率不够高造成。(

8、图像中虚假轮廓的出现就其本质而言是由于图像的灰度级数过多造成的。(

9、图像中虚假轮廓的出现就其本质而言是由于图像的空间分辨率过高造成。(

10、采样是空间离散化的过程。(

四、简答题 1、图像的数字化包含哪些步骤?简述这些步骤。
2、图像量化时,如果量化级比较小会出现什么现象?为什么?
3、简述二值图像与彩色图像的区别。
4、简述二值图像与灰度图像的区别。
5、简述灰度图像与彩色图像的区别。

数字图像处理试题

数字图像处理试题

数字图像处理试题一、图像基本概念1.什么是数字图像?数字图像有哪些特征?2.图像的灰度是什么意思?如何表示?3.图像分辨率是什么?如何计算?4.图像的位深度是什么?位深度对图像有何影响?二、图像预处理1.什么是图像预处理?为什么需要图像预处理?2.图像去噪的几种常用方法有哪些?3.图像增强的几种常用方法有哪些?4.图像平滑的常用方法有哪些?5.图像锐化的常用方法有哪些?三、图像变换1.图像平移的原理和方法是什么?2.图像旋转的原理和方法是什么?3.图像缩放的原理和方法是什么?4.图像翻转的原理和方法是什么?四、图像特征提取与描述1.图像边缘提取的常用算法有哪些?2.图像角点检测的常用算法有哪些?3.图像直方图是什么?如何计算图像的直方图?4.图像纹理特征的提取方法有哪些?五、图像分割与目标检测1.图像分割的常用方法有哪些?2.基于阈值分割的原理和方法是什么?3.基于边缘分割的原理和方法是什么?4.图像目标检测的常用方法有哪些?5.基于深度学习的图像目标检测算法有哪些?六、图像压缩与编码1.什么是图像压缩?为什么需要图像压缩?2.图像压缩的两种基本方法是什么?3.有哪些常用的图像压缩算法?4.图像编码的常用方法有哪些?七、图像复原与重建1.图像退化和图像复原有什么区别?2.图像退化模型是什么?有哪些常见的图像退化模型?3.图像复原的常见方法有哪些?4.基于深度学习的图像复原算法有哪些?以上是关于数字图像处理的试题,希望能够帮助你更好地理解和掌握数字图像处理的基本概念、图像预处理、图像变换、图像特征提取与描述、图像分割与目标检测、图像压缩与编码以及图像复原与重建等内容。

如果在学习过程中有任何问题,欢迎随时向老师和同学们提问,共同进步!。

数字图像-医学图像处理 Part2:解答题和计算题

数字图像-医学图像处理 Part2:解答题和计算题

Part2:解答题和计算题2.1 图像处理基础一、简答题1、解释模拟图像和数字图像的概念。

(10分)模拟图像在水平与垂直方向上灰度变化都是连续的,因此有时又将模拟图像称之为连续图像( continuous image)数字图像是指把模拟图像分解成被称作像素的若干小离散点,并将各像素的颜色值用量化的离散值,即整数值来表示的图像。

因此,又将数字图像称为离散图像(discrete image)。

像素是组成数字图像的基本元素。

2、简述图像的采样和量化过程,并解释图像的空间分辨率和灰度分辨率的概念。

(10分) 空间采样将在空间上连续的图像转换成离散的采样点(即像素)集的操作。

由于图像是二维分布的信息,所以采样是在x轴和y轴两个方向上进行。

量化把采样后所得的各像素的灰度值从模拟量到离散量的转换称为图像灰度的量化。

量化值一般用整数来表示。

考虑人眼的识别能力,目前非特殊用途的图像均为8bit量化,即用0~255描述“黑~白”。

空间分辨率(spatial resolution ):图像空间中可分辨的最小细节。

一般用单位长度上采样的像素数目或单位长度上的线对数目表示。

灰度分辨率(contrast resolution ):图像灰度级中可分辨的最小变化。

一般用灰度级或比特数表示。

3、在理想情况下获得一幅数字图像时,采样和量化间隔越小,图像的画面效果越好。

当一幅图像的数据量被限制在一个范围内时,如何考虑图像的采样和量化,使得图像的表现效果尽可能的好? (10 分)当限定数字图像的大小时, 为了得到质量较好的图像,一般可采用如下原则:①对缓变的图像,应该细量化,粗采样,以避免假轮廓②对细节丰富的图像,应细采样,粗量化,以避免模糊4、图像量化时,如果量化级别较少时会发生什么现象?为什么? (10分)如果量化级比较少,会出现伪轮廓现象。

原因:量化过程是将连续的颜色划分到有限个级别中,必然会导致颜色的信息缺失。

当量化级别数量级过小时,图像灰度分辨率就会降低,颜色层次就会欠丰富,不同的颜色之间过渡就会变得突然,所以可能会导致伪轮廓现象。

数字图像处理各章要求必做题及参考答案

数字图像处理各章要求必做题及参考答案
个模块组成,如下图所示。
图像通信
图像输入
处理和分析
图像输出
图像存储
各个模块的作用分别为: 图像输入模块:图像输入也称图像采集或图像数字化,它是利用图像采集设备(如数码照相机、数 码摄像机等)来获取数字图像,或通过数字化设备(如图像扫描仪)将要处理的连续图像转换成适于计 算机处理的数字图像。 图像存储模块:主要用来存储图像信息。 图像输出模块:将处理前后的图像显示出来或将处理结果永久保存。 图像通信模块:对图像信息进行传输或通信。 图像处理与分析模块:数字图像处理与分析模块包括处理算法、实现软件和数字计算机,以完成图 像信息处理的所有功能。
2.10(1) 存储一幅 1024×768,256 个灰度级的图像需要多少 bit? (2) 一幅 512×512 的 32 bit 真彩图像的容量为多少 bit? 解答:
(1)一幅 1024×768,256 个灰度级的图像的容量为: b=1024× 768×8 = 6291456 bit (2)一幅 512×512 的 32 位真彩图像的容量为: b=512 × 512 × 32=8388608 bit
的图像具有如题表 4.4.2 所示的灰度级分布。
题表 4.4.1
灰度级
0
1
2
3
4
5
6
7
各灰度级概率分布
0.14 0.22 0.25 0.17 0.10 0.06 0.03 0.03
题表 4.4.2
灰度级
0
1
2
3
4
5
6
7
各灰度级概率分布
0
0
0
0.19 0.25 0.21 0.24 0.11
解答: (1)直方图均衡化结果如下表所示
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概念和原理题
一、绪论部分
(一) 概念解释 1、 数字图像。

2、 数字图像处理。

(二) 简答题
1、 简述数字图像处理的三个层次。

2、 简述数字图像处理的基本内容。

3、 简述数字图像处理系统的基本组成。

二、数字图像基础部分
(一) 概念解释 1、图像数字化。

2、取样。

3、量化。

4、灰度分辨率。

5、空间分辨率。

(二)简答题
1、写出简单的图象形成模型的公式,并进行说明。

2、简述图像采样和量化的一般原则。

3、简述空间分辨率、灰度分辨率与图像质量的关系。

4、简述数字图像类型。

5、简述数字图像文件格式。

(三)分析题
1、写出“*”标记的像素的4邻域、对角邻域、8邻域像素的坐标。

(坐标按常规方式 确定)
2
4、计算“*”标记的两点间的欧氏距离、城区距离和棋盘距离。

答: 图像处理 ,图像分割,模式识别
三、空间域图像增强部分
(一)概念解释 1、图像增强。

2、均值滤波器。

3、统计排序滤波器。

(二)简答题
1、简述空间域图像增强的三种增强方法。

2、简述图像反转、对数变换、幂次变换、分段线性变换等增强方法的特点及其适用范围。

2、简述直方图均衡化的实现步骤。

3、简述均值滤波器的工作原理和优缺点。

4、简述中值滤波器的工作原理和优缺点。

5、与Laplacian 算子相比,LOG 算子有什么优点? (三)分析题
1、计算下图的归一化直方图。

5
577666654444444544333333333333332222222322111113211000021110000 2、对下图进行直方图均衡化处理,并画出均衡后的图像及其直方图。

5
577666654444444544333333333333332222222
32211111
3211000021110000 3、对下面两幅图像进行异或运算。

4、对下列图像分别进行3*3均值滤波和3*3中值滤波,并比较它们的结果。

4
44444444442344564446464646444486464856444446496646417444646464644444444844444444444 5、试用拉普拉斯算子和Sobel 算子对下图进行边缘增强运算。

并把增强后的图像画出来。

(值四舍五入,可以为负;Sobel 算子采用绝对值之和)
0000000
00000000001111000011110000111100001111000000000000000000
四、频率域图像增强部分
(一)概念解释
(二)简答题与证明题
1、简述在频率域滤波的步骤。

2、证明图像()y x f ,付里叶变换的旋转不变性。

即当()y x f ,在空间域旋转角度0θ后,其付里叶变换()v u F ,也在空间频域中旋转相同的角度0θ。

3、证明傅里叶变换的中心化公式。

4、简述理想低通滤波器、巴特沃思低通滤波器、高斯低通滤波器等的特点。

5、简述同态滤波的步骤。

(三)分析题
1、有一个2*2的图像,其中f(0,0)=1,f(0,1)=3,f(1,0)=7,f(1,1)=2,求该图像的傅里叶幅度谱。

五、图像分割部分
(一)概念解释 1、图像分割。

(二)简答题
1、简述图像分割的基本原理。

2、简述用Hough 变换检测直线的步骤。

3、简述门限处理的分类。

4、简述一种门限自动计算的算法步骤。

5、简述利用边界特性改进直方图和局部门限处理的基本思想。

6、简述利用边界特性改进直方图和局部门限处理的步骤。

7、简述区域生长的步骤。

8、简述分裂合并的步骤。

9、简述基于局部处理的边缘连接的原则。

(三)分析题
1、对下列图像进行区域生长(给出区域生长的过程)。

(种子选择准则:最亮的点。

相似性准则:新加入像素值与已生长的区域的平均值小于2,且为4连。

(原则:一个
六、图像表达与描述部分
(一)概念解释
1、链码。

2、标记图。

3、形状数。

4、纹理。

(二)简答题
1、简述多边形方法的基本思想。

2、简述聚合技术的算法步骤。

3、简述拆分技术的算法步骤。

4、简述边界分段的基本思想。

5、简述统计量的优点。

6、简述纹理描述子的分类。

7、简述基于频谱方法的纹理描绘中常用的三个性质。

(三)分析题
1、分别写出下面目标的4连接和8连接链码、最小值链码和差分链码。

以(1,2 )点为起点,顺时针进行。

2、计算下列目标的周长(把像素称一个个点)。

3、计算下图的平滑度、一致度、平均熵等纹理特征。

4、计算下图的灰度共生矩阵及最大概率、元素差异的2阶矩、逆元素差异的2阶矩、一致性、熵等纹理特征。

(P定义为“在右下的一个像素”)
1 2 1 0 2
1 1 0 1 1
0 0 1 2 2
1 2 0 1 0
1 0 1 0 0
七、图像识别部分
(一)概念解释
1、模式。

2、模式类。

3、模式识别。

(二)简答题
1、简述一个模式识别系统的基本组成。

2、简述模板匹配、特征匹配的原理。

相关文档
最新文档