浙江大学自动控制原理课第二章控制系统的数学模型
自动控制原理:第二章--控制系统数学模型全

TaTLma KJe K
dMdML m dtdt
L
Tm
Ra J K eKm
——机电时间常数(秒);
Ta
La Ra
—电动机电枢回路时间常数 (秒)
若输出为电动机的转角q ,则有
TaTm
d 3q
dt 3
Tm
d 2q
dt 2
dq
dt
1 Ke
ua
Tm J
ML
TaTm J
dM L dt
—— 三阶线性定常微分方程 9
(1)根据克希霍夫定律可写出原始方程式
((23))式消LuLCcdd中去(titd)i中2d是utRc间2(中Cti1)变间C1量iR变dCti量idd后udt,ct,(t它)u输r与u(入tc输)(输t)出出uu微rc((tt)分)有方如程下式关系
或
T1T2
d 2uc (t) dt 2
T2
duc (t) dt
扰动输入为负载转矩ML。 (1)列各元件方程式。电动机方程式为:
TaTm
d 2w
dt 2
测输T速Km出发td为d电wt电测压机速w 反 K馈1e系ua数
Tm J
M反L馈 电TaJT压m
dM L dt
ua Kae ut Ktw e ur ut 12
(2)消去中间变量。从以上各式中消去中间变
量ua,e,ut,最后得到系统的微分方程式
线性(或线性化)定常系统在零初始条件下, 输出量的拉氏变换与输入量的拉氏变换之比 称为传递函数。
令线C性(s定)=常L[c系(t统)],由R下(s)述=Ln阶[r(微t)]分,方在程初描始述条:件为零
时[[aab,nnmbssdmdn进mt+ndn+dt行acmmbn(tm拉-r1)-(s1t氏ns)-am1变n+-1b1+…m换dd…1t+,nndd+1a1t得mm1bcs1(11到+ts)r+a关(t0b)]于0C]的RD(sM的s的a(()分s1s(分))=代sdbd为母)t1子为数cd传d多(tt多传方)r递项(项t程递函)式a式0函数c。b(0数tr) (t)
《自动控制原理》第2章控制系统的数学模型精品PPT课件

FB(t)
f
dy(t) dt
FK (t) 为弹簧的弹性力,它与物体的位移成正比,即
FK(t)ky(t)
d 2 y(t)
a为物体的加速度,即
a dt 2
消除中间变量,将式子标准化可得
mdd 2y2 (tt)fdd(ty)tk(yt)F(t)
2.3用拉普拉斯变换求解线性微 分方程
2.3.1拉普拉斯变换定义 2.3.2常用函数的拉普拉斯变换 2.3.3拉普拉斯变换的几个基本法则 2.3.4拉普拉斯反变换变换 2.3.5用拉普拉斯变换求解微分方程
第2章 控制系统的数学模型
• 本章的主要内容 控制系统的微分方程-建立和求解 控制系统的传递函数 控制系统的结构图-等效变换 控制系统的信号流图-梅逊公式
2.1系统数学模型概述
数学模型:用数学的方法和形式来表示 和描述系统中各变量间的关系。 三种形式:输入输出描述
状态空间描述 方块图或信号流图描述
对上式取拉氏变换得 c(t)et sint
2.4传递函数
利用拉氏变换的方法可以得到控制系统在 复数域的数学模型——传递函数。 2.4.1 传递函数的定义 2.4.2典型环节的传递函数
2.4.1 传递函数的定义
线性定常系统,当初始条件为零时,输出量拉氏变换与 输入量拉氏变换之比,定义为传递函数。
G (s)C R ((ss))b0 ssnm ab 11 ssnm 1 1 ab n m 1 s1s ab nm
例2-7 求图2-1所示RLC串联电路的传递函数。设输入量 为 u r ,输出量 u c 。
L K(t) fK(s F )
2.微分定理
函数求导的拉氏变换,等于函数拉氏变换乘 以s的求导次幂(这时,初始条件需为零)。 同理,若初始条件 f(0 )f'(0 ) f(n 1 )(0 ) 0
自动控制原理第二章自动控制系统的数学模型

2-1控制系统微分方程的建立
基本步骤: 分析各元件的工作原理,明确输入、输出量 建立输入、输出量的动态联系 消去中间变量 标准化微分方程
①将与输入量有关的各项放在方程的右边,与输出量有 关的各项放在方程的左边;②各导数项按降幂排列; ③将方程的系数通过元件或系统的参数化成具有一定 物理意义的系数。
量及其各阶导数,在t= 0 时的值为零。
二指输入信号作用于系统之前系统是静止的,
即t= 0 时 ,系统的输出量及各阶导数为零。
许多情况下传递函数是能完全反映系统的动 态性能的 。
20
一、传递函数的概念与定义
Ur(s)
G(s)
Uc(s)
G ( s ) U c( s ) U r( s )
21
二、关于传递函数的几点说明
平衡位置附近的小偏差线性化
输入和输出关系具有如下图所示的非线性特性。
14
在平衡点A(x0,y0)处,当系统受到干扰,y 只在A附近变化,则可对A处的输出—输入关系
函数按泰勒级数展开,由数学关系可知,当 x
很小时,可用A处的切线方程代替曲线方程(非
线性),即小偏差线性化。
15
可得
df y dx |x0
解:分析质量块m受力,有
外力F,
弹簧恢复力 Ky(t)
阻尼力 fdy(t) / dt
F(t)
k
惯性力 md 2 y / dt2
由于m受力平衡,所以
M y(t)
Fi 0
f
式中:Fi是作用于质量块上 的主动力,约束力以及惯性
力。
将各力代入上等式,则得
10
d 2 y(t) dy(t) m dt2 f dt Ky(t) F (t)
《自动控制原理》第2章 自动控制系统的数学模型

2020年2月4日
EXIT
第2章第3页
另一个原因:许多表面上看来似乎毫无共同之 处的控制系统,其运动规律可能完全一样,可以 用一个运动方程来表示,我们可以不单独地去研 究具体系统而只分析其数学表达式,即可知其变 量间的关系,这种关系可代表数学表达式相同的 任何系统,因此需建立控制系统的数学模型。
比如机械平移系统和RLC电路就可以用同一 个数学表达式分析,具有相同的数学模型(可以 进行仿真研究)。
(2)根据各元件在工作过程中所遵循的物理或化学定律,按工 作条件忽略一些次要因素,并考虑相邻元件的彼此影响,列出微分 方程。常用的定律有:电路系统的基尔霍夫定律、力学系统的牛顿 定律和热力学定律等等。
(3)消去中间变量后得到描述输出量与输入量(包括扰动量) 关系的微分方程,即元件的数学模型。
注:通常将微分方程写成标准形式,即将与输 入量有关的各项写在方程的右边,与输出量有 关的各项写在方程的左边。方程两边各导数项 均按降阶顺序排列。
2020年2月4日
EXIT
第2章第24页
2.建立步骤 ① 按系统数学模型的建立方法,列出系统各个部分的微分 方程。 ② 确定系统的工作点,并分别求出工作点处各变量的工作 状态。 ③ 对存在的非线性函数,检验是否符合线性化的条件,若 符合就进行线性化处理。 ④ 将其余线性方程,按增量形式处理,其原则为:对变量 直接用增量形式写出;对常量因其增量为零,故消去此项。 ⑤ 联立所有增量化方程,消去中间变量,最后得只含有系 统总输入和总输出增量的线性化方程。
exit2020年2月18日exit2020年2月18日2121控制系统微分方程的建立控制系统微分方程的建立2222非线性系统微分方程的线性化非线性系统微分方程的线性化2323传递函数传递函数2424控制系统的结构图及其等效变换控制系统的结构图及其等效变换2525自动控制系统的传递函数自动控制系统的传递函数2626信号流图信号流图2727脉冲响应函数脉冲响应函数exit2020年2月18日数学模型1
自动控制理论第二章 控制系统的数学模型

y y0 k1 ( x1 x10 ) k2 ( x2 x20 )
f k1 x1
( x10 , x20 )
f k2 x2
( x10 , x20 )
如何进行线性化
使用小偏差法
连续可导的非线性特性
本质非线性特性
小偏差理论
• 具有连续变化的非线性函数
y f ( x)
A[x0,y0]为预定工作点,则该非线性函数可以 线性化的条件是变量x偏离预定工作点很小
线性化方法步骤:
• (1)建立系统(环节)运动方程;
• (2)利用Taylor级数或一次微分方法,将输出-输入
实验法:给系统或元件输入一定形式的信号(阶跃信 号、正弦信号等),根据系统或元件的输出响应,经 过数据处理而拟合辨识出系统的数学模型。
反映元件及系统 的特性要正确 写出的数学式子 要简明 数 学 模 型
微分方程 传递函数 频率特性 结构图
• 实验法 • 解析法
信号流图 状态空间表达式
§2.1
控制系统的微分方程
Fi k k -弹性系数 f -阻尼系数 m m-物体质量 x
f
由牛二:
外力
弹性阻力
粘滞阻力 代入整理
例
电枢控制的直流电动机
电枢电压控制的直流电动机线路原理图和结构图
(1)列写原始方程式。
La dia Ra i K e ua dt
J
d ML Md dt
(2)消去中间变量。 M d K m ia
c S dH c(Qs Q f )dt dH 1 或 (Qs Q f ) dt s
Qf H
非线性的
3、消去中间变量
Qf 有 :
自动控制理论第二章 自动控制系统的数学模型课件

别是其中的一些细节,请注意深入理解。
齐次性 线性性质 微分定理 积分定理 终值定理 初值定理 卷积定理
Laf (t) aF(s)
Laf1(t) bf2 (t) aF1(s) bF2 (s)
L
d dt
f (t) sF(s)
0 dt
0
s0
即
f () lim sF (s) 。 s0
因为要求 s 沿着使 f (t) 的拉氏变换积分为收敛的区域内的某条路径趋于零,根据使 拉氏变换积分为收敛的条件,这要求 f (t) 的拉氏变换 F (s) 在 s 右半闭平面内是解析的。 在使用终值定理时,要首先检验 F (s) 在 s 右半闭平面解析的条件,否则会导致错误。
(5)初值定理
设 F (s) 是 f (t) 的 0 型的拉氏变换,且极限 lim sF (s) 存在,则有 s f (0 ) lim sF(s) s
注意,应用初值定理无法给出严格的 f (t) 在 t 0 时刻的值,但能给出 f (t) 在 t 0 的值。 应用函数导数的拉氏变换法则,在使函数 f (t) 的拉氏变换积分为收敛的区域内令 s 趋于无穷
大,根据使拉氏变换积分为收敛的条件,这时总有 R s 0 ,于是对于时间间隔 0 t ,
有 lim est 0 ,故有 s
lim
s
L
df (t) dt
lim
s
0
df (t) dt
est dt
lim
s
sF (s)
f (0 ) 0
即
f (0 ) lim sF(s) s
从上述证明过程可以看出,应用初值定理只能给出函数 f (t) 在 t 0 时刻的值,而且,这样一个 事实与函数 f (t) 是否满足 f (0 ) f (0) f (0 ) 并无关系。
自动控制原理第二章自动控制原理控制系统的数学模型

第二章 控制系统的数学模型2-1 控制系统的时域模型一、建立系统微分方程的基本步骤(P23,第二自然段):⑴ 分析系统工作原理、各变量之间的关系,确立系统的输入变量和输出变量; ⑵ 依据支配系统工作的基本规律,逐个列写出各元件的微分方程;⑶ 消去中间变量,列写出只含有输入和输出变量以及它们的各阶导数的微分方程; ⑷ 将方程写成规范形式。
例2-1:系统输入i u ,输出o u ;从输入到输出顺序列写各元件方程, td id Lu L =,i R u R =,⎰=t id C u o 1,及o R L i u u u u ++=利用输出电压与回路电流的关系消去中间变量,t d u d C i o =,22t d u d C t d id o =;o o o i u t d u d RC td u d LC u ++=22 写成规范的微分方程(标准形式):i o o o u u td u d RC t d u d LC =++2;或 i o u u p T p T =++)1(221,其中LC T =1,RC T =2,t d dp =。
“系统初始条件均为零”是指在零时刻以前系统的输入和输出及他们的各阶导数均为零。
在复数域,复变量s 对应微分算子,而s /1对应积分运算。
“输出对输入的响应” 是指,初始条件为零时,系统输出的运动情况。
因此,可以直接列写控制系统在复数域的方程。
就本例而言有:)()(s sI L s U L =,)()(s I R s U R =,)(1)(s I sC s U o =,及 )()()()(s U s U s U s U o R L i ++=; 消去中间变量)()(s U s C s I o ⋅=,得()()1(221U s U s T s T i o =++例2-2:系统输入F ,输出x ;力平衡方程:)()()()(2s X K s f s F s X ms +-=;整理得,)()()(2s F s X K s f ms =++。
自动控制原理第二章-控制系统的数学模型1

零初始条件:函数 f(t) 及其各阶导数的初始值都等于零
在零初始条件下,
dn f (t)
L
dtn
snF(s)
4.积分定理:
L[
f
(t)dt]1F(s) s
5.初值定理:假设函数 f(t) 及其一阶导数都是可拉氏变 换的,那么函数 f(t) 的初值为
f(0 )tl 0 im f(t)ls i s m ( F s)
c1 3et (s1) 4
c3ls i0m ss(ss1)2(2s3)3 2
c4sl i3(m s3)s(ss1) 2(2s3)112
f(t)21e t(t3)1e 3 t
32
2 12
c3 2 s3
c4 1 e3t (s3) 12
9
第二章 控制系统的数学模型
2-1 线性微分方程的建立与求解 2-2 传递函数 2-3 控制系统的结构图及其等效变换
cr sl ism 1(ss1)rF(s)
cr1sl ism 1dd[ss(s1)rF(s)]
crj 1j!sl im s1dd(jjs)[s(s1)rF(s)]
c1(r 11)s!l is1 m d d(rr s1 1 )[s(s1)rF(s)]
其余各极点的留数确定方法与上同。
8
例2 求 F(s) s2 的原函数 f (t ) s(s1)2(s3)
c 1s l i1 (m s 1 )F (s)s l i1 (m s 1 )(s (s 1 ) s 2 ( )3 )
12 13
1 2
c2sl im 3(s3)F(s)1 2
f(t)1(et e3t)
2
7
◆F(s)含有多重极点时,可展开为
F ( s ) ( s c r s 1 ) r ( s c r s 1 1 ) r 1 ( s c 1 s 1 ) ( s c r s r 1 1 ) ( s c n s n )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动控制理论
➢ 直流他励电动机 被控制量是电动机的转速n 。 控制量:发电机的电动势EG和负载转矩TL
由基尔霍夫定律和牛顿第二定律得
ia R L
dia dt
Cen
EG
GD2 dn Te TL 375 dt
Te Cuia
2020/4/27
第二章 控制系统的数学模型
10
上式中消去中间变量 Te和ia 后得到
的转速n为系统的输出量,经消元后得
τm τa τG
d 3n dt 3
τm
τa
τG
d 2n dt 2
τG
τm
dn dt
1
Ka Ce
n
K Ce
Ug
R CeCu
τGτa
d 2TL dt 2
τa
TG
dTL dt
TL
式中, K K1K 2 , R R G R m
2020/4/27
用解析法建立系统微分方程的一般步骤
➢ 根据基本的物理定律,列写出系统中一个元件的输入与输出的微分方程式 ➢ 确定系统的输入量与输出量,消去其余的中间变量,求得系统输出与输入的 微分方程式
举例
一、电气网络系统
例2-1求Uc与Ur的微分方程 式
解:由基尔霍夫定律得
iR
l
di dt
uc
ur
uc
1 C
idt,
设一非线性元件的输入为x、输出为y,它们间的 关系如图2-9所示,相应的数学表达式为
2020/4/27
y=f(x)
(2-13)
图 2-9 非线性特性的线性化
第二章 控制系统的数学模型
13
自动控制理论
在给定工作点A(x0,y0)附近,将上式展开为泰勒级数
y
f x
f
x0
df dx
1 d2f
xx0 x x0 2! dx2
uc
ur
2020/4/27
第二章 控制系统的数学模型
4
自动控制理论
二、机械位移系统
例2-3. 求外力F(t)与质量块m位移y(t)之间的微分方程 解 由牛顿第二定律列出方程
F (t) ky(t)
f
dy (t ) dt
m
d
2 y(t) dt 2
即 m d 2 y(t) f dy(t) ky(t) F (t)
2020/4/27
第二章 控制系统的数学模型
7
自动控制理论
➢ 放大器
u1 ue
K1
(2-4)
➢ 直流他励发电机
假设驱动发电机的转速n0恒定不变,发 电 机没有磁滞回线和剩磁,发电机的磁 化曲线为一直线 ,即Φ/iB =L。
图2-6 直流他励发电机电路图
2020/4/27
第二章 控制系统的数学模型
1
1
C2 i2dt i2 R2 C1 (i1 i2 )dt
1
C2
i2dt uc
消去中间变量i1 、 i2 得
i1
图2-2 R-C滤波网络
R1R2C1C2
d 2uc dt 2
R1C1 R2C2 R1C2
duc dt
uc
ur
或写作
T1T2
d 2uc dt 2
T1 T2
T3
duc dt
普通高等教育“九五”部级重点教 材
自动控制理论
第二章
控制系统的数学模型
2020/4/27
作者: 浙江大学 邹伯敏 教授
第二章 控制系统的数学模型
1
自动控制理论
数学模型:是描述系统输入、输出变量以及于内部其它变 量之间关系的数学表达式
描述系统运动的数学模型的方法
➢ 输入-输出描述 微分方程是这种描述的最基本形式。传递函数、方框图
第二章 控制系统的数学模型
(2-12)
12
自动控制理论
第二节 非线性数学模型的线性化
非线性数学模型线性化的假设
➢ 变量对于平衡工作点的偏离较小 ➢ 非线性函数不仅连续,而且其多阶导数均存在
微偏法
在给定工作点邻域将此非线性函数展开成泰勒级数,并略去二阶及二阶以 上的各项,用所得的线性化方程代替原有的非线性方程。
输入量是电动机的转速n,输出量是测速发电机的电压Ufn ,假设 测速发电机的磁场恒定不变,则Ufn与n成线性关系即有
2020/4/27
第二章 控制系统的数学模型
11
自动控制理论
ufn an 而
(2-10)
ue ug -ufn
(2 -11)
引起系统运动的输入量是给定电压ug和负载转矩TL(扰动),电动机
m a
d 2n dt 2
m
dn dt
n
1 Ce
EG
R CeCu
TL
a
dTL dt
(2-8)
式中, m
GD2 375
R Cu
为电动机的机电时间常数;
a
L R
为电动机的电气时间常数。
当TL 0时,电动机空载运行至稳态时,式2 8 便蜕化为
n0
1 Ce
EG
(n0为电动机的空载转速)
(2-9)
➢ 测速发电机
8
自动控制理论
由电机学原理得:
L
diB dt
iB R
U1
(2-5)
EG C1 C1LiB C2iB (2-6)
把式(2-6)代入(2-5),则得
τG
dEG dt
EG
K2U1
(2-7)
式中
G
L R
;
K2
C1L R
图2-7 直流他励电动机电路图
2020/4/27
第二章 控制系统的数学模型
9
2020/4/27
第二章 控制系统的数学模型
6
图2-5 G-M 直流调速系统的框图
写微分方程式的一般步骤:
列写元件和系统方程式前,首先要明确谁是输入量和输出量,把与
输出量有关的项写在方程式等号的左方,与输入量有,关系的项写
在等号的右方,列写系统中各元件输入-输出微分方程式,消去中
间变量,求得系统的输出与输入的微分方程式
dt 2
dt
图2-3 弹簧-质量-阻尼器系统
式中,f——为阻尼第数;k——为弹簧的弹性系数。k y(t)——弹性拉力 f dy ——阻尼器阻力
dt
2020/4/27
第二章 控制系统的数学模型
5
自动控制理论
三、直流调速系统
例2-4. 试写出图2-4所示直流调速系统的微分方程式
图2-4 G-M 直流调速系统原理图
等其它模型均由它而导出 ➢状态变量描述 状态方程是这种描述的最基本形式
建立系统数学模型的方法
➢ 实验法:人为施加某种测试信号,记录基本输出响应。
➢ 解析法:根据系统及元件各变量之间所遵循的基本物理
定律,列写处每一个元件的输入-输出关系式。
2020/4/27
第二章 控制系统的数学模型
2
自动控制理论
第一节 列写系统微分方程的一般方法
即i C duc dt
消去中间变量 i,则有:
LC
d 2uc dt 2
RC
duc dt
uc
ur
2020/4/27 图2-1 R-L-C电路 第二章 控制系统的数学模型
3
自动控制理论
例2-2. 试写出图2-2电路的微分方程
解 由基尔霍夫定律列出下列方程组
1
C1
(i1 i2 )dt i1R1 ur