垂线习题(含答案)
【小学】冀教版数学四年级上册第七单元《认识垂线》一课一练含答案

《认识垂线》习题一、基础过关1下面每组中的两条直线,是互相垂直的在()里画“√”,不垂直的在()里画“×”。
()()二、综合训练1判断,对的在()里画“√”,错的在()里画“×”。
(1)长方形的长和宽互相垂直。
()(2)三角尺上没有互相垂直的边。
()(3)在9:00,钟面上时针和分针互相垂直。
()(4)两条直线相交,它们一定互相垂直。
()(3)上午三时整,钟面上的时针和分针互相垂直。
()(4)如图,①a和b互相垂直。
()②a是垂线,b也是垂线。
()③a是b的垂线。
()2.下面图形中有互相垂直的线段画“√”,没有互相垂直的线段画“×”。
()()()2在已知直线的下方,画一些到已知直线的距离1厘米的点,这样的点能画()个,把这些点连起来,你有什么发现?3画一画。
(1)一个村要从A地修筑一条小道通到公路,小道怎样修筑最短?画一画。
公路A2李明从B点起穿过步行街,怎样走路最短B 步行街4.下图中,哪些线段是互相垂直的?用红笔描出来。
三、拓展应用1.在下列直线上画出3条垂线。
想一想这3条垂线之间有什么关系?2.智力冲浪:下图∠1=40°,∠2=50°。
图中的两条虚线互相垂直吗?你是怎样知道的?参考答案一、基础过关1下面每组中的两条直线,是互相垂直的在()里画“√”,不垂直的在()里画“×”。
(× )(×)√√二、综合训练1判断,对的在()里画“√”,错的在()里画“×”。
(1)长方形的长和宽互相垂直。
(√)(2)三角尺上没有互相垂直的边。
(×)(3)在9:00,钟面上时针和分针互相垂直。
(√)(4)两条直线相交,它们一定互相垂直。
(×)(3)上午三时整,钟面上的时针和分针互相垂直。
(√)(4)如图,①a和b互相垂直。
(√)②a是垂线,b也是垂线。
(×)③a是b的垂线。
(√)2.下面图形中有互相垂直的线段画“√”,没有互相垂直的线段画“×”。
人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)

5.1.2 垂线学校:__________ 姓名:__________ 班级:__________ 考号:__________一、单选题1.到直线L 的距离等于2cm 的点有( )A .0个B .2个C .3个D .无数个2.如图,能表示点到直线的距离的线段共有( )A .2条B .3条C .4条D .5条3.点P 是直线l 外一点,A 、B 、C 为直线l 上的三点,4PA cm =,5PB cm =,2PC cm =,则点P 到直线l 的距离( )A .小于2cmB .等于2cmC .不大于2cmD .等于4cm4.如图,有三条公路,其中AC 与AB 垂直,小明和小亮分别沿AC 、BC 同时从A 、B 出发骑车到C 城,若他们同时到达,则下列判断中正确的是( )A .小明骑车的速度快B .小亮骑车的速度快C .两人一样快D .因为不知道公路的长度,所以无法判断他们速度的快慢5.如图所示,已知AC⊥BC,CD⊥AB,垂足分别是C ,D ,那么以下线段大小的比较必定成立的是( )A .CD AD >B .AC BC < C .BC BD > D .CD BD <6.与一条已知直线垂直的直线有( )A .1条B .2条C .3条D .无数条7.如图,直线AB ,CD 相交于点O ,OE⊥CD 于点O ,∠AOC=36°,则∠BOE=( )A .36°B .64°C .144°D .54°8.下面说法正确的是( )A .过一点有且只有一条直线与已知直线平行B .两直线成直角,则这两直线一定垂直C .没有交点的两条直线一定平行D .过直线外一点,有且只有一条直线与已知直线垂直9.如图,OA⊥OB,∠1=35°,则∠2的度数是( )A .35°B .45°C .55°D .70°二、填空题1.如图所示,A ,B ,C 是直线l 上的三点,P 为直线l 外一点,已知PC⊥l,PA =4厘米,PB =5厘米,PC =3厘米,则点P 到直线l 的距离为__________.2.如图,115∠=︒,CO OA ⊥,点B ,O ,D 在同一直线上,则∠2的度数为________.3.如图,直线AB ,CD ,EF 相交于点O ,且AB⊥CD,∠1=30°,则∠2=______.4.如图,直线AB ,CD 相交于点O ,如果∠EOD=40°,∠BOC=130°,那么∠BOE 的度数是________.5.如图,直线AB,CD交于点O,OE⊥AB,OD平分∠BOE,则∠AOC=________.三、解答题1.数学是从实际生活中来的,又应用于生活.请将下列事件与对应的数学原理连接起来.事件数学原理教室的门要用两扇合页才能自由开关直线外一点与直线上各点连线的所有线段中,垂线段最短飞机从萧山飞往北京,它的航行路线是直的经过两点有且只有一条直线测量运动员的跳远成绩时,皮尺与起跳线保持垂直两点之间线段最短2.如图,M,N为坐落于公路两旁的村庄,如果一辆施工的机动车由A向B行驶,产生的噪音会对两个村庄造成影响.(1)当施工车行驶到何处时,产生的噪音分别对两个村庄影响最大?在图中标出来.(2)当施工车从A向B行驶时,产生的噪音对M,N两个村庄的影响情况如何?3.如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据.4.把图中的互相平行的线写出来,互相垂直的线写出来:5.如图,已知直线AB和CD相交于点O,射线OE⊥AB于点O,射线OF⊥CD于点O,且∠AOF =25°.求∠BOC与∠EOF的度数.参考答案一、单选题1.D解析:根据点到直线的距离和直线与直线之间的距离进行分析.详解:当两条平行线互相平行时,且其中一条直线上的一点到另一条直线的距离为2时,则这条直线上所有的点到另一条直线的距离都为2,所以有无数个.故选D.点睛:考查了点到直线的距离和直线与直线之间的距离,解题关键理解点到直线的距离和两条平行线间的距离之间的联系.2.D解析:根据点到直线的距离定义,可判断:AB表示点A到直线BC的距离;AD表示点A到直线BD的距离;BD表示点B到直线AC的距离;CB表示点C到直线AB的距离;CD表示点C到直线BD的距离.共5条.故选D.3.C解析:根据点到直线的距离是点到直线的垂线段的长度以及垂线段最短即可得答案.详解:解:点P为直线l外一点,当P点直线l上的三点A、B、C的距离分别为PA=4cm,PB=5cm,PC=2cm,则点P到直线l的距离为不大于2cm,故选:C.点睛:本题考查了点到直线的距离,点到直线的距离是点到直线的垂线段的长度,利用垂线段最短是解题关键.4.B分析:根据垂线的性质:从直线外一点到这条直线上各点所连的线段中,垂线段最短,可知BC>AC,然后根据速度公式即可判断.详解:∵AC与AB垂直,∴BC>AC,若他们同时到达,根据速度公式可得,小亮骑车的速度快,小明骑车的速度慢.故选B5.C解析:A选项,CD与AD互相垂直,没有明确的大小关系,错误;B选项,AC与BC互相垂直,没有明确的大小关系,错误;C选项,BD是从直线CD外一点B所作的垂线段,根据垂线段最短定理,BC>BD,正确;D选项,CD与BD互相垂直,没有明确的大小关系,错误,故选C.6.D解析:根据垂线的性质:过直线外一点作已知直线的垂线,能作且只能作1条;而直线外有无数个点,因此与一条已知直线垂直的直线有无数条.详解:解:与一条已知直线垂直的直线有无数条,故选D.点睛:本题主要考查了垂线的性质,准确理解性质是解题的关键.7.D解析:由垂直的定义可知∠DOE=90°;直线AB,CD相交于点O,对顶角相等,然后根据角的差计算即可详解:∵OE⊥CD∴∠DOE=90°∵直线AB,CD相交于点O,∠AOC=36°∴∠DOB=36°∴∠BOE=∠DOE−∠BOD=90°−36°=54°故本题答案应为:D点睛:垂直的定义、对顶角相等的性质是本题的考点,找出角之间的关系是解题的关键.8.B解析:根据平行公理,垂线的定义,平行线的定义和以及垂线的性质对各选项分析判断即可求解.解:A.应为过直线外一点有且只有一条直线与已知直线平行,故本选项错误;B.两直线成直角,则这两直线一定垂直正确,故本选项正确;C.应为在同一平面内,没有交点的两条直线一定平行,故本选项错误;D.应为在同一平面内,过直线外一点,有且只有一条直线与已知直线垂直,故本选项错误. 故选B.9.C解析:试题分析:∵OA⊥OB,∴∠AOB=90°,所以∠2+∠1=90°,∵∠1=35°,∴∠2=55°,故选C .考点:1.余角和补角;2.垂线.二、填空题1.3厘米解析:分析:点P 到直线l 的距离为点P 到直线l 的垂线段,结合已知,因此点P 到直线l 的距离为PC 的长.详解:∵根据点到直线的距离为点到直线的垂线段(垂线段最短)的长度,PC⊥l,PA =4厘米,PB =5厘米,PC =3厘米,∴点P 到直线l 的距离为3厘米,故答案为:3厘米.点睛:本题考查了垂线段最短,关键是要明确点P 到直线l 的距离为点P 到直线l 的垂线段的长度.2.105°分析:根据垂直的定义及平角的定义计算即可.详解:解:∵CO OA ⊥,115∠=︒,∴∠COB=90°-15°=75°,∵点B ,O ,D 在同一直线上,∴∠2=180°-∠COB =180°-75°=105°.故答案为:105°.点睛:本题考查垂直定义与平角定义.熟练掌握垂直的定义是解题的关键.3.60°分析:根据题意由对顶角相等先求出∠ FOD,然后根据AB⊥CD,∠2与∠ FOD互为余角,求出即可详解:∵CD、EF相交于点O∴∠FOD=∠1=30°∵AB⊥CD∴∠2=90°−∠FOD=90°−30°=60°故本题答案应为:60°点睛:对顶角相等和垂线的定义及性质是本题的考点,熟练掌握基础知识是解题的关键.4.90°解析:观察图形,可猜想OE⊥AB,根据已知条件,证明∠AOE是直角即可.详解:∵∠BOC=130°,∴∠AOD=∠BOC=130°,∴∠AOE=∠AOD-∠EOD=130°-40°=90°.∴OE⊥AB.故答案为互相垂直.点睛:考查了对顶角、邻补角,利用垂直的定义除了由垂直得直角外,还能由直角判定垂直,判断两直线的夹角是否为90°是判断两直线是否垂直的基本方法.5.45分析:根据垂直定义得BOE=∠90〬,由角平分线定义得∠BOD=12∠BOE=45〬,由对顶角相等得∠AOC=∠BOD=45〬详解:因为,直线AB,CD交于点O,OE⊥AB,所以,BOE=∠90〬,因为,OD平分∠BOE,所以,∠BOD=12∠BOE=45〬,所以,∠AOC=∠BOD=45〬故答案为45点睛:本题考核知识点:垂直定义、角平分线、对顶角. 解题关键点:理解垂直定义、角平分线、对顶角性质.三、解答题1.见解析分析:两个合页所在的位置可看成的两个点,目的是为了让门与门框在一条直线上,应用的是两点确定一条直线;两个城市可看做两个点,两个城市之间,航行路线是直的,应用的是两点之间,线段最短.跳远成绩可将踏板看作直线,脚后跟看作一点,应用的是垂线段最短.详解:点睛:本题考查了生活中的数学知识、直线公理、线段公理、垂线段最短.注意一些物体或地方可看做一个点.2.见解析解析:试题分析:(1)过点M,N分别作AB的垂线,垂足分别为P,Q,根据垂线段最短可得汽车行驶到何处时,分别对两所学校影响最大;(2)此题说明时要分3段A到P;由P向Q,由Q 向B分别说明对两学校的影响情况.试题解:(1)如图所示,过点M,N分别作AB的垂线,垂足分别为P,Q,则当施工车行驶到点P,Q处时产生的噪音分别对M,N两个村庄影响最大.(2)由A至P时,产生的噪音对两个村庄的影响越来越大,到P处时,对M村庄的影响最大;由P至Q时,对M村庄的影响越来越小,对N村庄的影响越来越大,到Q处时,对N村庄的影响最大;由Q至B时,对M,N两个村庄的影响越来越小.点睛:此题主要考查了应用与设计作图,以及垂线段的性质,关键是正确画出图形.3.(1)见解析;(2)见解析.解析:本题考查了线段和垂线的性质在实际生活中的运用(1)由两点之间线段最短可知,连接AD、BC交于H,则H为蓄水池位置;(2)根据垂线段最短可知,要做一个垂直EF的线段.⑴连结AD,BC,交于点H,则H为所求的蓄水池点.⑵过H作HK EF于K,沿HK开挖,可使开挖的渠最短,依据是:“点与直线的连线中,垂线段最短”.(如图)4.AB∥CD,MN∥OP,EF∥GH;AB⊥GH,AB⊥EF,CD⊥EF,CD⊥GH.解析:试题分析:根据平行的含义,在同一平面内不相交的两条线叫做平行线,在图中所给的6条线段中找出互相平行的线,写出即可;根据垂直的含义,在同一平面内两条直线相交成直角时这两条直线互相垂直,在图中所给的6条线段中找出互相垂直的线,写出即可。
人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)(7)

5.1.2 垂线学校:__________ 姓名:__________ 班级:__________ 考号:__________一、单选题1.如图,以A为公共端点的两条线段AB、AC互相垂直,点B、D、C在同一条直线上,AD⊥BC,则图形中能表示点到直线的距离的线段有( )条.A.6 B.5 C.4 D.32.到直线a的距离等于2㎝的点有()个A.0个B.1个C.无数个D.无法确定3.如图所示,AB⊥AC,AD⊥BC,垂足分别为A,D,下列说法不正确的是()A.点A到BC的垂线段为AD B.点C到AD的垂线段为CDC.点B到AC的垂线段为AB D.点D到AB的垂线段为BD4.下列语句叙述正确的有( )①如果两个角有公共顶点且没有公共边,那么这两个角是对顶角;②如果两个角相等,那么这两个角是对顶角;③连接两点的线段长度叫做两点间的距离;④直线外一点到这条直线的垂线段叫做这点到直线的距离.A.0个 B.1个 C.2个 D.3个5.如图所示,点P到直线l的距离是()A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度6.下列说法中正确的是()A.有且只有一条直线与已知直线垂直;B.从直线外一点到这条直线的垂线段,叫做这点到这条直线距离;C.互相垂直的两条线段一定相交;D.直线l外一点A与直线l上各点连接而成的所有线段中,最短线段的长度是3cm,则点A 到直线l的距离是3cm.7.如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A处垂直拉至起跳线l的点B处,然后记录AB的长度,这样做的理由是()A.两点之间,线段最短B.过两点有且只有一条直线C.垂线段最短D.过一点可以作无数条直线8.如图,OA⊥OB,若∠1=55°,则∠2的度数是( )A.35° B.40° C.45° D.60°9.如图,已知ON丄a,OM丄a,所以OM与ON重合的理由是().A.两点确定一条直线B.经过一点有且只有一条线段垂直于己知直线C.过一点只能作一条垂线D.垂线段最短二、填空题1.如图,BC⊥AC,CB=8 cm,AC=6 cm,点C到AB的距离是4.8 cm,那么点B到AC的距离是____ cm,点A到BC的距离是____ cm,A,B两点间的距离是____ cm.2.如图,AB⊥l 1,AC⊥l 2,垂足分别为B ,A ,则A 点到直线l 1的距离是线段__的长度.3.如图,直线AB CD ,相交于点,O EO AB ⊥.重足为35,O EOC ∠=︒,则AOD ∠的度数为__________度4.已知OA⊥OC 于O ,∠AOB∶∠AOC=2∶3,则∠BOC 的度数为____________度.5.如图,直线a 与b 相交于点O ,直线c⊥b,且垂足为O ,若∠1=35°,则∠2=_____.三、解答题1.如图,已知直线a ,b ,点P 在直线a 外,在直线b 上,过点P 分别画直线a ,b 的垂线.2.如图,按要求画图并回答相关问题:(1)过点A 画线段BC 的垂线,垂足为D ;(2)过点D 画线段..DE∥AB,交AC 的延长线于点E ;(3)指出∠E 的同位角和内错角.3.如图所示,点P 是∠ABC 内一点.(1)画图:①过点P画BC的垂线,垂足为D;②过点P画BC的平行线交AB于点E,过点P画AB的平行线交BC于点F.(2)∠EPF等于∠B吗?为什么?4.如图,是一条河,C是河边AB外一点:(1)过点C要修一条与河平行的绿化带,请作出正确的示意图.(2)现欲用水管从河边AB,将水引到C处,请在图上测量并计算出水管至少要多少?(本图比例尺为1:2000)⊥于点O.5.如图,己知90∠=,过点O作直线CD,作OE CDAOB()1图中除了直角相等外,再找出一对相等的角,并证明它们相等;()2若70∠的度数;∠=,求BOCAOD()3将直线CD绕点O旋转,若在旋转过程中,OB所在的直线平分DOE∠的∠,求此时AOD度数.参考答案一、单选题1.B分析:根据点到直线距离的定义进行解答即可.详解:解:∵AB、AC互相垂直,AD⊥BC,∴线段AB的长度是点B到直线AC的距离;线段AC的长度是点C到直线AB的距离;线段AD的长度是点A到直线BC的距离;线段CD的长度是点C到直线AD的距离;线段BD的长度是点B到直线AD的距离.∴图形中能表示点到直线的距离的线段有5条.故选:B.点睛:本题考查了点到直线的距离的定义,即直线外一点到直线的垂线段的长度,叫做点到直线的距离,熟知概念是关键.2.C解析:详解:解:到直线a的距离等于2的点的轨迹是与a平行,且到a的距离等于2的两条直线,直线是由无数个点组成.故选C.3.D解析:A. 点A到BC的垂线段为AD,正确; B. 点C到AD的垂线段为CD,正确;C. 点B到AC的垂线段为AB,正确;D. 点B到AD的垂线段为BD.故选D.4.B解析:试题①如果两个角有公共顶点且它们的两边互为反向延长线,那么这两个角是对顶角;故错误.②如果两个角相等,那么这两个角是对顶角;错误.③连接两点的线段长度叫做两点间的距离;正确.④直线外一点到这条直线的垂线段的长度叫做这点到直线的距离.错误.故选B.5.B解析:由点到直线的距离定义,即垂线段的长度可得结果,点P到直线l的距离是线段PB 的长度,故选B.6.D解析:对照垂线的两条性质逐一判断.①从直线外一点引这条直线的垂线,垂线段最短;②过一点有且只有一条直线与已知直线垂直.详解:解:A、和一条直线垂直的直线有无数条,故A错误;B、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度,故B错误;C、互相垂直的两条线段不一定相交,线段有长度限制,故C错误;D、直线l外一点A与直线l上各点连接而成的所有线段中最短线段就是垂线段,可表示点A 到直线l的距离,故D正确.故选:D.点睛:本题考查的是垂线的相关定义及性质,只要记住并理解即可正确答题.7.C分析:根据“垂线段的性质:垂线段最短”解答即可.详解:这样做的理由是垂线段最短.故选C.点睛:本题考查了垂线段最短.垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.8.A解析:试题分析:∵OA⊥OB,∴∠AO∠=90°,即∠2+∠1=90°.∵∠1=55°,∴∠2=35°.故选A.考点:1.垂直的性质;2.数形结合思想的应用.9.B解析:利用OM⊥NP,ON⊥NP,所以直线ON与OM重合,其理由是:同一平面内,经过一点有且只有一条直线与已知直线垂直.故选B.二、填空题1.6 10解析:∵BC⊥AC,CB=8cm, AC=6cm,∴点B到AC的距离是8cm,点A到BC的距离是6cm,故答案为8,6,10.2.AB详解:解:根据点到直线的距离的定义,易得A点到直线l的距离是线段AB的长度.1故答案为:AB.3.125分析:根据垂直的定义及角的加法,求出∠BOC的度数,根据对顶角相等求解即可.详解:⊥∵EO AB∴∠EOB=90°∵∠EOC=35°∴∠BOC=∠EOB+∠EOC=125°∴∠AOD=∠BOC =125°故答案为:125点睛:本题考查的是垂直的定义及角的加减,掌握垂直的定义及能从图形中确定角之间的关系是关键.4.30°或150°分析:根据垂直关系知∠AOC=90°,由∠AOB:∠AOC=2:3,可求∠AOB,根据∠AOB与∠AOC的位置关系,分类求解.详解:∵OA⊥OC,∴∠AOC=90°,∵∠AOB:∠AOC=3:2,∴∠AOB=60°.因为∠AOB的位置有两种:一种是在∠AOC内,一种是在∠AOC外.如图,①当在∠AOC内时,∠BOC=90°-60°=30°;②当在∠AOC外时,∠BOC=90°+60°=150°.故答案为30°或150°.点睛:此题主要考查了垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直.同时做这类题时一定要结合图形.5.55°解析:如下图,∵直线a、b、c相交于点O,且c⊥b,∴∠1+∠2+3∠=180°,∠3=90°,又∵∠1=35°,∴∠2=180°-35°-90°=55°.故答案为55°.三、解答题1.图形见解析.分析:根据过直线外一点作已知直线的垂线和过直线上一点作已知直线的垂线分别画出即可详解:解:如答图所示,PA为直线a的垂线,PB为直线b的垂线.点睛:垂线的作法是本题的考点,熟练掌握作图方法是解题的关键.2.(1)见解析(2)见解析(3)∠E的同位角是∠ACD,∠E的内错角是∠BAE和∠BCE.解析:(1)如图,过A点作AD⊥BD与BC的延长线交于D点即可;(2)如图,过D点作DE∥AB与AC的延长线交于E点即可;(3)根据同位角与内错角的定义进行解答即可.详解:(1)(2)如图所示.(3)∠E的同位角是∠ACD,∠E的内错角是∠BAE和∠BCE.点睛:本题主要考查基础作图,同位角与内错角的定义,熟练掌握其知识点是解此题的关键.3.(1)图形见解析(2)∠EPF=∠B解析:试题分析:(1)①过点P作BC的垂线,D是垂足;②过点P作BC的平行线交AB于E ,过点P 作AB 的平行线交BC 于F ;(2)根据平行线的性质可得∠AEP=∠B,∠EPF=∠AEP 然后利用等量代换得到结论即可. 解:如图所示,(1)①直线PD 即为所求;②直线PE 、PF 即为所求.(2)∠EPF=∠B,理由:因为PE∥BC(已知),所以∠AEP=∠B(两直线平行,同位角相等).又因为PF∥AB(已知),所以∠EPF=∠AEP(两直线平行,内错角相等),∠EPF=∠B(等量代换).点睛:本题考查了平行线和垂线的画法及平行线的性质,熟练掌握两直线平行同位角相等,两直线平行内错角相等是解答本题的关键.4.详见解析.解析:试题分析:(1)过点C 作AB 的平行线.(2)过点C 作CD 垂直于AB 交AB 于点D .根据垂线段最短,可得CD 长度最小,量出CD 的长度,然后按比例尺求出实际的距离. 试题如图:(1)过点C 画一平行线平行于AB .(2)过点C 作CD 垂直于AB 交AB 于点D .然后用尺子量CD 的长度,再按1:2000的比例求得实际距离即可.经测量0.9,CD cm =0.92000180018.cm m ⨯==5.(1)AOD BOE ∠=∠;(2)160BOC ∠=;(3)45AOD ∠=.解析:(1)根据垂直定义可得∠DOB+∠BOE=90°,再根据同角的余角相等可得∠AOD=∠BOE;(2)根据余角定义可得∠BOD=20°,再根据邻补角互补可得∠BOC 的度数;(3)根据角平分线性质可得∠DOB=12∠DOE=45°,再根据角的和差关系可得答案.详解:解:()1AOD BOE∠=∠,∵OE CD⊥于点O,∴90DOB BOE∠+∠=,∵90AOB∠=,∴90AOD DOB∠+∠=,∴AOD BOE∠=∠;()2∵70AOD∠=,90AOB∠=,∴20BOD∠=,∴18020160BOC∠=-=;()3∵OB所在的直线平分DOE∠,∴1452DOB DOE∠=∠=,∵90AOB∠=,∴904545AOD∠=-=.点睛:此题主要考查了垂线,以及余角,补角,关键是掌握两角之和为90°时,这两个角互余,两角之和为180°时,这两个角互补.。
中垂线基础练习题(含答案)

1、如图,在△ABC中,分别以点A和点B为圆心,大于的AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC 的周长为()A、7B、14C、17D、202、如图,在Rt△ACB中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D.若AC=9,则AE的值是()A、6B、4C、6D、43、如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=5,则线段PB的长度为()A、6B、5C、4D、34、如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于()A、80°B、70°C、60°D、50°5、如图,直线CP是AB的中垂线且交AB于P,其中AP=2CP.甲、乙两人想在AB上取两点D、E,使得AD=DC=CE=EB,其作法如下:(甲)作∠ACP、∠BCP之角平分线,分别交AB 于D、E,则D、E即为所求;(乙)作AC、BC之中垂线,分别交AB于D、E,则D、E即为所求.对于甲、乙两人的作法,下列判断何者正确()A、两人都正确B、两人都错误C、甲正确,乙错误D、甲错误,乙正确6、如图,在Rt△ABC中,∠C=90°,∠B=30°.AB的垂直平分线DE交AB于点D,交BC于点E,则下列结论不正确的是()A、AE=BE B、AC=BE C、CE=DE D、∠CAE=∠B 7、如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A、△ABC的三条中线的交点B、△ABC三边的中垂线的交点C、△ABC三条角平分线的交点D、△ABC三条高所在直线的交点8、如图,AC=AD,BC=BD,则有()A、AB垂直平分CDB、CD垂直平分ABC、AB与CD互相垂直平分D、CD平分∠ACB二、填空题9、如图,在△ABC中,∠B=30°,ED垂直平分BC,ED=3.则CE长为______.10、如图,△ABC 中,DE 垂直平分AC 交AB于E,∠A=30°,∠ACB=80°,∠BCE=_____11、如图,等腰三角形ABC中,已知AB=AC,∠A=30°,AB的垂直平分线交AC于D,则∠CBD的度数为_______12、如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为_________.13、如图,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,那么∠ADC=_________度.14、如图,∠ABC=50°,AD垂直且平分BC于点D,∠ABC的平分线BE交AD于点E,连接EC,则∠AEC的度数是_________度.17、已知如图,在△ABC 中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC与E,则△ADE的周长等于_________.18、如图,在四边形ABCD中,对角线AC 与BD相交于点E,若AC平分∠DAB,且AB=AC,AC=AD,有如下四个结论:①AC⊥BD;②BC=DE;③∠DBC=∠DAC;④△ABC是正三角形.请写出正确结论的序号_______19、如图,△ABC的周长为19cm,AC的垂直平分线DE交BC于D,E为垂足,AE=3cm,则△ABD的周长为___cm.20、在△ABC中,∠A=50°,AB=AC,AB的垂直平分线DE交AC于D,则∠DBC的度数是_____°.三、解答题21、如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.22、如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.23、如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.24、如图所示,在Rt△ABC中,∠C=90°,∠A=30°.(1)尺规作图:作线段AB的垂直平分线l(保留作图痕迹,不写作法);(2)在已作的图形中,若l分别交AB、AC及BC的延长线于点D、E、F,连接BE.求证:EF=2DE.25、如图,已知线段AB,分别以A、B为圆心,大于AB长为半径画弧,两弧相交于点C、Q,连接CQ与AB相交于点D,连接AC,BC.那么:(1)∠ADC=_________度;(2)当线段AB=4,∠ACB=60°时,∠ACD=30度,△ABC的面积等于_________(面积单位).26、如图,在△ABC中,已知BC=7,AC=16,AB的垂直平分线交AB于点D,交AC于点E,求△BEC的周长.。
垂线练习题

认识垂线练习1、填空(1)两条直线相交成()个角。
两条直线相交,其中一个角是直角,另外三个角一定是()。
(2)两条直线相交成()角时,这两条直线(),其中一条直线是另一条直线(),这两条直线的交点叫()。
(3)一条直线有()条垂线,有()个垂足。
(4)从直线外一点到这条直线所画的()最短,它的长度叫做这点到直线的()。
(5)点到直线的距离是点到直线的()的长度。
(6)平行线间垂直线段的长度就是平行线间的(),平行线间的距离()。
(7)长方形对边(),相邻的两条边互相()。
长方形和正方形分别有()组垂(8)黑版面相邻的两条边互相(),上下两条边互相()。
(9)过直线外一点画一条直线的垂线有()条。
(10)课桌相邻的两条边(),相对的两条边()。
2、精挑细选(1)互相垂直的两条直线可以相交成四个()A、锐角B、直角C、钝角(2)下列说法正确的是()A、两条直线相交,这两条直线一定互相垂直。
B、直线a和直线b互相垂直,那么直线a和直线b都是垂线。
C、过直线外一点,只能画一条与它垂直的直线。
(3)下面图形中,邻边都互相垂直的有()A、2个B、1个C、0个(4)过直线外一点画一条直线的垂线有()A、1条B、2条C、无数条(5)一张长方形纸对折两次后展开,折痕()A、互相平行B、互相垂直C、不能确定(6)同一平面内如果两条直线都垂直于同一条直线,那么这两条直线()A、相交B、互相垂直C、互相平行(7)直线外一点到这条直线的距离,是指这一点到这条直线的()A、线段的长B、射线的长C、直线的长D、垂直线段的长3、小法官判对错(对的打√,错的打×)(1)不相交的两条直线一定互相平行。
()(2)在同一平面内,过直线上一点只能画一条已知直线的垂线。
()(3)两条直线相交于一点,这一点叫做垂足。
()(4)连结直线外一点和已知直线上的任一点的线段,就是这个点到这条直线的距离。
()(5)平行线间的距离处处相等。
()(6)3时整,分针和时针互相垂直。
垂线练习题

例题1:如图所示,直线AB、 CD、EF相交于点O, 且AB⊥CD, OG平分∠AOE, 若∠DOF=50°, 求∠AOG的度数.
练习1:直线AB、CD、EF交 于点O,
OG平分∠BOF,
且EF⊥CD,
0, AOE=70
求∠DOG的度数
例题2:如图,直线AB、 CD 相交于点O, OE平分∠BOD, OF平∠COB, 且∠AOD﹕∠BOE=4﹕1, 求∠AOF的度数.
求∠AOC与∠EOD的度数.
练习5: 如图所示, 直线AB、CD相交于点O, 作∠DOB=∠DOE, OF平分∠AOE, 若 ∠AOC=36°, 求 ∠EOF 的度 数
练习6:如图,
直线AB、MN、PQ相交于点O,
∠BOM是它的余角的2倍, ∠AOP=2∠MOQ,
且有OG⊥0A, 求∠POG的度数。
练习2:如图,O是直线AB上一点,
OF、OC、OE是射线, OE⊥OF, 若∠BOC=2∠COE,
∠AOF比∠COE的4倍小8°,
求∠EOC的度数.
练习3:如图,直线AB、 CD、EF相交于同一点O, ∠BOC=∠AOC, 且2∠DOF= ∠BOE,
请计算∠EOC的度数.
练习4:已知:直线AB和CD 相交于O点, 射线OE⊥AB于O, 射线OF⊥CD于O, 且∠BOF=25°,
人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)(5)

5.1.2 垂线学校:__________ 姓名:__________ 班级:__________ 考号:__________一、单选题1.如图,∠ACB=90°,CD⊥AB,垂足为D,则下面的结论中,不正确的是( )A.线段AC的长度是点A到BC的距离B.CD与AB互相垂直C.AC与BC互相垂直D.点B到AC的垂线段是线段CA2.我们在运动会时测量跳远的成绩,实际上是要得到( )A.两点之间的距离B.点到直线的距离C.两条直线之间的距离D.空中飞行的距离3.下列语句正确的是()A.过一点有且只有一条直线与已知直线平行B.在同一平面内,过一点有且只有一条直线与已知直线垂直C.两条直线相交,交点叫做垂足D.过直线上一点只能作一条直线和这条直线相交4.有下列说法:①两条直线相交成四个角,如果两个角相等,那么这两条直线垂直;②两条直线相交成四个角,如果三个角相等,那么这两条直线垂直;③在同一平面内,过直线上一点可以作无数条直线与已知直线垂直;④直线外一点到这条的垂线段,叫做点到直线的距离.其中正确的说法有()A.0个 B.1个 C.2个 D.3个5.如图所示,某同学的家在P处,他想尽快赶到附近公路边搭公交车,他选择P→C路线,用几何知识解释其道理正确的是()A.两点确定一条直线B.垂直线段最短C.两点之间线段最短D.三角形两边之和大于第三边6.如图,直线AB、CD相交于点O,EO⊥CD,下列说法错误的是()A.∠AOD=∠BOC B.∠AOE+∠BOD=90°C.∠AOC=∠AOE D.∠AOD+∠BOD=180°7.同一平面内的四条直线满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()A.a∥b B.b⊥d C.a⊥d D.b∥c8.如图,已知直线AB,CD,EF相交于点O,OG⊥AB,∠COE=32°,∠FOG=29°,则∠AOC 的度数是( )A.19°B.29°C.32°D.39°9.如图,直线 AD,BE 相交于点 O,CO⊥AD 于点 O,OF 平分∠BOC.若∠AOB=32°,则∠AOF 的度数为A.29°B.30°C.31°D.32°二、填空题1.如图,AC⊥BC,CD⊥AB于点D,图中共有________个直角,图中线段________的长表示点C到AB的距离,线段________的长表示点A到BC的距离.2.如图,直线AB、CD相交于点O,OE丄AB于O,∠DOE=35°,则∠AOC=______.3.如图,直线AB、CD相交于点O,OE平分∠AOD,OF⊥OC,∠1与∠3的度数之比为3:4,则∠EOC=___________,∠2=_________.4.如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC=_____°.5.如图,在同一平面内,OA⊥l,OB⊥l,垂足为O,则OA与OB重合的理由是_______________________三、解答题1.读下列语句,并画出图形.点P是直线AB外一点,直线CD经过点P,且与直线AB平行,直线EF也经过点P且与直线AB垂直.2.如图所示,直线AB,CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE.(2)过点P画CD的垂线,与AB相交于F点.(3)说明线段PE,PO,FO三者的大小关系,其依据是什么?3.如图是某次跳远测验中某同学跳远记录示意图.这个同学的成绩应如何测量,请你画出示意图.4.如图,直线AB,CD相交于点O.OF平分∠AOE,OF⊥CD于点O.(1)请直接写出图中所有与∠AOC相等的角:______.(2)若∠AOD=150°,求∠AOE的度数.5.已知直线CD⊥AB于点O,∠EOF=90°,射线OP平分∠COF.(1)如图1,∠EOF在直线CD的右侧:①若∠COE=30°,求∠BOF和∠POE的度数;②请判断∠POE与∠BOP之间存在怎样的数量关系?并说明理由.(2)如图2,∠EOF在直线CD的左侧,且点E在点F的下方:①请直接写出∠POE与∠BOP之间的数量关系;②请直接写出∠POE与∠DOP之间的数量关系.参考答案一、单选题1.D解析:根据垂线的定义可做出判断.详解:A. ∵∠ACB=90°,故线段AC的长度是点A到BC的距离,正确;B. 由CD⊥AB 知CD与AB互相垂直,正确;C. 由∠ACB=90°知AC与BC互相垂直,正确D. 点B到AC的垂线段应该是线段CB,故错误;选D.点睛:此题主要考察垂线的定义.2.B解析:跳远时,测量的是跳远者落地时脚后跟与起跳时直线之间的距离,测量是把脚后跟当做一个点处理,即是求点与直线之间的距离.故选B.3.B解析:试题A、过一点须指明过直线外一点,错误;B、在同一平面内,过一点有且只有一条直线与已知直线垂直,是垂线的性质,正确;C、只有垂直相交,交点才叫垂足,错误;D、过直线上一点与已知直线相交的直线有无数条,错误.故选B.4.B解析:试题①两条直线相交成四个角,如果有一对对顶角相等且均不为90°,那么这两条直线不垂直,故①错误;②两条直线相交成四个角,则这四个角中有2对对顶角.如果三个角相等,则这四个角相等,都是直角,所以这两条直线垂直.故②正确;③在同一平面内,过直线上一点只有一条直线与已知直线垂直.故③错误;④直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.故④错误;综上所述,正确的说法是1个.故选B.5.B分析:根据垂线段的定义判断即可.详解:解:直线外一点与直线上各点连接的所有线段中,垂线段最短,选:B.点睛:直线外任意一点到这条直线的垂线段的长度,叫做点到这条直线的距离.直线外一点与直线上各点连接的所有线段中,垂线段最短.简称“垂线段最短”.6.C分析:根据对顶角性质、邻补角定义及垂线的定义逐一判断可得.详解:A、∠AOD与∠BOC是对顶角,所以∠AOD=∠BOC,此选项正确;B、由EO⊥CD知∠DOE=90°,所以∠AOE+∠BOD=90°,此选项正确;C、∠AOC与∠BOD是对顶角,所以∠AOC=∠BOD,此选项错误;D、∠AOD与∠BOD是邻补角,所以∠AOD+∠BOD=180°,此选项正确;故选C.点睛:本题主要考查垂线、对顶角与邻补角,解题的关键是掌握对顶角性质、邻补角定义及垂线的定义.7.C解析:根据同一平面内,垂直于同一条直线的两条直线平行,可证a∥c,再结合c⊥d,可证a⊥d.详解:∵a⊥b,b⊥c,∴a∥c,∵c⊥d,∴a⊥d.故选C.点睛:此题考查垂线,难度不大8.B解析:先根据垂直的定义得出∠BOG=90°,那么∠BOF=61°,由对顶角相等求出∠AOE=∠BOF=61°,进而求出∠AOC=61°-32°=29°.详解:解:∵OG⊥AB,∴∠BOG=90°,∵∠FOG=29°,∴∠BOF=∠BOG-∠FOG=90°-29°=61°,∴∠AOE=∠BOF=61°,∵∠COE=32°,∴∠AOC=∠AOE-∠COE=61°-32°=29°.故选B.点睛:本题考查垂直的定义,对顶角的性质;弄清各个角之间的关系是解题关键.9.A分析:由CO⊥AD于点 O,得∠AOC=90︒,由已知∠AOB=32︒可求出∠BOC的度数,利用OF 平分∠BOC可得∠BOF=1BOC2∠,即可得∠AOF 的度数.详解:∵CO⊥AD 于点 O,∴∠AOC=90︒,∵∠AOB=32︒,∴∠BOC=122︒,∵OF 平分∠BOC,∴∠BOF=1BOC612∠=︒,∴∠AOF=∠BOF-∠AOB=61︒-3229︒=︒.故选A.点睛:本题考查垂线,角平分线的定义.二、填空题1.3, CD, AC解析:分析:运用垂直的定义和点到直线的距离,结合图形作答.详解:∵AC⊥BC,CD⊥AB,∴∠ACB=∠ADC=∠BDC=90°,即图中共有3个直角.图中线段CD的长表示点C到AB的距离,线段AC的长表示点A到BC的距离.故空中应填:3,CD,AC.点睛:点到直线的距离是过直线外一点作直线的垂线,垂线段的长度.2.o详解:解:∵OE丄AB于O,∴∠BOE=∠BOD+∠DOE=90°又∵∠DOE=35°,∴∠BOD=90°-35°=55°,又∵∠AOC=∠BOD,∴∠AOC=55°故答案为:55°.3.153° 54°分析:由垂线的定义和角平分线的定义即可得出结果.详解:∵OF⊥OC,∴∠DOF=∠COF=90°.∵OE平分∠AOD,∴∠AOD=2∠1.∵∠1与∠3的度数之比为3:4,∴∠AOD:∠3=3:2.∵∠3+∠AOD=90°,∴∠3=36°,∠AOD=54°,∴∠2=∠AOD=54°,∠112=∠AOD=27°,∴∠EOC=180°-∠1=180°-27°=153°.故答案为153°,54°.点睛:本题考查了垂线,角平分线定义,对顶角的性质,正确的识别图形是解题的关键.4.42°分析:根据对顶角相等可得∠COB=132°,再根据垂直定义可得∠EOB=90°,再利用角的和差关系可得答案.详解:∵∠AOD=132°,∴∠COB=132°,∵EO⊥AB,∴∠EOB=90°,∴∠COE=132°-90°=42°,故答案为42°.点睛:本题考查了垂线, 对顶角、邻补角的定义,熟练掌握这些定义是本题解题的关键.5.同一平面内,过一点有且只有一条直线与已知直线垂直.解析:根据同一平面内,过一点有且只有一条直线与已知直线垂直进而得出答案.详解:解:∵OA⊥l,OB⊥l,垂足为O,∴OA与OB重合(同一平面内,过一点有且只有一条直线与已知直线垂直).故答案为同一平面内,过一点有且只有一条直线与已知直线垂直.点睛:本题主要考查了垂线的性质,正确把握定义是解题关键.三、解答题1.如图所示见解析.解析:先画直线AB和点P,过P作AB的平行线CD,过P作直线EF⊥AB,即可得出答案.详解:解:如图所示:.点睛:本题考查了画垂线,主要考查学生的理解能力和动手操作能力,用了数形结合思想.2.(1)见解析;(2)见解析;(3)PE<PO<FO,其依据是“垂线段最短”分析:前两问尺规作图见详解,第(3)问中利用垂线段最短即可解题.详解:(1)(2)如图所示.(3)在直角△FPO中,PO<FO,在直角△PEO中,PE<PO,∴PE<PO<FO,其依据是“垂线段最短”.点睛:本题考查了尺规作图和垂线段的性质,属于简单题,熟悉尺规作图的方法和步骤,垂线段的性质是解题关键.3.见解析解析:试题分析:从落地点作沙坑一边的垂线,测量落地点与踏跳板间的距离即为跳远成绩.试题如图所示,红线的长度即为该同学的跳远成绩.点睛:本题考查了垂线的应用,根据体育常识,跳远时只要不越过踏跳板起跳,测量成绩时从踏跳板开始测量,越过踏跳板则成绩视为无效.4.(1)∠BOD,∠DOE;(2)∠AOE=120°.解析:(1)根据邻补角的定义确定出∠AOC和∠BOD,再根据角平分线的定义可得∠AOF=∠EOF,根据垂直的定义可得∠COF=∠DOF=90°,然后根据等角的余角相等求出∠DOE=∠AOC,从而最后得解;(2)根据垂直的定义得到∠DOF,根据角平分线的定义求出即可得到结论.详解:解:(1)∵直线AB,CD相交于点O,∴∠AOC=∠BOD,∵OF平分∠AOE,∴∠AOF=∠EOF,∵OF⊥CD,∴∠COF=∠DOF=90°,∴∠DOE=∠AOC,∴与∠AOD相等的角有∠BOD,∠DOE,故答案为:∠BOD,∠DOE.(2)∵OF⊥CD,∴∠DOF=90°,∵∠AOD=150°,∴∠AOF=60°,∵OF平分∠AOE,∴∠AOE=2∠AOF=120°.点睛:本题考查了垂线,余角和补角,对顶角相等的性质,角平分线的定义.5.(1)①∠BOF= 30°,∠POE=30°,②∠POE=∠BOP(2)①∠POE=∠BOP②∠POE+∠DOP =270°解析:(1)①根据余角的性质得到∠BOF=∠COE=30°,求得∠COF=90°+30°=120°,根据角平分线的定义即可得到结论;②根据垂线的性质和角平分线的定义即可得到结论;(2)①根据角平分线的定义得到∠COP=∠POF,求得∠POE=90°+∠POF,∠BOP=90°+∠COP,于是得到∠POE=∠BOP;②根据周角的定义即可得到结论.详解:(1)①∵CD⊥AB,∴∠COB=90°,∵∠EOF=90°,∴∠COE+∠BOE=∠BOE+∠BOF=90°,∴∠BOF=∠COE=30°,∴∠COF=90°+30°=120°,∵OP平分∠COF,∴∠COP=12∠COF=60°,∴∠POE=∠COP﹣∠COE=30°;②CD⊥AB,∴∠COB=90°,∵∠EOF=90°,∴∠COE+∠BOE=∠BOE+∠BOF=90°,∴∠BOF=∠COE,∵OP平分∠COF,∴∠COP=∠POF,∴∠POE=∠COP﹣∠COE,∠BOP=∠POF﹣∠BOF,∴∠POE=∠BOP;(2)①∵∠EOF=∠BOC=90°,∵PO平分∠COF,∴∠COP=∠POF,∴∠POE=90°+∠POF,∠BOP=90°+∠COP,∴∠POE=∠BOP;②∵∠POE=∠BOP,∠DOP+∠BOP=270°,∴∠POE+∠DOP=270°.点睛:本题考查了垂线,角平分线定义,角的和差,正确的识别图形是解题的关键.。
中垂线基础练习题(含答案)

1、如图,在△ABC中,分别以点A 和点B 为圆心,大于的AB 的长为半径画孤,两弧相交于点M ,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为()A、7B、14C、17D、202、如图,在Rt△ACB中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D.若AC=9,则AE的值是()A、6B、4C、6D、43、如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=5,则线段PB的长度为()A、6B、5C、4D、34、如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于()A、80°B、70°C、60°D、50°5、如图,直线CP是AB的中垂线且交AB于P,其中AP=2CP.甲、乙两人想在AB上取两点D、E,使得AD=DC=CE=EB,其作法如下:(甲)作∠ACP、∠BCP之角平分线,分别交AB于D、E,则D、E即为所求;(乙)作AC、BC之中垂线,分别交AB于D、E,则D、E即为所求.对于甲、乙两人的作法,下列判断何者正确()A、两人都正确B、两人都错误C、甲正确,乙错误D、甲错误,乙正确6、如图,在Rt△ABC中,∠C=90°,∠B=30°.AB的垂直平分线DE交AB于点D,交BC于点E,则下列结论不正确的是()A、AE=BE B、AC=BEC、CE=DED、∠CAE=∠B7、如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A、△ABC的三条中线的交点B、△ABC三边的中垂线的交点C、△ABC三条角平分线的交点D、△ABC三条高所在直线的交点8、如图,AC=AD,BC=BD,则有()A、AB垂直平分CDB、CD垂直平分ABC、AB与CD互相垂直平分D、CD平分∠ACB二、填空题9、如图,在△ABC中,∠B=30°,ED垂直平分BC,ED=3.则CE长为______ .10、如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,∠BCE=_____11、如图,等腰三角形ABC中,已知AB=AC,∠A=30°,AB的垂直平分线交AC于D,则∠C BD的度数为_______12、如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC 与四边形AEDC的周长之差为12,则线段DE的长为_________ .13、如图,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,那么∠ADC=_________ 度.14、如图,∠ABC=50°,AD垂直且平分BC于点D,∠ABC的平分线BE交AD于点E,连接EC,则∠AEC的度数是_________度.17、已知如图,在△ABC中,BC=8,AB 的中垂线交BC 于D ,AC的中垂线交BC与E,则△ADE的周长等于_________ .18、如图,在四边形ABCD中,对角线AC与BD相交于点E,若AC平分∠DAB,且AB=AC,AC=AD,有如下四个结论:①AC⊥BD;②BC=DE;③∠DBC=∠DAC;④△ABC是正三角形.请写出正确结论的序号_______19、如图,△ABC的周长为19cm,AC的垂直平分线DE交BC于D,E为垂足,AE=3cm,则△ABD的周长为___ cm.20、在△ABC中,∠A=50°,AB=AC,AB的垂直平分线DE交AC于D,则∠DBC的度数是_____ °.三、解答题21、如图,△ABC中,AB=AC,∠A=36°,AC 的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.22、如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.23、如图,在四边形ABCD 中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.24、如图所示,在Rt△ABC中,∠C=90°,∠A=30°.(1)尺规作图:作线段AB的垂直平分线l(保留作图痕迹,不写作法);(2)在已作的图形中,若l分别交AB、AC及BC的延长线于点D、E、F,连接BE.求证:EF=2DE.25、如图,已知线段AB,分别以A、B为圆心,大于AB长为半径画弧,两弧相交于点C、Q,连接CQ与AB相交于点D,连接AC,BC.那么:(1)∠ADC=_________度;(2)当线段AB=4,∠ACB=60°时,∠ACD=30度,△ABC的面积等于_________ (面积单位).26、如图,在△ABC中,已知BC=7,AC=16,AB的垂直平分线交AB于点D,交AC于点E,求△BEC的周长.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年4月16日初中数学作业学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图是某跳远运动员在一次比赛中跳远时沙坑的示意图,测量成绩时先使皮尺从后脚跟的点A处开始并与起跳线1垂直于点B,然后记录AB的长度,这样做的理由是( )A.过一点可以作无数条直线B.垂线段最短C.过两点有且只有一条直线D.两点之间线段最短【答案】B【解析】【分析】根据垂线段的性质:垂线段最短进行解答即可.【详解】解:这样做的理由是根据垂线段最短.故选:B.【点睛】此题主要考查了垂线段的性质,关键是掌握性质定理.2.下列说法①一个角的余角一定是锐角;②因为∠1=∠2,所以∠1与∠2是对顶角;③过一点与已知直线平行的直线只有一条;④从直线外一点到这条直线的垂线段叫做点到直线的距离;⑤两条直线被第三条直线所截,同位角相等.其中正确的个数为()A.1 B.2 C.3 D.4【答案】A【解析】【分析】根据互余的定义、对顶角的定义、点到直线的距离的定义、平行线的性质来逐一判断即可.【详解】解:一个角的余角一定是锐角,所以①正确;相等的角不一定是对顶角,所以②错误;过直线外一点与已知直线平行的直线只有一条,所以③错误;从直线外一点到这条直线的垂线段的长叫做点到直线的距离,所以④错误;两条平行直线被第三条直线所截,同位角相等,所以⑤错误.故本题答案应为:A.【点睛】本题主要考查了互余、对顶角、点到直线的距离的定义及平行线的性质等知识点,熟练掌握数学基础知识是解题的关键.3.如图,直线AB和CD相交于O,那么图中∠DOE与∠COA 的关系是()A.对顶角B.相等C.互余D.互补【答案】C【解析】【分析】先由垂直的定义得到∠AOE=∠BOE=90°,则∠DOE+∠BOD=90°,再根据对顶角相等得到∠BOD=∠AOC,所以∠DOE+∠AOC=90°,然后根据互余的定义进行判断.【详解】解:∵OE⊥AB,∴∠AOE=∠BOE=90°,∴∠DOE+∠BOD=90°,∵∠BOD=∠AOC,∴∠DOE+∠AOC=90°,即∠DOE与∠COA互余.故选:C.【点睛】本题考查了垂线:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.垂线的性质过一点有且只有一条直线与已知直线垂直.也考查了对顶角和两角互余.4.下列说确的是( )A.直线一定比射线长B.过一点能作已知直线的一条垂线C.射线AB的端点是A和B D.角的两边越长,角度越大【答案】B【解析】【分析】根据基本概念和公理,利用排除法求解.【详解】解:A、直线和射线长都没有长度,故本选项错误;B、过一点能作已知直线的一条垂线,正确;C、射线AB的端点是A,故本选项错误;D、角的角度与其两边的长无关,错误;故选:B.【点睛】本题考查了直线、射线和线段.相关概念:直线:是点在空间沿相同或相反向运动的轨迹.向两个向无限延伸.过两点有且只有一条直线.射线:直线上的一点和它一旁的部分所组成的图形称为射线,可向一无限延伸.5.如图,BD⊥AC于点D,EC⊥AB于点E,AF⊥BC点F,AF、BD、CE交于点O,则图中能表示点A到直线OC的距离的线段长是()A.AE B.AF C.AD D.OD【答案】A【解析】【分析】根据点到直线的距离的概念即可解答.【详解】解:点A到直线OC的距离的线段长是AE,故选:A.【点睛】本题考查点到直线的距离,解题的关键是理解点到直线的距离的概念.6.如图,A、B、C、D都在直线MN上,点P在直线外,若∠1=60°,∠2=90°,∠3=120°,∠4=150°,则点P到直线MN的距离是()A.P,A两点之间的距离B.P,B两点之间的距离C.P,C两点之间的距离D.P,D两点之间的距离【答案】A【解析】【分析】根据点到直线的距离的定义进行判断即可.【详解】∵∠2=90°,∴点P到直线MN的距离是P,A两点之间的距离,故选A.【点睛】本题考查了点到直线的距离,熟记概念是解题的关键.7.如图,直线AB、CD相交于点O,OE⊥AB于O,∠EOC=35°,则∠AOD的度数为A.125°B.115 C.55°D.35°【答案】A【解析】【分析】根据图形求得∠COB=∠COE+∠BOE=125°;然后由对顶角相等的性质,求∠AOD的度数.【详解】解:∵EO⊥AB,∴∠EOB=90°.又∵∠COE=35°,∴∠COB=∠COE+∠BOE=125°.∵∠AOD=∠COB(对顶角相等),∴∠AOD=125°.故选:A.【点睛】本题考查了垂线,对顶角、邻补角等知识点.本题也可以利用邻补角的定义先求得∠BOD=55°,再由邻补角的定义求∠AOD的度数.8.下列说法中不正确的是A.两点之间的所有连线中,线段最短B.两点确定一条直线C.小于平角的角可分为锐角和钝角两类D.在同一平面,过一点有且只有一条直线与已知直线垂直【答案】C【解析】【分析】利用线段公理、确定直线的条件、角的分类及垂线的定义分别判断后即可确定正确的选项.【详解】解:A、两点之间的所有连线中,线段最短,正确;B、两点确定一条直线,正确;C、小于平角的角可分为锐角、直角和钝角三类,故此选项错误;D、在同一平面,过一点有且只有一条直线与已知直线垂直,正确.故选C.【点睛】本题主要考查了线段、直线、垂线及角的分类.9.在同一平面,下列判断中错误的是( )A.过一点有且只有一条直线与已知直线垂直B.垂直于已知线段并且经过这条线段中点的垂线只有一条C.垂直于已知直线的垂线只有一条D.连接直线外一点与直线上各点的所有线段中,垂线段最短【答案】C【解析】【分析】根据垂线的定义和性质分析即可.(1)过直线上或直线外的一点,有且只有一条直线和已知直线垂直;(2)从直线外一点到这条直线上各点所连的线段中,垂直线段最短。
【详解】A、B、D根据性质可知都是正确的,故不符合题意;C中垂直于一直直线的垂线有无数条,本项错误,故符合题意;故本题答案应为:C【点睛】本题考查了垂线的定义及性质,是基础题,熟记概念和性质是解题的关键10.如图,直线a与b相交于点O,MO⊥a,垂足为O,若∠2=35°,则∠1的度数为( )A.75°B.65°C.60°D.55°【答案】D【解析】【分析】根据平角和垂线的性质解答即可.【详解】∵∠2=35,MO⊥直线a,∴∠1=90−35=55.故选D.【点睛】本题考查垂线, 平角,熟练掌握垂线和平角的性质是解题的关键.11.如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几学原理是()A.两点之间线段最短B.点到直线的距离C.两点确定一条直线D.垂线段最短【答案】D【解析】【分析】根据垂线段的性质:垂线段最短进行解答.【详解】要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几学原理是:垂线段最短,故选:D.【点睛】本题考查垂线段的性质:垂线段最短.12.如图,OM⊥NP,ON⊥NP,所以ON与OM重合,理由是( )A.两点确定一条直线B.经过一点有一条直线与已知直线垂直C.过一点只能作一条直线D.同一平面,过一点有且只有一条直线与已知直线垂直【答案】D【解析】【分析】利用在同一平面,经过一点有且只有一条直线与已知直线垂直,进而得出答案即可.【详解】OM⊥NP,ON⊥NP,所以ON与OM重合,理由是:同一平面,经过一点有且只有一条直线与已知直线垂直.故选D.【点睛】本题考查垂线,同一平面,经过一点有且只有一条直线与已知直线垂直.二、填空题13.在直线AB上任取一点O,过点O作射线OC、OD,使OC⊥OD,当∠AOC=30o 时,∠BOD的度数是____________________°.【答案】60°或120°【解析】【分析】此题可分两种情况,即OC,OD在AB的一边时和在AB的两边,分别求解.【详解】解:①当OC、OD在AB的一旁时,∵OC⊥OD,∴∠COD=90°,∵∠AOC=30°,∴∠BOD=°-∠COD-∠AOC=60°;②当OC、OD在AB的两旁时,∵OC⊥OD,∠AOC=30°,∴∠AOD=60°,∴∠BOD=°-∠AOD=120°.故答案为:60°或120°.【点睛】此题主要考查了直角、平角的定义,注意分两种情况分析,理清图中的角之间的关系.14.平面四条直线两两相交,最多有_____ 个交点.【答案】6【解析】【分析】画出符合条件的所有情况,即可得出答案.【详解】四条直线两两相交有以下情况:交点个数最多有6个,故答案为:6.【点睛】本题考查了直线两两相交时交点的情况,关键是能画出符合的所有图形.15.如图是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段__________的长度.【答案】AP.【解析】【分析】根据点到直线的距离的定义及跳远比赛的规则作出分析和判断.【详解】解:根据点到直线的距离的定义及跳远比赛的规则,可得:他的跳远成绩是线段AP的长度.故答案为:AP.【点睛】本题考查点到直线的距离,垂线段最短,解题的关键是熟练掌握由点到直线的距离的定义及跳远比赛的规则.16.若∠A与∠B的两边分别垂直,则这两个角的等量关系为________.【答案】互补或相等【解析】【分析】根据垂直的定义,作出草图即可判断.【详解】如图1,∠A+∠B=360°-90°×2=°,如图2,由三角形外角的性质可得:∠1=∠B+90°=∠A+90°,∴∠A=∠B.所以∠A与∠B的关系是互补或相等.故答案是:互补或相等.【点睛】考查了垂直的定义和角的比较,注意作出图形有助于题意的理解,更形象直观并且不容易出错.17.如图,直线AB,CD,EF相交于点O,且AB⊥CD,∠1=30°,则∠2=______.【答案】60°【解析】【分析】根据题意由对顶角相等先求出∠FOD,然后根据AB⊥CD,∠2与∠FOD互为余角,求出即可【详解】∵CD、EF相交于点O∴∠FOD=∠1=30°∵AB⊥CD∴∠2=90°−∠FOD=90°−30°=60°故本题答案应为:60°【点睛】对顶角相等和垂线的定义及性质是本题的考点,熟练掌握基础知识是解题的关键. 18.如图,直线AB,CD相交于点O,OE⊥OF,OC平分∠AOE,且∠BOF=2∠BOE,则∠BOD=__________°.【答案】75【解析】【分析】首先根据OE⊥OF,∠BOF=2∠BOE,求出∠BOE=30°;然后求出∠AOE=150°,再根据OC平分∠AOE,求出∠AOC的度数;最后根据∠BOD和∠AOC互为对顶角,求出∠BOD的度数即可.【详解】∵OE⊥OF,∴∠EOF=90°,∵∠BOF=2∠BOE,∴3∠BOE=90°,∴∠BOE=90°÷3=30°,∴∠AOE=°−∠BOE=°−30°=150°,又∵OC平分∠AOE,∴∠AOC=∠AOE=×150°=75°,∵∠BOD和∠AOC互为对顶角,∴∠BOD=∠AOC=75°.故答案为:75.【点睛】本题考查垂线,对顶角、角平分线,解题的关键是熟练掌握垂线,对顶角、角平分线的性质.三、解答题19.如图,点在直线上,,,求的度数.【答案】118°【解析】【分析】根据垂直的定义得到,得到,根据已知条件即可得到结论.【详解】解:∵,∴,∴,∵,∴,∴.【点睛】本題考查了垂线以及角的计算,正确把握垂线的定义是解题关键.20.如图,所有小正形的边长都为1个单位,A、B、C均在格点上.过点C画线段AB的平行线CD;过点A画线段BC的垂线,垂足为E;过点A画线段AB的垂线,交线段CB的延长线于点F;线段AE的长度是点______到直线______的距离;线段AE、BF、AF的大小关系是______用“”连接【答案】(1)见解析(2)见解析(3)见解析(4)线段AE的长度是点A到直线BC的距离(5)A,BC,【解析】【分析】利用网格的特点直接作出平行线及垂线即可;利用垂线段的性质直接回答即可;利用垂线段最短比较两条线段的大小即可.【详解】直线CD即为所求;直线AE即为所求;直线AF即为所求;线段AE的长度是点A到直线BC的距离;,,,,.故答案为:A,BC,.【点睛】考查了垂线段最短和点到直线的距离的知识,解题的关键是理解有关垂线段的性质及能进行简单的基本作图.21.画图题:(1)在如图所示的格纸中,经过线段AB外一点C,不用量角器与三角尺,仅用直尺画线段AB的垂线CD和平行线CE(其中D、E为格点).(2)连接AC和BC,若图中每个最小正形的边长为1,试求三角形ABC的面积是______.【答案】(1)见解析;(2)4.【解析】【分析】(1)过点C作3×1的矩形的对角线所在的直线,可得AB的垂线和平行线;(2)设小格的边长为1,利用三角形的面积求解即可.【详解】解:(1)如图所示,直线CD和CE即为所求;(2)如图,连接AC和BC,设小格的边长为1,则三角形ABC的面积=3×3-×1×3-×2×2-×1×3=4.故答案为:4.【点睛】本题主要考查了基本作图,割补法求图形的面积等知识.解题的关键是利用格纸的特点正确的作出图形.22.(认识概念)点P、Q分别是两个图形G1、G2上的任意一点,当P、Q两点之间的距离最小时,我们把这个最小距离叫作图形G1、G2的亲密距离,记为d(G1,G2).例如,如果点M、N分别是两条相交直线a、b上的任意一点,则d(a,b)=0(初步运用)如图1,长形四个顶点分别是点A、B、C、D,边AB=CD=5,AD=BC =3.那么d(AB,CD),d(AD,BC),d(AD,AB)各等于多少.(深入探究)(1)在图1中,如果将线段CD沿它所在直线平移(边AB不动),且使d (CD,AB)不变,那么线段CD的中点偏离它原来位置的最大距离为多少;(2)如图2,线段AB∥直线CD,AB=1,点A到CD的距离为3,将线段AB绕点A 旋转90°后的对应线段为AB′,则d(AB′,CD)等于多少.【答案】【初步运用】d(AB,CD)=3,d(AD,BC)=5,d(AD,AB)=0;【深入探究】(1)CD的原中点E和平称后的中点F的最大距离为:5;(2)d(AB′,CD)=2或3,【解析】【分析】[初步运用]根据图形G1、G2的亲密距离的定义可得结论;[深入探究](1)在图1中,注意线段CD平移的最远距离,可得结论;(2)如图2,要分情况讨论,可以顺时针和逆时针旋转,根据亲密距离的定义解决问题.【详解】解:[初步运用]如图1,∵AB与CD的距离为AD=3,∴d(AB,CD)=3,∵AD和BC的距离为5,∴d(AD,BC)=5,∵AD和AB交于点B,∴d(AD,AB)=0,[深入探究](1)如图所示:CD的原中点E和平称后的中点F的最大距离为:5;(2)将线段AB绕点A旋转90°后的对应线段为AB′或AB'',如图2,延长AB''交CD于E,∴AB=AB'=AB''=1,∵AE=3,∴B''E=2,则d(AB′,CD)=2或3.【点睛】本题考查了学生的理解能力和创新能力,题过介绍“亲密距离”来引出学生对动态图象最小距离的识别,这是新课标要求我们掌握的技能.在深度理解亲密距离定义、特点后难度并不高,并且再讨论运动路径的时候需要学生动手作图理解运动过程,是一道非常值得学生锻炼的题目.23.如图,已知直线AB以及直线AB外一点P.按下述要求画图并填空:(1)过点P画直线MN∥AB;(2)过点P画直线PC⊥AB,垂足为点;(3)量出点P到直线AB的距离约是多少cm(精确到0.1cm)【答案】(1)如图,直线MN为所作;见解析;(2)如图,PC为所作;见解析;(3)量得点P到直线AB的距离约是4.3cm.【解析】【分析】(1)利用网格特点,过P点作小正形的对角线得到MN∥AB;(2)利用网格特点,过P点作小正形的对角线得到PC⊥AB;(3)用刻度尺测量PC的长即可.【详解】解:(1)如图,直线MN为所作;(2)如图,PC为所作;(3)量得点P到直线AB的距离约是4.3cm(精确到0.1cm).【点睛】本题考查了作图﹣基本作图:熟练正形网格的性质对角线与变成45°角是关键.24.如图,三角形ABC是钝角三角形,用三角尺按下列要求画图;(1)画出过点A到线段BC所在直线的垂线段AE ;(2)画出表示点B到直线AC的距离的线段BF .【答案】见解析【解析】【分析】(1)把三角板的一条直角边与BC对齐,使另一条直角边经过点A,即可画出垂线段AE;(2)先延长CA,然后用三角板的两条直角边画图即可.【详解】如图,【点睛】本题考查了垂线段的画法.在解答此题时,用到的作图工具是三角尺,正确掌握基本作图的作法是作图的关键.同时考查了点到直线的距离的定义.25.如图,由相同边长的小正形组成的网格图形,A、B、C都在格点上,利用网格画图:(注:所画线条用黑色签字笔描黑)(1)过点C画AB的平行线;(2)过点B画AC的垂线,垂足为点G;过点B画AB的垂线,交AC的延长线于H.(3)点B到AC的距离是线段的长度,线段AB的长度是点到直线的距离.(4)线段BG、AB的大小关系为:BG AB(填“>”、“<”或“=”),理由是 .【答案】(1)如图见解析;(2)如图见解析;(3)BG、A、BH;(4)<,直线外一点与直线上各点连接的所有线段中,垂线段最短【解析】【分析】(1)利用网格进而得出过点C画AB的平行线;(2)利用网格得出过点B画AC的垂线,以及画AB的垂线,交AC的延长线于H;(3)利用点的直线以及线段的距离定义得出答案;(4)利用点到直线的距离性质得出答案.【详解】(1)如图所示:(2)如图所示:(3)点B到AC的距离是线段BG的长度,线段AB的长度是点A到直线BH的距离.故答案为:BG、A、BH;(4)线段BG、AB的大小关系为:BG<AB,理由是:直线外一点与直线上各点连接的所有线段中,垂线段最短(填垂线段最短也算对).故答案为:直线外一点与直线上各点连接的所有线段中,垂线段最短(填垂线段最短也算对)【点睛】此题主要考查了应用设计与作图,正确掌握相关性质以及结合网格是解题关键.26.如图,根据下列要求画图:(1)画直线AC,线段BC和射线BA;(2)画出点A到线段BC的垂线段AD;(3)用量角器(半圆仪)测量∠ABC的度数是°.(精确到度)【答案】(1)画图见解析;(2)画图见解析;(3)70【解析】【分析】(1)根据直线、线段、射线的定义进行画出即可;(2)利用直角三角板,将三角板中直角的一边放在BC上,然后移动三角板,当另一条直角边经过点A时,过点A及直角顶点画线段即可;(3)利用量角器进行测量即可.【详解】(1)如图所示;(2)如图,AD为所作;(3)量出∠ABC的度数为70°,故答案为70.【点睛】本题考查了作图知识的把几语言转化为几图形的能力,三角板的使用,量角器的使用等,解决此类题目的关键是熟悉基本几图形的性质,结合几图形的基本性质把复杂作图拆解成基本作图,逐步操作.27.如图,已知直线a,b,点P在直线a外,在直线b上,过点P分别画直线a,b 的垂线.【答案】图形见解析.【解析】【分析】根据过直线外一点作已知直线的垂线和过直线上一点作已知直线的垂线分别画出即可【详解】解:如答图所示,PA为直线a的垂线,PB为直线b的垂线.【点睛】垂线的作法是本题的考点,熟练掌握作图法是解题的关键.28.如图,已知O为直线AB上的一点,CD⊥AB于点O,PO⊥OE于点O,OM平分∠COE,点F在OE的反向延长线上.(1)当OP在∠BOC,OE在∠BOD时,如图①所示,直接写出∠POM和∠COF之间的数量关系;(2)当OP在∠AOC且OE在∠BOC时,如图②所示,试问(1)中∠POM和∠COF之间的数量关系是否发生变化?并说明理由.【答案】(1)∠POM=∠COF,理由见解析;(2)∠POM=∠COF,理由见解析【解析】【分析】(1)利用垂直的定义,CD⊥AB,PO⊥EO,等量代换得∠COP=∠BOE,利用角平分线的性质,得∠POM=∠POB=(90°-∠POC),∠COF=90°-∠COP,得出结论;(2)利用垂直的定义,同角的余角相等可得∠COP=∠AOF,可推出∠COP+∠COB =∠AOF+∠AOC,即∠BOP=∠COF,由对顶角相等得∠AOF=∠BOE=∠COP,利用角平分线的性质,得∠COP+∠COM=∠BOE+∠MOE,即∠POM=∠BOP,等量代换得出结论.【详解】解:(1)∠POM=∠COF.证明:∵CD⊥AB,∴∠COP+∠BOP=90°,∵OP⊥OE,∴∠BOE+∠BOP=90°,∴∠COP=∠BOE,∵OM平分∠COE,∴∠POM=∠MOB=∠POB=(90°−∠POC),∵∠COF=90°−∠COP,∴∠POM=∠COF;(2)不发生变化.理由:∵CD⊥AB于点O,∴∠AOP+∠COP=90°.∵PO⊥OE于点O,∴∠AOP+∠AOF=90°,∴∠COP=∠AOF.又∵∠AOC=∠COB=90°,∴∠COP+∠COB=∠AOF+∠AOC,即∠BOP=∠COF.∵∠AOF=∠BOE,∴∠COP=∠BOE.∵OM平分∠COE,∴∠COM=∠MOE,∴∠COP+∠COM=∠BOE+∠MOE,∴∠POM=∠BOP,∴∠POM=∠COF.故答案为:(1)∠POM=∠COF,理由见解析;(2)∠POM=∠COF,理由见解析.【点睛】本题考查垂线,角平分线的定义,解题的关键是熟练掌握垂直的定义和角平分线的性质.29.如图,已知直线AB和CD相交于点O,射线OE⊥AB于点O,射线OF⊥CD于点O,且∠AOF=25°.求∠BOC与∠EOF的度数.【答案】∠BOC=115°, ∠EOF=65°【解析】【分析】由OF⊥CD,得∠FOD=90°,已知∠AOF=25°,从而由平角的性质可求得∠AOC的度数,然后由邻补角的性质可知∠BOC的度数,由OE⊥AB,∠AOE=90°,可得∠FOE=∠AOE-∠AOF.【详解】因为OF⊥CD,所以∠DOF=90°.因为∠AOC+∠AOF+∠DOF=°,∠AOF=25°,所以∠AOC=65°.因为∠AOC+∠BOC=°,所以∠BOC=115°;因为OE⊥AB,所以∠AOE=90°,所以∠AOF+∠EOF=90°.因为∠AOF=25°,所以∠EOF=65°.故答案为:∠BOC=115°;∠EOF=65°.【点睛】本题考查垂线, 邻补角,熟练掌握垂线和邻补角的性质是解题的关键.30.已知:如图,直线AB,CD相交于点O,∠1=40°,∠BOE与∠BOC互补,OM平分∠BOE,且∠CON∶∠NOM=2∶3.求∠COM和∠NOE的度数.【答案】∠COM=120°,∠NOE=52°【解析】【分析】如图,首先根据对顶角相等可得∠6=40°,再根据同角的补角相等可得∠2+∠3=40°,根据角平分线定义可得∠2和∠3的度数,结合角的和差关系可得∠COM的度数,再利用条件∠CON:∠NOM=2:3计算出∠MON的度数,进而可得∠NOE的度数.【详解】如图,∵∠1=40°,∴∠6=40°.∵∠6+∠BOC=°,∠BOE与∠BOC互补,∴∠6=∠BOE=40°,∴∠BOC=140°,∴∠COE=100°.∵OM平分∠BOE,∴∠2=∠3=20°,∴∠COM=120°.∵∠CON∶∠NOM=2∶3,∴∠NOM=120°×=72°,∴∠NOE=72°-20°=52°.故答案为:∠COM=120°;∠NOE=52°.【点睛】本题考查对顶角、邻补角, 角平分线的定义, 余角和补角.关键是熟练掌握对顶角相等,同角的补角相等,角平分线定义.。