最新高教版中职数学基础模块下册9.1平面的基本性质2课件PPT.ppt

合集下载

中职数学基础模块9.1.2平面的基本性质教学设计教案人教版.docx

中职数学基础模块9.1.2平面的基本性质教学设计教案人教版.docx

课时教学设计首页(试用)授课时间:年月日课题9.1.2 平面的基本性质课型新授第几1~2课时1.在观察、实验与思辨的基础上掌握平面的三个基本性质及课时推论.教学2.学会用集合语言描述空间中点、线、面之间的关系.目标3.培养学生在文字语言、图形语言与符号语言三种语言之间(三维)教学重点与难点教学方法与手段使用教材的构想的转化的能力.教学重点:平面的三个基本性质.教学难点:理解平面的三个基本性质及其推论实例法结合学生身边的实物,体会平面的无限延展性,并引导学生观察身边的物体以及现象,引导学生总结出平面的三个基本性质,逐个理解其内在的思想.同时教会学生能正确用图形语言与符号语言表示文字语言.通过穿插有针对性的练习,引导学生边学边练,及时巩固,逐步掌握文字语言、图形语言与符号语言三种语言之间的转化太原市教研科研中心研制第1 页(总页)课时教学流程教师行为公路、平静的海面、教室的黑板都给我们以平面的形象.你还能从生活中举出类似平面的物体吗?1.平面几何里所说的“平面”就是从桌面等物体中抽象出来的,但是,几何里的平面是无限延展的.2.平面的表示方法常把希腊字母,β,等写在代表平面的平行四边形的一个角上来表示平面,如平面、平面β等;也可以用代表平面的四边形的四个顶点,或者相对的两个顶点的大写英文字母作为这个平面的名称.基本性质 1 如果一条直线上有两点在一个平面内,那么这条直线上所有的点都在这个平面内.☆补充设计☆学生行为设计意图教师呈现平面的图片,从学生学生根据生活经验找出具有身边的生活平面特点的实例.经验出发,对平面加以描述而不是定义,引发学生学习的兴趣.教师从初中的点、线、学生通面开始说起,逐步过渡到平过点与线的面,并教会学生怎样表示平关系联想到面.点、线与面的关系.培养学生联想的能力.A B师:如果直线l 与平面有两个公共点,直线l 是通过动否在平面内?画演示提高生:是.学生学习的练习一在正方体 ABCD -A1B1C1 D1中,判断下列命题是否正确,并明理由:(1)直线 AC1在平面 CC1B1B 内;(2)直线 BC1在平面 CC1B1B 内.兴趣,活跃学生的思维.平面内有无数个点,平面可以看成点的集合.点在平面内和点在平面外都可以用元素与集合的属于、不属于来表示.基本性质 1 可表示为:如果A,B,那么直线AB.利用这个性质,可以判断一条直线是否在一个平面内.学生个别口答,其他学生进行评价,教师解决有争议的知识点.学生在实际讨论中巩固平面的基本性质1.位置关系的符号表示:位置关系符号表示点 P 在直线AB 上P AB点 C 不在直线AB 上 C AB第 2 页(总运用集合的符号表示点、线、面之间的位置关系.学生体会三种语言符号的联系太原市教研科研中心研制页)课时教学流程点 M 在平面 AC 内M平面 AC 点 A不在平面 AC 内A平面 AC 直线AB 与直线 BC 交于点 B AB ∩ BC= B 直线AB 在平面 AC 内AB平面 AC 直线AA 不在平面 AC 内AA平面 AC与区别.学生观察理解,条件容许时可作为练习,让学生分小组讨论完成.基本性质 2 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.a练习二观察长方体,你能发现长方体中两个相交平面的公共直线吗?基本性质 3 过不在一条直线上的三点,有且只有一个平面.教师讲解基本性质 2,同时教会学生怎样画两个平面相交.教师结合生活经验启发学生.学生观察长方体,回答问题.推论 1 经过一条直线和直线外的一点,有且只有一个平面.推论 2经过两条相交直线,有且只有一个平面.推论 3经过两条平行直线,有且只有一个平面.练习三在正方体 ABCD -A1B1C1 D1中,O 是 AC 的中点.判断下列命题是否正确,并说明理由:(1)由点 A, O, C 可以确定一个平面;(2)由 A, C1, B1确定的平面是平面ADC 1B1;(3)由 A, C1, B1确定的平面与由A,D,C1确定的平面是同一个平面.第 3 页(总教师创设实际情境:生活中经常看到用三角在这个架支撑照相机.过程中,逐步并让学生找出生活中类培养学生空似的现象.例如自行车、门间想象能力.等.教师强调存在性和唯一性.学生体学生在教师的引导下,验生活中处理解三个推论.处存在数学教师逐个结合学生身边知识.的现象或实例讲解三个推学生对论.如教师可结合学生身边于“有且只有熟悉的现象,提出问题:木一个”进行理匠用两根细绳分别沿桌子四解.条腿底端的对角线拉直,以判断桌子四条腿的底端是在同一平面内,其依据是什太原市教研科研中心研制页)课时教学流程么?学生灵活运用所学知识进行解决.太原市教研科研中心研制第4 页(总页)课时教学设计尾页(试用)☆补充设计☆板书设计9.1.2 平面的基本性质1. 平面的基本性质 1 以及推论1. 4.例题与练习2.平面的基本性质 2 以及推论 2.3.平面的基本性质 3 以及推论 3.作业设计教材P113 练习 B 组第 2 题.教学后记太原市教研科研中心研制第5 页(总页)。

《平面的基本性质》中职数学基础模块下册9.1ppt课件1【语文版】

《平面的基本性质》中职数学基础模块下册9.1ppt课件1【语文版】

3.两条平行直线可以确定一个平面(如图(3)).



A
(1)
(2)


(3)


巩固知识 典型例题
例2 在长方体 ABCD A1B1C1D1 中,画出由A、C、D1
三点所确定的平面γ 与长方体的表面的交线.
9.
解 点 A、D1 为平面 与平面 A1D的公共点,
1
点 A、C 为平面 与平面 BD 的公共点,

2、不要看书,要看老师的眼睛

只要老师不是在一味地读教材,那老师的“话”就不可能和你低头看着的教材上的“文字”一致。头脑聪明的学生,也许能做到既集中精神听老师的话,又集中精神看眼前书上的内容。可是实际上大部分的学生都做不到这一点。

认真听讲的第一个阶段就是上课时间无条件地“往前看”,上课的时候看书往往很容易开小差。摒除杂念,将视线从摊在眼前的书上移开。老师讲课的时候只看前面,集中注意力听老师嘴里说出来的话,那才是认真听讲的态度。



略.



创设情境 兴趣导入
9. 1


把一根拉紧的细绳的两端固定在桌面上,发现这根绳子


就紧贴在桌面上.也就是细绳上所有的点都在桌面上



动脑思考 探索新知
直线与平面都可以看做点的集合.点A、B在直线l上,记作
Al、Bl;点A、B在平面 内,记作A、B.
9.
平面的性质
平面的交线.平面 与平面 相交,交线为 l ,记作 l.


本章中的两个平面 是指不重合的两个平面,

2022-2023学年高二上学期人教版中职数学下册(平面的基本性质课件)

2022-2023学年高二上学期人教版中职数学下册(平面的基本性质课件)

A.1
B.无数 C.1或无数
公理2 经过不在同一条直线上的三点, 有且只有一个平面
(简称:不共线的三点确定一个平面)
判断题:空间三点确定一个平面。
3.如果已知两个不重合的平面有一个公共点,
那么它们共有( )个公共点 A.1 B.无数
P
公理3 如果两个不重合的平面有一个公共点,
那么它们有且只有一条经过这个点的公共直线
间的关系.
M
A•
m
N

P


巩固练习:用集合符号表示下列
语句,并画出满足条件的图形.
⑴点A在平面 内,点B在平面外
⑵直线a经过平面M外一点A,并且与平 面M相交于点B;
(2)B1 _____ , C1 ______
(3)A1 ____ , D1 _____ (4)A1B ___ , D1B1 ___
相交平面的画法
用书摆几个不同的相交平面让 学生画出来
2)相交平面:
注意:相交平 面的被遮部 分画成虚线 或不画.
面面垂直
青岛外事服务职业学校
第二课时
1.平面
概念:平面是无限延展而没有边界的. 几何画法:通常用平行四边形来表示平面.
符号表示:通常用希腊字母 ,, 等来表示
D
C
A
B
平面 也可命名为平面AC.
平面
3.点、线、面的位置关系
Bl
点线的关系
A
点A在直线l上, 记作: Al
点B不在直线l上,记作: Bl B
点面的关系
点A在平面a内, 记作:
(3)点A在直线m上;Am
(4)直线m和平面相交于点A;m∩=A
3.平面的基本性质 公理1 如果一条直线上的两点在一个平面内,

中职教育-数学(基础模块)下册 第九章 立体几何.ppt

中职教育-数学(基础模块)下册 第九章   立体几何.ppt
这里“有且只有一个平面”,也就 是“确定一个平面”.因此,公理3也 可以简单地说成“不在同一直线上的三 个点确定一个平面”.
根据公理1和公理3,还可以得出以下三个推论: 推论1 经过一条直线和这条直线外一点,可以确定一个平面(如图 (a)所示). 推论2 经过两条相交直线,可以确定一个平面(如图(b)所示). 推论3 经过两条平行直线,可以确定一个平面(如图(c)所示).
AB ,BC ,CD ,DA 的中点.证明:四边形 EFGH 是一个平行四边形.
证明 因 E ,F 分别为边 A B,B C的中点,即 EF 为△ABC 的中位
线,所以
EF ∥AC ,且 EF 1 AC . 2
同理可得
GH ∥AC ,且 GH 1 AC . 2
因此,
EF ∥GH ,且 EF GH ,
(a)
(b)
为了简便,点 O 可以在两条异面直线中的一条上选取.例如,在 图中,点 O 选取在直线 b 上,过点 O 作 a∥a ,a 与 b 所成的角 θ 就是 异面直线 a ,b 所成的角.
例题解析
例 1 如图所示正方体,求直线 BA1 和 CC1 所成角的大小.
解 因 CC1 ∥BB1 ,所以直线 BA1 和 BB1 所成的角就是直线 BA1 和 CC1 所成的角.
9.1 9.2 9.3 9.4 9.5
• 平面的基本性质
• 直线与直线、直线与平面、平面 与平面平行的判定与性质
• 直线与直线、直线与平面、平面 与平面所成的角
• 直线与直线、直线与平面、平面 与平面垂直的判定与性质
• 柱、锥、球及其简单组合体

9.1 平面的基本性质
9.1.1 平面的概念及表示 数学中的平面是指光滑并且可以无限延展的图形. 为了直观形象,我们通常用一个平行四边形来表示平面,并用小写

高教版中职数学基础模块《平面与平面》总复习课件

高教版中职数学基础模块《平面与平面》总复习课件
(3)若一个平面内不共线的三点到另一个平面的距离相等,则这两个平面平行
(4)垂直于同一个平面的两个平面平行
其中,正确命题的个数为(
A. 4
B. 3
)
C. 2
D. 1
一课一案 高效复习
题型2
平面与平面平行
【例2】如图所示,在三棱锥 P-ABC中.E、F、G、H分别是
AB、AC、PC、BC 的中点,且PA=PB,AC=BC.
∴AH⊥SB,
∴SB⊥平面 ANH,SB⊆平面SAB,
∴平面 ANH⊥平面SAB.
一课一案 高效复习
【举一反三】
4.如图所示,己知SA⊥正方形ABCD所在平面,O为AC与BD的交点.
求证:平面SBC⊥平面 SAB.
一课一案 高效复习
5. 如图,已知ABCD是正方形,P为平面ABCD外一点,且PA=PC,PB=PD,
)
A. 过平面外一点,有且只有一个平面与这个平面平行
B.过平面外一条直线,有且只有一个平面与这个平面平行
C.过平面外一点有且只有一条直线与这个平面平行
D.过平面外一点可以作无数个平面与这个平面平行
2.下列命题:
(1)若两个平面都平行于同一个平面,则这两个平面互相平行
(2)夹在两个平行平面间的两条平行线段相等
AC于D,求二面角E-BD-C的大小.
一课一案 高效复习
7.如图所示,在棱长都相等的正三棱锥 S-ABC中,二面角
交线
3、相关结论:
①过平面外一点有无数个平面与已知平面垂直;
②垂直于同一个平面的两个平面不一定平行;
③平行于同一个平面的两个平面平行;
④过平面外一点有且只有一个平面与已知平面平行.
一课一案 高效复习

高教版中职数学(基础模块)下册9.1《平面的基本性质》ppt课件2

高教版中职数学(基础模块)下册9.1《平面的基本性质》ppt课件2

∩∩ ∩
练习巩固:
1.下列叙述正确的是----------( D )
A. 因为P ∈ ,Q ∈ 所以PQ ∈
B. 因为P ∈ ,Q ∈ 所以 ∩ = PQ
C. 因为AB , C ∈ AB , D ∈AB 所以 CD ∈
D. 因为AB , AB , 所以A ∈ ( ∩ )且 B ∈ ( ∩ )
合作交流 :
1.自行车的撑脚一般安装在自行车的 什么位置?能不能安装在前后轮一条直线 的地方 ?
2.照相机支架需要几条腿?两条行不 行?三条在一条线上行不行?
探讨:
根据刚才的两个实例,你得到怎么样的 一个结论?
过一点可以做几条直线?两点呢? 过空间中一点可以做几个平面?两点呢?三点呢?
公理3 经过不在同一条直线上的三点,
方形的直观图作为平面的直观图.
符号表示:通常用希腊字母, , 等来表
示,如:平面 也可用表示平行四边形的两个
相对顶点的字母来表示,如:平面AC.
A
D
B
C
1.平 面
当一个平面的一部分被另一个平面遮住时, 应把被遮部分的线段画成虚线或不画,这样 看起来立体感强一些。

B
A

B
A
2.平面的基本性质
平面的基本性质
第一课时
同学们看到的平静的海面和湖面都给了我 们以平面的形象.
和点、直线一样,平面也是从现实世界中抽 象出来的几何概念.
问题:
那我们怎样来认识和表示一 个 平面呢?
1.平

概念:平面是无限延伸的,它没有厚薄.
几何画法:通常用平行四边形来表示平面,
当平面水平放置的时候,一般用水平放置的正

高教版中职数学基础模块《平面的基本性质》总复习课件

高教版中职数学基础模块《平面的基本性质》总复习课件

(3)经过两条平行直线,有且只有一个平面
图形描述
一课一案 高效复习
典型例题
题型1 用符号语言表示点、线、面之间的关系 【例1】用集合符号表示下列语句
(1)点A在直线l上,直线l在平面α内; (2)直线l,m在平面α内且相交于点A; (3)平面α与β的交线l,且l与直线m相交于点A.
解: (1) A∈l,l ⊆α; (2) l ⊆ α , m⊆α , m∩l =A; (3) α∩β=l , l ∩m =A.
2、平面的表示:
(1)
(2)
(3)
(4)
一课一案 高效复习
3、平面的基本性质:
性质
文字描述
符号描述
公理1
如果一条直线上的两个点 在一个平面上,那么这条 直线上的所有点都在这个 平面上
A∈l,B∈l A∈α,B∈α
⇒ l ⊆α
如果两平面有一个公共点,
公理2 那么他们有且只有一条通 过这个点的公共直线
D. 经过平面外一点有且只有一条直线与已知平面垂直
一课一案 高效复习
【举一反三】
3.下列说法正确的是( C ) A. 三点确定一个平面
B. 两条直线确定一个平面
C. 过一条直线的平面有无数多个 D. 两个相交平面的交线是一条线段
4.下列说法正确的是( D ) A. 两个平面相交只有一个公共点
B. 两个平面相交可以有两条不同的交线
C. 两个平面相交,公共点为有限个
D. 两个平面相交,它们的公共点共线
一课一案 高效复习
强化练习
一课一案 高效复习
强化练习
感谢今天努力的你!
题型2 应用公理判断命题的真假
【例2】(1)下列条件中,能确定一个平面的是( D )

中职数学基础模块下册《平面向量的坐标表示》课件

中职数学基础模块下册《平面向量的坐标表示》课件
中职数学基础模块下册 《平面向量的坐标表示》 ppt课件
欢迎来到中职数学基础模块下册的《平面向量的坐标表示》课程!本课件将 带你了解向量的定义与基本概念,向量的坐标表示方法,向量的运算规则与 性质,向量的数量积与夹角的关系,平面向量的平行与垂直,平面向量的共 线与共面以及平面向量的应用举例。
向量的定义与基本概念
数量积的定义
数量积是两个向量的乘积,表示为向量的点乘, 结果是一个实数。
向量夹角的计算方法
向量夹角可以通过数量积的定义和余弦定理来计 算。
平面向量的平行与垂直
在本节课中,你将学习如何判断两个平面向量的平行与垂直关系。
1 平行向量
两个向量的方向相同或相反时,它们是平行的。
2 垂直向量
两个向量的数量积为0时,它们是垂直的。
平面向量的共线与共面
在本节课中,你将学习如何判断平面上的向量的共线与共面关系。
1
共线向量
当三个向量可以表示同一条直线时,它们是共线的。
2
共面向量
当三个向量可以表示同一平面时,它们是共面的。
3
应用举例
我们将通过实际例子来演示共线向量和共面向量的应用。
平面向量的应用举例
在本节课中,我们将了解平面向量在实际生活中的应用。
建筑设计
平面向量在建筑设计中可以用 于计算不同构件的相对位置。
物理学
平面向量在物理学中可以用于 描述物体的运动和力的作用。
导航系统
平面向量在导航系统中可以用 于确定位置和计算航向。
在本节课中,你将学习如何使用向量的坐标表示方法,包括向量的坐标形式和分解形式。
向量的坐标形式
向量的坐标形式是指将向量表示成一个有序数 对。
向量的分解形式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方形的直观图作为平面的直观图.
符号表示:通常用希腊字母, , 等来表
示,如:平面 也可用表示平行四边形的两个
相对顶点的字母来表示,如:平面AC.
A
D

B
C
1.平 面
当一个平面的一部分被另一个平面遮住时, 应把被遮部分的线段画成虚线或不画,这样 看起来立体感强一些。
B
A

B
A
2.平面的基本性质
合作交流 :
1.自行车的撑脚一般安装在自行车的 什么位置?能不能安装在前后轮一条直线 的地方 ?
2.照相机支架需要几条腿?两条行不 行?三条在一条线上行不行?
探讨:
根据刚才的两个实例,你得到怎么样的 一个结论?
过一点可以做几条直线?两点呢? 过空间中一点可以做几个平面?两点呢?三点呢?
公理3 经过不在同一条直线上的三点,
有且只有一个平面。
A
B
新疆 王新敞
奎屯
C
A, B,C不共线 A, B,C确定一平面
讨 论:
你是怎么样来理解公理3中的 “有且只有一个” 这句话的 ?
答:“有且只有一个”的 含义: 是存在性和唯一性。
注意: 条件中提到三点不共线的含义。
例题讲解:
例1:已知命题: ①10个平面重叠起来,要比5个平面重叠起来要厚。 ②有一个平面的长是50m,宽是20m ③黑板面是平面。 ④平面是绝对的平,没有大小,没有厚度,可以无限 延展的抽象的数学概念。



A∈L B∈L
A∈ B∈
直线 L ∩
公理2 如果两个平面有一个公共点, 那么它们还有其他公共点,且所有这些公 共点的集合是一条过这个公共点的直线.
P, P, l Pl


公理2说明了空间中的
想 什么问题?它可以帮助我们
? 解决哪些几何问题?
公理2揭示了两个平面相交的主要的特征, 提供了在空间确定两个平面交线的一种方法 。
其中正确的命题是… ( ) ④
例2:⑴一条直线可以将平面分成两部分,那么
一个平面可以把空间分成 2 个部分。
⑵两个平面可以将空间分成 3或个4部分。
3.正方体的各顶点如图所示,正方体的三个面所在平
面 A1C1, A1B1, B1C1,分别记作、、 ,试用适当的符号填
空.
(1)A1 __∈_____, B1 __∈_____
∩∩ ∩
练习巩固:
1.下列叙述正确的是----------( D )
A. 因为P ∈ ,Q ∈ 所以PQ ∈
B. 因为P ∈ ,Q ∈ 所以 ∩ = PQ
C. 因为AB , C ∈ AB , D ∈AB 所以 CD ∈
D. 因为AB , AB , 所以A ∈ ( ∩ )且 B ∈ ( ∩ )
平面的基本性质
第一课时
同学们看到的平静的海面和湖面都给了我们以平面的形 象.
和点、直线一样,平面也是从现实世界中抽象出来 的几何概念.
问题:
那我们怎样来认识和表示一个 平面呢?
1.平

概念:平面是无限延伸的,它没有厚薄.
几何画法:通常用平行四边形来表示平面,
当平面水平放置的时候,一般用水平放置的正
课堂作 业
书 23 页 练习 第 4 题 书 28 页 习题 第 3 题
2005年11月7日7时33分
2005年11月7日7时33分
∩∩ ∩

2.为什么许多自行车后轮旁只装 了一只撑脚?
3.用符号表示:〝点 A 在直线 L 上,
L 在平面 外〞,是_A_∈_L_,_L____.
4.如果三条直线两两相交,那么这三 条直线是否共面?
5.四条线段首尾顺次连接,所得的图 形一定是平面图形吗?为什么?
课堂小结:
1.平面的概念.表示及记法. 2.空间中的点,线,面位置关系的图形 及符号表示. 3.平面的三个性质及用途.
(2)B1 __∈_____ , C1 __∈_____ (3)A1 __∈_____ , D1 __∈_____
(4) __∩_____ A1B1 ___∩____ BB1
(5) A1B1 ________, BB1 ________
A1B1 ________



公理1 如果一条 直线上的两点在一个 平面内,那么这条直 线上所有的点都在这 个平面内.
应 用:
将一把直尺置于桌面上,通过是否漏光 就能检查桌面是否平整.
空间中的点、直线、平面的位置关系,可
以借用集合中的符号来表示.
例如:在长方体 ABCD—A1B1C1D1中D1
位置关系
ቤተ መጻሕፍቲ ባይዱ
符号表示
A1
C1 B1
点P在直线AB上
点c不在直线AB上
点M在平面AC内
P ∈ AB
C ∈ AB M ∈ 平面AC

·· D M
P


点A1不在平面AC内
A1∈平面AC
直线AB与直线BC交于点B AB∩BC = B
直线AB在平面AC内
AB ∩ 平面AC
直线AA1不在平面AC内 AA1 ∩ 平面AC

一 想 ?
公理1怎样 用符号示?
相关文档
最新文档