第9讲 镜像法

合集下载

电动力学镜像法课件

电动力学镜像法课件

03
理论框架完善
未来研究将进一步完善镜像法的理论框架,建立更严谨的数学和物理基
础,为解决复杂问题提供更有力的工具。
镜像法在其他领域的应用前景
光学领域
镜像法在光学领域有广泛的应用前景,如光子晶体、光子器件的 设计与模拟等。
生物医学工程
镜像法可用于模拟生物组织的电磁特性,为医学成像和诊断提供技 术支持。
镜像法在静电场中主要用于解决导体表面的电荷分布和电场分布问题。
详细描述
当一个带电体放置在导体附近时,导体表面的电荷分布会受到带电体的影响。通 过应用镜像法,可以计算出导体表面的电荷分布和电场分布,从而进一步分析带 电体与导体之间的相互作用。
镜像法在静磁场中的应用
总结词
镜像法在静磁场中主要用于解决磁力线和磁感应强度分布问题。
详细描述
电动力学在许多领域都有重要的应用。例如,无线通信依赖于电磁波在空间的传播,雷达通过发射电磁波并检测 其反射来探测目标,电子显微镜利用电磁场来控制电子束的传播和成像。此外,电动力学还在电力传输、电磁兼 容性、粒子加速器等领域有广泛应用。
03 镜像法在电动力学中的应用
镜像法在静电场中的应用
总结词
镜像法的计算步骤
确定原问题和镜像模型
根据实际问题,确定需要求解的原问 题和对应的镜像模型。
建立等效关系
根据镜像法的数学模型,建立镜像电 荷或镜像边界与原电荷或原边界之间 的等效关系。
求解等效问题
利用等效关系,求解等效的静电场或 静磁场问题。
计算结果分析
对计算结果进行分析,得出原问题的 解。
镜像法的计算实例
电动力学镜像法课件
目录
Contents
• 镜像法简介 • 电动力学基础 • 镜像法在电动力学中的应用 • 镜像法的计算方法 • 镜像法的优缺点分析 • 镜像法的发展前景

镜像法原理

镜像法原理

镜像法原理镜像法,又称镜像原理,是物理学中的一种重要原理,它在光学、电磁学、流体力学等领域都有着广泛的应用。

镜像法的基本原理是通过假想一个镜像,来简化问题的求解,从而使得问题的求解变得更加容易和直观。

镜像法的应用可以大大简化问题的求解过程,提高问题的解决效率。

下面我们将详细介绍镜像法的原理及其在不同领域的应用。

首先,我们来介绍镜像法在光学中的应用。

在光学中,镜像法被广泛应用于光学成像问题的求解。

例如,在平面镜成像问题中,我们可以通过假想一个虚拟的物体,将实际物体和虚拟物体关于镜面的位置进行对称,从而得到虚拟物体的像的位置。

这样一来,我们就可以利用镜像法来简化平面镜成像问题的求解过程,大大提高问题的求解效率。

其次,镜像法在电磁学中也有着重要的应用。

在电磁学中,镜像法被广泛应用于求解导体表面的电场分布问题。

通过假想一个虚拟的镜像电荷,将实际电荷和虚拟电荷关于导体表面进行对称,从而得到虚拟电荷在导体表面的电场分布。

这样一来,我们就可以利用镜像法来简化导体表面的电场分布问题的求解过程,提高问题的解决效率。

此外,镜像法还在流体力学中有着重要的应用。

在流体力学中,镜像法被广泛应用于求解流体与固体边界的流动问题。

通过假想一个虚拟的镜像流体,将实际流体和虚拟流体关于固体边界进行对称,从而得到虚拟流体在固体边界的流动情况。

这样一来,我们就可以利用镜像法来简化流体与固体边界的流动问题的求解过程,提高问题的解决效率。

总的来说,镜像法是一种非常重要的物理原理,它在光学、电磁学、流体力学等领域都有着广泛的应用。

通过假想一个镜像,镜像法可以简化问题的求解过程,提高问题的解决效率。

因此,掌握镜像法的原理及其在不同领域的应用对于物理学和工程学领域的学习和研究都具有着重要的意义。

希望本文的介绍能够帮助大家更好地理解镜像法的原理及其应用。

镜像法在特殊角域中的应用13页word

镜像法在特殊角域中的应用13页word

数学物理方程学院名称:理学院班级:数学101学号:201900134102姓名:李真真2019年12月12日镜像法在特殊角域中的应用摘要镜像法是解静电场边值问题的一种间接方法,它巧妙地应用唯一性定理,使某些看来难解的静电场边值问题较容易地得到解决。

镜像法是在待求场域的区域之外,在适当的位置上人为地设置一些点电荷来等效原边界面上复杂分布的实际电荷对待求域的作用,从而在保持原边界条件不变的情况下,将原边界面移去,这样就把求解有限区域的边值问题转换为无边界的无限大均匀媒质中的求解问题,这些人为设置的等效电荷称为镜像电荷。

镜像法的关键是寻找合适的镜像电荷,确定镜像电荷的理论根据是唯一性定理,即:一是场的解在原区域满足的方程(泊松方程或拉普拉斯方程)不变,亦即要保持待求场区域原有电荷分布不变,故镜像电荷只能设置在待求场域之外,二是镜像电荷个数、位置、大小和符号的确定应以使问题简化,并保持原问题边界条件不变为依据。

关键词:镜像法角域边值问题唯一性定理镜像电荷我们知道,在所考虑的区域内没有自由电荷分布时,可用Laplace's equation求解场分布;在所考虑的区域内有自由电荷分布时,且用Poisson's equation求解场分布。

如果在所考虑的区域内只有一个或者几个点电荷,区域边界是导体或介质界面,这类问题又如何求解?这就是本节主要研究的一个问题。

解决这类问题的一种特殊方法--称为镜象法。

1、镜象法的基本问题在点电荷附近有导体或介质存在时,空间的静电场是由点电荷和导体的感应电荷或介质的束缚电荷共同产生的。

在所求的场空间中,导体的感应电荷或介质的极化电荷对场点而言能否用场空间以外的区域(导体或介质内部)某个或几个假想的电荷来代替呢?当我们把点电荷作为物,把导体或介质界面作为面镜,那么导体的感应电荷或介质的极化电荷就可作为我们所说的象,然后把物和象在场点处的贡献迭加起来,就是我们讨论的结果。

第9讲 镜像法

第9讲 镜像法
镜像确定b 。由对称性
由 d a2 d
(h b)(h b) a2
b h2 a2
b
a l
h
b
a
l
h
两平行导体圆柱的等效电荷
通常将带电细线的所在的位置称为圆柱导体的电轴,因而这 种方法又称为电轴法。
第9讲 镜像法
五、无限大介质分界平面的镜像
1、点电荷与无限大电介质分界平面的镜像
问题:求解空间中的电位分布(上半空间 及下半空间)。
1、点电荷位于接地导体球面外
镜像电荷的确定
(a2 d 2)q '2 (a2 d '2)q2 2a(dq '2 d 'q2) cos 0
(a2 d 2 )q '2 (a2 d '2 )q2 0
2a(dq
'2
d
'
q
2
)
0
q
'
a d
q
d
'
a2 d
q ' q

(舍去)
d ' d
l
l
a
a
hh
图1 两平行导体圆柱
荷密度大,而相背一侧电荷密度较小。
分析方法:将导体表面上的电荷用线密
度分别为 l 、且相距为2b 的两根无限长
带电细线来等效替代。
b
a l
h
b
a
l
h
图2 两平行导体圆柱的等效电荷
第9讲 镜像法
四、导体圆柱面的镜像
2、两平行导体圆柱面的镜像 利用线电荷与接地导体圆柱面的
q
等效电荷
q′
非均匀感应电荷产生的电位很难求解,可以用 等效电荷产生的电位替代。

镜像法

镜像法
设一镜像电荷q″位于区域1中,且位置与 q 重合,同时将整个空间视为均匀介质2。
p v R
则区域2中任一点的电位为:
2

q q
4π 2 R
q q
2
2
在分界面(R = R′= R″)上,应满足电位的边界条件:
1
1
设想用镜像电荷 代替界面上极化 电荷的作用,并 使镜像电荷和点 电荷共同作用, 满足界面上的边
界条件。
当待求区域为介质1所在区域时,在边界之外设一镜像电荷 q′
介质1中任一点的电位为:
1

q q
4π1R 4π1R
电磁场
第3章 静电场及其边值问题的解法
当待求区域为介质2所在区域时,
* 此时要保证z=0平面边界条件不变,即应为零电位。
q q 4R 4R
故对z=0平面上任意点有R R R0 :
于是,

q 4

1 R

1 R


q 4

q q 0 4 R0
1

x2 y2 (z h)2
电位的法向导数

n
s

f2 s
一、二类边界条件的 线性组合,即

n
s2

f4 s
电磁场
一、静电场边值问题及其分类
第3章 静电场及其边值问题的解法
1. 边值问题的分类----根据场域边界条件的不同
狄利克雷问题:给定整个场域边界上的电位函数值 s f1s
(第一类)
聂曼问题:给定待求位函数在边界上的法向导数值 (第二类)
U0
O
ax
第3章 静电场及其边值问题的解法

镜像法

镜像法

/jp2007/02/wlkc/htm/c_4_p_4.htm§4.4 镜像法镜像法是求解电磁场的一种特殊方法,特别适用于边界面较规则(如平面、球面和柱面等)情况下,点源或线源产生的静态场的计算问题。

例如当一点电荷q 位于一导体附近时,该导体将处于点电荷q产生的静电场中,在导体表面上会产生感应电荷,则空间的电场应为该感应电荷产生的电场和点电荷q产生的电场的叠加。

一般情况下,在空间电场未确定之前,导体表面的感应电荷分布是不知道的,因此直接求解该空间的电场是困难的。

然而,在一定条件下,可以用一个或多个位于待求场域边界以外虚设的等效电荷来代替导体表面上感应电荷的作用,且保持原有边界上边界条件不变,则根据惟一性定理,空间电场可由原来的电荷q和所有等效电荷产生的电场叠加得到。

这些等效电荷称为镜像电荷,这种求解方法称为镜像法。

可见,惟一性定理是镜像法的理论依据。

在镜像法应用中应注意以下几点:(1)镜像电荷位于待求场域边界之外。

(2)将有边界的不均匀空间处理为无限大均匀空间,该均匀空间中媒质特性与待求场域中一致。

(3)实际电荷(或电流)和镜像电荷(或电流)共同作用保持原边界上的边界条件不变。

4.4.1 点电荷对无限大接地导体平面的镜像zqdx设在自由空间有一点电荷位于无限大接地导体平面上方,且与导体平面的距离为d 。

如图4.2(a)所示上半空间的电位分布和电场强度计算可用镜像法解决。

待求场域为0z >空间,边界为0z =的无限大导体平面,边界条件为在边界上电位为零,即(,,)0x y z φ= (4.29)设想将无限大平面导体撤去,整个空间为自由空间。

在原边界之外放置一镜像电荷'q ,当'q q =-,且'q 和q 相对于0z =边界对称时,如图4.2(b)所示。

点电荷q 和镜像电荷'q 在边界上产生的电位满足式(4.29)所示的边界条件。

根据镜像法原理,在0z >空间的电位为点电荷q 和镜像电荷'q 所产生的电位叠加,即1/21/2222222011{}4()()qx y z d x y z d φπε=-⎡⎤⎡⎤++-+++⎣⎦⎣⎦(4.30)上半空间任一点的电场强度为E φ=-∇电场强度E 的三个分量分别为3/23/22222220{}4()()x qxxE x y z d x y z d πε=-⎡⎤⎡⎤++-+++⎣⎦⎣⎦(4.31a)3/23/22222220{}4()()y qyyE x y z d x y z d πε=-⎡⎤⎡⎤++-+++⎣⎦⎣⎦(4.31b)3/23/22222220{}4()()z qz dz dE x y z d x y z d πε-+=-⎡⎤⎡⎤++-+++⎣⎦⎣⎦(4.31c)可见,在导体表面0z =处,0x y E E ==,只有z E 存在,即导体表面上法向电场存在。

镜像法-高中物理竞赛讲义

镜像法-高中物理竞赛讲义


是相似三角形,即
,于是球外任意一点的电位为
(4.4.3.6)
采用球坐标,取原点为球心 O 点,z 轴与 轴重合,则球外任一点


(4.4.3.7)
这样可求得电场 的分量为
(4.4.3.8)
r=a 时球面上的感应电荷密度1)
(1)点电荷对不接地、净电荷为零的导体球的镜像。 (2)点电荷对不接地、净电荷不为零的导体球的镜像。 (3)接地球形空腔内电荷的镜像
《镜像法》4,15
平行导线间单位长度电容: (4.4.2.10)
其中
小天线的镜像
与地面的小天线,长度为 l ,离地高度为 h 。 用位于地面下方 h 处的镜像小天线代替地面上的感应电荷,边界条件 维持不变。 与自由空间的天线比较,当天线离平面很近时,若天线与平面平行, 辐射功率为零,若天线与平面垂直,辐射功率增强。若天线与平面倾斜放置,则 辐射功率的变化与倾斜角度有关。具体辐射功率的计算请参看天线辐射(超链), 此处仅给出思路和结论。
点电荷对相交接地平面的镜像
条件:两相交接地平面夹角为 镜像电荷:2n-1 个。
,n=1,2,3…
若两相交接地平面夹角不满足上述条件,则镜像电荷为无
穷多个。
点电荷对介质平面的镜像
图 4.4.5 点电荷对相交接地地面 的镜像
1 区和 2 区为不同介质,求解时要分区域考虑。
求解区 1 的场:在区 2 置镜像电荷 。求解区 2 的场:在区 1 置镜

与地面平行的均匀双线传输线, 半径为 a,离地高度为 h,导线间距离为 d,导线一带正电荷+ ,导线二带负电荷-

用位于地面下方 h 处的镜像双 导线代替地面上的感应电荷,边界条件维

建筑工程CAD教学课件模块9三维建模的方法及应用举例

建筑工程CAD教学课件模块9三维建模的方法及应用举例
9.1.6 阵列法建模
3.说明 有规律的阵列关键是要确定阵列的行数、列数、层数及 其间距,使用“三维阵列”命令可以在三维空间中创建对象 的矩形阵列或环形阵列。
单9.1击此三处维编建辑模母的版方标法题样式
环形阵列需要确定旋转轴,在某些情况下,确定旋转轴时 需要作辅助线。图9-19所示为选择过桌子中心的直线为旋转 轴,对圆凳进行环形阵列的结果。
9.1.6 阵列法建模
2.操作 执行“修改”→“三维操作”→“三维阵列”命令,根 据提示选择对象,输入阵列类型、行数、列数、层数及间距 。使用“三维阵列”命令绘制鞋架如图9-18所示。
单9.1击此三处维编建辑模母的版方标法题样式三处维编建辑模母的版方标法题样式
单9.1击此三处维编建辑模母的版方标法题样式 9.1.2 布尔运算法建模
单9.1击此三处维编建辑模母的版方标法题样式
9.1.3 旋转法建模
1.功能 使用“旋转”命令可以将二维对象绕某一轴旋转生成 实体(对应封闭对象)或曲面(对应开放对象)。用于旋转 的二维对象可以是直线、多段线、圆、椭圆、圆弧、样条曲 线及面域等。但是,包含在块中的对象、自相交的多段线不 能被旋转。
模块9 三维建模的方法及应用举例
单模击块此9 处三编维辑建母模版的标方题法样及式应用举例 教学目标
1 了解旋转法建模、标高法建模、厚度法建模和三维扫掠建模的方法。
掌握二维图形转换成三维实体模型的常用方法。
2
3 掌握拉伸法建模、阵列法建模、三维放样法建模的方法。 掌握拉伸法建模、阵列法建模、三维放样法建模的方法。
单9.1击此三处维编建辑模母的版方标法题样式
9.1.4 标高法建模
3.说明 使用ELEV命令可以设置物体几何对象的基准面标高和 厚度,从而得到三维模型。零标高表示基准面,正标高表 示物体几何体向基准面上方拉伸,负标高表示几何体向基 准面下方拉伸。正、负厚度的表示方法与标高相同。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P r a d R q
方程),且在点电荷q与球心的连线上,
距球心为d'。则有
1 q q ( ) 4π R R
问题: d ? q ?
P r a d' R' q' d R q
第9讲 镜像法
三、导体球面的镜像
1、点电荷位于接地导体球面外
镜像电荷的确定 由镜像法原理:镜像电荷位于球内区域, 且镜像电荷与原电荷共同作用使得在球 面上电位为0,即:
(a2 d 2 )q '2 (a2 d '2 )q2 2a(dq '2 d ' q2 )cos 0
R ' r 2 d '2 2rd 'cos
第9讲 镜像法
三、导体球面的镜像
1、点电荷位于接地导体球面外
镜像电荷的确定
(a2 d 2 )q '2 (a2 d '2 )q2 2a(dq '2 d ' q2 )cos 0
第9讲 镜像法
第九讲



第9讲 镜像法
本讲内容 • • 镜像法的基本原理 接地导体平面的镜像


导体球面的镜像
导体圆柱面的镜像


点电荷与无限大电介质平面的镜像
线电流与无限大磁介质平面的镜像
第9讲 镜像法 问题的提出 几个实例:
求解位于接地导体板附近的点电荷产生的电位
非均匀感应面电荷
q
等效电荷
P
r
a
d'
R' q' d
R
q
——导体球镜像电荷
第9讲 镜像法
三、导体球面的镜像
1、点电荷位于接地导体球面外
接地导体球边界静电问题 球外的电位函数为
P
r
a
d'

R' q' d
R
q
a q 1 2 2 4π r d 2rd cos d r 2 (a 2 d )2 2r (a 2 d ) cos
2 2 2 2 2 2 ( a d ) q ' ( a d ' ) q 0 2 2 2 a ( dq ' d ' q )0 a q ' q q' q d 或 (舍去) 2 d ' a d ' d d
接地导体分界面上感应电荷分布
q
qh 2 ( x 2 y 2 h 2 )3/ 2 n z z 0 qh qin s ds dxdy q s 2 ( x 2 y 2 h 2 )3/ 2
s Dn En
第9讲 镜像法
二、平面导体界面的镜像
1、点电荷对无限大接地导体平面的镜像
上半空间内的电位分布为:
1 1 ( x, y, z ) ( ) 4 R R ' q 1 1 ( )( z 0) 2 2 2 2 2 2 4 x y ( z h) x y ( z h)
第9讲 镜像法
四、导体圆柱面的镜像
1、线电荷与接地导体圆柱面的镜像
设镜像电荷的线密度为 l,且距圆柱的轴线为 d ,则由 l 和 l 共同
产生的电位函数
l l 1 1 ln ln C 2 2 2 2 2 d 2 d cos 2 d 2 d cos
位于导体空腔外,且在点电荷q与球
心的连线的延长线上。
a q q, d

a2 d d
| q'|>|q|,镜像电荷的电荷量大于点电荷的电荷量
• 像电荷的位置和电量与外半径 b 无关(为什么?)
第9讲 镜像法
三、导体球面的镜像
2、点电荷位于接地导体球壳内
接地导体球壳的静电问题
a b O
球面上的感应电荷面密度为
(r a)
S r
r a
q(d 2 a 2 ) 4πa(a 2 d 2 2ad cos )3 2
导体球面上的总感应电荷为
q(d 2 a 2 ) 2 π π a 2 sin d d a qin S dS q 2 2 32 S 0 0 4πa (a d 2ad cos ) d
导体球面上的总感应电荷与所设置的镜像电荷不相等。
第9讲 镜像法
三、导体球面的镜像
3、点电荷位于不接地导体球面外
导体球不接地时的特点: • 导体球面是电位不为零的等位面
• 球面上既有感应负电荷分布也有感应正电 荷分布,但总的感应电荷为零。
a
r R′ -q′ q′ d2 d1
P R q
问题:如何确定镜像电荷?
满足原问题的边界条件,所得的解正确。
h
l
第9讲 镜像法
二、平面导体界面的镜像
3、点电荷对相交半无限大接地导体平面的镜像 d1 要满足在导体平面上电位为零, q1 R1 则必须引入3个镜像电荷。 d2
1
d1
R
q d2
q q1 q2 q3
q 1 1 1 1 ( ) 电位: 4π R R1 R2 R3
l l 1 1 ln ln C 0 2 a 2 d 2 2ad cos 2 a 2 d 2 2ad cos
由于导体圆柱接地,所以当
a时,电位应为零,即
将上式对φ求导,可以得到
l d (a 2 d 2 ) ld (a 2 d 2) 2add ( l l) cos 0 l l 2 2 2 2 l d (a d ) ld (a d ) 0 a2 d l l 0
第9讲 镜像法
三、导体球面的镜q P R' q d' P b o q' q’’= q,位于球心
2 a a q q , d d d
b
a rR
d
a q
b q"
r
第9讲 镜像法
四、导体圆柱面的镜像
1、线电荷与接地导体圆柱面的镜像 问题:密度为ρl 的无限长线电荷位于半径
r d
P R q
R′ q′
d’ 球壳内的电位函数为 q 1 a (r a) 2 2 2 2 2 2 4π 0 r d 2rd cos d r (a d ) 2r (a d ) cos 球壳内表面感应电荷面密度为
S 0 r
r a
q(a 2 d 2 ) 4πa(a 2 d 2 2ad cos )3 2
球壳内表面的总感应电荷为
q(a 2 d 2 ) 2 π π a 2 sin d d qin S dS q 2 2 32 S 0 0 4πa (a d 2ad cos )
a q,d 0 a
第9讲 镜像法
三、导体球面的镜像
3、点电荷位于不接地导体球面外
不接地导体球外点电荷的镜像电荷
a a2 q q, d d d a q q q,d 0 a
球外任意点的电位为
P r a q" q' d' d R' R
q
q q q ( ) 4 0 R R r 1
1 d
601
2
d2 q3 R3 d1 R2 d1
d2
q2
q
d
2
°
2
对于非垂直相交的两导体平面 构成的边界,若夹角为

所有镜像电荷数目为2n-1个。
n
,则
第9讲 镜像法
三、导体球面的镜像
1、点电荷位于接地导体球面外
点电荷q 位于半径为a 的接地导体
球外,距球心为d 。 球面上的感应电荷可用镜像电荷 q' 来等效。 q' 应位于导体球内(不影响原
为a 的无限长接地导体圆柱面外,与圆柱的
轴线平行且到轴线的距离为d。
线电荷与导体圆柱
0 a o
l
d
x
特点:在导体圆柱面上有感应电荷,圆柱
外的电位由线电荷与感应电荷共同产生。
P( , )
0
分析方法:镜像电荷是圆柱面内部与轴线
平行的无限长线电荷。
a l o d
d
l
x
线电荷与导体圆柱的镜像
第9讲 镜像法
一、镜像法原理
若镜像电荷的引入满足:

电位函数仍然满足原方程(拉氏方程或泊松方程) 电位分布仍满足原边界条件
则求得的解就是正确的。
——惟一性定理
确定镜像电荷的两条原则:

等效电荷必须位于所求解的场区域以外的空间中; 像电荷的个数、位置及电荷量的大小以满足所求解的场区域 的边界条件来确定。
点电荷在导体面上的感应电荷电量与镜像电荷电量相等。
第9讲 镜像法
二、平面导体界面的镜像
1、点电荷对无限大接地导体平面的镜像
思考
• 无限大导体平板不接地,有何影响? • 有限大接地导体平板问题,可否用镜像法求解?
q q
h
h
第9讲 镜像法
二、平面导体界面的镜像
2、无限长线电荷对无限大接地导体平面的镜像
镜像法应用的关键点 镜像电荷的确定 :像电荷的个数、位置及其电量 明确等效求解的“有效场域”。
第9讲 镜像法
二、平面导体界面的镜像
1、点电荷对无限大接地导体平面的镜像
q
有效区域
q
h
h
h
q
(求解域外)
原电荷:q, h
相关文档
最新文档