数列·例题解析
等比数列·例题解析

等比数列·例题解析等比数列·例题解析【例1】已知Sn是数列{an}的前n项和,Sn=pn(p∈R,n∈N_),那么数列{an}.[ ]A.是等比数列B.当p≠0时是等比数列C.当p≠0,p≠1时是等比数列D.不是等比数列分析由Sn=pn(n∈N_),有a1=S1=p,并且当n≥2时,an=Sn-Sn-1=pn-pn-1=(p-1)pn-1但满足此条件的实数p是不存在的,故本题应选D.说明数列{an}成等比数列的必要条件是an≠0(n∈N_),还要注【例2】已知等比数列1,_1,_2,…,_2n,2,求_1·_2·_3·…·_2n.解∵1,_1,_2,…,_2n,2成等比数列,公比q∴2=1·q2n+1_1_2_3..._2n=q.q2.q3...q2n=q1+2+3+ (2)式;(2)已知a3·a4·a5=8,求a2a3a4a5a6的值.∴a4=2【例4】已知a>0,b>0且a≠b,在a,b之间插入n个正数_1,_2,…,_n,使得a,_1,_2,…,_n,b成等比数列,求证明设这n+2个数所成数列的公比为q,则b=aqn+1【例5】设a.b.c.d成等比数列,求证:(b-c)2+(c-a)2+(d-b)2=(a-d)2.证法一∵a.b.c.d成等比数列∴b2=ac,c2=bd,ad=bc∴左边=b2-2bc+c2+c2-2ac+a2+d2-2bd+b2=2(b2-ac)+2(c2-bd)+(a2-2bc+d2)=a2-2ad+d2=(a-d)2=右边证毕.证法二∵a.b.c.d成等比数列,设其公比为q,则:b=aq,c=aq2,d=aq3∴左边=(aq-aq2)2+(aq2-a)2+(aq3-aq)2=a2-2a2q3+a2q6=(a-aq3)2=(a-d)2=右边证毕.说明这是一个等比数列与代数式的恒等变形相综合的题目.证法一是抓住了求证式中右边没有b.c的特点,走的是利用等比的条件消去左边式中的b.c的路子.证法二则是把a.b.c.d统一化成等比数列的基本元素a.q去解决的.证法二稍微麻烦些,但它所用的统一成基本元素的方法,却较证法一的方法具有普遍性.【例6】求数列的通项公式:(1){an}中,a1=2,an+1=3an+2(2){an}中,a1=2,a2=5,且an+2-3an+1+2an=0思路:转化为等比数列.∴{an+1}是等比数列∴an+1=3·3n-1 ∴an=3n-1∴{an+1-an}是等比数列,即an+1-an=(a2-a1)·2n-1=3·2n-1再注意到a2-a1=3,a3-a2=3·21,a4-a3=3·22,…,an-an-1=3·2n-2,这些等式相加,即可以得到说明解题的关键是发现一个等比数列,即化生疏为已知.(1)中发现{an+1}是等比数列,(2)中发现{an+1-an}是等比数列,这也是通常说的化归思想的一种体现.证∵a1.a2.a3.a4均为不为零的实数∴上述方程的判别式Δ≥0,即又∵a1.a2.a3为实数因而a1.a2.a3成等比数列∴a4即为等比数列a1.a2.a3的公比.【例8】若a.b.c成等差数列,且a+1.b.c与a.b.c+2都成等比数列,求b的值.解设a.b.c分别为b-d.b.b+d,由已知b-d+1.b.b+d与b-d.b.b+d+2都成等比数列,有整理,得∴b+d=2b-2d 即b=3d代入①,得9d2=(3d-d+1)(3d+d)9d2=(2d+1)·4d解之,得d=4或d=0(舍)∴b=12【例9】已知等差数列{an}的公差和等比数列{bn}的公比都是d,又知d≠1,且a4=b4,a10=b10:(1)求a1与d的值;(2)b16是不是{an}中的项?思路:运用通项公式列方程(2)∵b16=b1·d15=-32b1∴b16=-32b1=-32a1,如果b16是{an}中的第k项,则-32a1=a1+(k-1)d∴(k-1)d=-33a1=33d∴k=34即b16是{an}中的第34项.解设等差数列{an}的公差为d,则an=a1+(n-1)d解这个方程组,得∴a1=-1,d=2或a1=3,d=-2∴当a1=-1,d=2时,an=a1+(n-1)d=2n-3当a1=3,d=2时,an=a1+(n-1)d=5-2n【例11】三个数成等比数列,若第二个数加4就成等差数列,再把这个等差数列的第3项加32又成等比数列,求这三个数.解法一按等比数列设三个数,设原数列为a,aq,aq2由已知:a,aq+4,aq2成等差数列即:2(aq+4)=a+aq2①a,aq+4,aq2+32成等比数列即:(aq+4)2=a(aq2+32)解法二按等差数列设三个数,设原数列为b-d,b-4,b+d 由已知:三个数成等比数列即:(b-4)2=(b-d)(b+d)b-d,b,b+d+32成等比数列即b2=(b-d)(b+d+32)解法三任意设三个未知数,设原数列为a1,a2,a3由已知:a1,a2,a3成等比数列a1,a2+4,a3成等差数列得:2(a2+4)=a1+a3②a1,a2+4,a3+32成等比数列得:(a2+4)2=a1(a3+32)③说明将三个成等差数列的数设为a-d,a,a+d;将三个成简化计算过程的作用.【例12】有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数.分析本题有三种设未知数的方法方法一设前三个数为a-d,a,a+d,则第四个数由已知条方法二设后三个数为b,bq,bq2,则第一个数由已知条件推得为2b-bq.方法三设第一个数与第二个数分别为_,y,则第三.第四个数依次为12-y,16-_.由这三种设法可利用余下的条件列方程组解出相关的未知数,从而解出所求的四个数,所求四个数为:0,4,8,16或15,9,3,1.解法二设后三个数为:b,bq,bq2,则第一个数为:2b-bq所求四个数为:0,4,8,16或15,9,3,1.解法三设四个数依次为_,y,12-y,16-_.这四个数为0,4,8,16或15,9,3,1.【例13】已知三个数成等差数列,其和为126;另外三个数成等比数列,把两个数列的对应项依次相加,分别得到85,76,84.求这两个数列.解设成等差数列的三个数为b-d,b,b+d,由已知,b-d+b+b+d=126∴b=42这三个数可写成42-d,42,42+d.再设另三个数为a,aq,aq2.由题设,得解这个方程组,得a1=17或a2=68当a=17时,q=2,d=-26从而得到:成等比数列的三个数为17,34,68,此时成等差的三个数为68,42,16;或者成等比的三个数为68,34,17,此时成等差的三个数为17,42,67.【例14】已知在数列{an}中,a1.a2.a3成等差数列,a2.a3.a4成等比数列,a3.a4.a5的倒数成等差数列,证明:a1.a3.a5成等比数列.证明由已知,有2a2=a1+a3①即a3(a3+a5)=a5(a1+a3)所以a1.a3.a5成等比数列.【例15】已知(b-c)logm_+(c-a)logmy+(a-b)logmz=0.(1)设a,b,c依次成等差数列,且公差不为零,求证:_,y,z成等比数列.(2)设正数_,y,z依次成等比数列,且公比不为1,求证:a,b,c成等差数列.证明(1)∵a,b,c成等差数列,且公差d≠0∴b-c=a-b=-d,c-a=2d代入已知条件,得:-d(logm_-2logmy+logmz)=0 ∴logm_+logmz=2logmy∴y2=_z∵_,y,z均为正数∴_,y,z成等比数列(2)∵_,y,z成等比数列且公比q≠1∴y=_q,z=_q2代入已知条件得:(b-c)logm_+(c-a)logm_q+(a-b)logm_q2=0 变形.整理得:(c+a-2b)logmq=0∵q≠1∴logmq≠0∴c+a-2b=0 即2b=a+c即a,b,c成等差数列。
数列的极限例题及详解

数列的极限例题及详解
极限是数学分析中的一个重要概念,它描述了某种函数在某点附近的行为趋势,同时提供了有效的技术来解决数列的极限问题。
我们本文将讨论数列的极限问题,包括定义和几个例子。
一.定义
极限是一个抽象的概念,它指的是一个数列中的每一项都趋近一定的值,这个值称为数列的极限。
另外,数列的极限也称为极限点或极限值。
当然,数学家们对极限的定义更加严格,但这些都不重要,我们只需要理解数列的极限概念即可。
二.例题
1.设a_n=(-1)^n/n,求a_n的极限。
解:
首先,由于(-1)^n为一个交替变化的算子,它的值在n变大时无论n的奇偶性如何,(-1)^n的值都保持不变,因此极限就是
(-1)^n/n的值。
考虑n变大时,(-1)^n/n的值接近于0,所以a_n
的极限就是0.
2.设a_n=(1+1/n)^n,求a_n的极限。
解:
这个例题比较特殊,因为算子(1+1/n)^n这里n和指数相关,考虑当n变大时,(1+1/n)^n的值就接近于e,所以a_n的极限就是e.
3.设a_n=1/n,求a_n的极限。
解:
由于1/n的值是从1开始逐渐减小,当n变大时,1/n的值就逐渐接近于0,所以a_n的极限就是0.
三.总结
本文讨论了数列的极限问题,先介绍了数列极限的定义,然后举例说明了3种数列的极限问题,这其中包含了数列算子计算中比较常见的概念,如交替系数,和指数极限等。
希望本文对读者有所帮助。
数列例题(含答案)

1.设等差数列{a n}的前n项和为S n,且S4=4S2,a2n=2a n+1.(1)求数列{a n}的通项公式;(2)设数列{b n}的前n项和为T n且(λ为常数).令c n=b2n(n∈N*)求数列{c n}的前n项和R n.【解答】解:(1)设等差数列{a n}的首项为a1,公差为d,由a2n=2a n+1,取n=1,得a2=2a1+1,即a1﹣d+1=0①再由S4=4S2,得,即d=2a1②联立①、②得a1=1,d=2.所以a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1;(2)把a n=2n﹣1代入,得,则.所以b1=T1=λ﹣1,当n≥2时,=.所以,.R n=c1+c2+…+c n=③④③﹣④得:=所以;所以数列{c n}的前n项和.2.等差数列{a n}中,a2=4,a4+a7=15.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=2+n,求b1+b2+b3+…+b10的值.【解答】解:(Ⅰ)设公差为d,则,解得,所以a n=3+(n﹣1)=n+2;(Ⅱ)b n=2+n=2n+n,所以b1+b2+b3+…+b10=(2+1)+(22+2)+…+(210+10)=(2+22+...+210)+(1+2+ (10)=+=2101.3.已知数列{log2(a n﹣1)}(n∈N*)为等差数列,且a1=3,a3=9.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)证明++…+<1.【解答】(I)解:设等差数列{log2(a n﹣1)}的公差为d.由a1=3,a3=9得2(log22+d)=log22+log28,即d=1.所以log2(a n﹣1)=1+(n﹣1)×1=n,即a n=2n+1.(II)证明:因为==,所以++…+=+++…+==1﹣<1,即得证.4.已知{a n}是正数组成的数列,a1=1,且点(,a n+1)(n∈N*)在函数y=x2+1的图象上.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若列数{b n}满足b1=1,b n+1=b n+2an,求证:b n•b n+2<b n+12.【解答】解:解法一:(Ⅰ)由已知得a n+1=a n+1、即a n+1﹣a n=1,又a1=1,所以数列{a n}是以1为首项,公差为1的等差数列.故a n=1+(n﹣1)×1=n.(Ⅱ)由(Ⅰ)知:a n=n从而b n+1﹣b n=2n.b n=(b n﹣b n﹣1)+(b n﹣1﹣b n﹣2)+…+(b2﹣b1)+b1=2n﹣1+2n﹣2+…+2+1=∵b n•b n+2﹣b n+12=(2n﹣1)(2n+2﹣1)﹣(2n+1﹣1)2=(22n+2﹣2n﹣2n+2+1)﹣(22n+2﹣2•2n+1+1)=﹣2n<0∴b n•b n+2<b n+12解法二:(Ⅰ)同解法一.(Ⅱ)∵b2=1b n•b n+2﹣b n+12=(b n+1﹣2n)(b n+1+2n+1)﹣b n+12=2n+1•bn+1﹣2n•bn+1﹣2n•2n+1=2n(b n+1﹣2n+1)=2n(b n+2n﹣2n+1)=2n(b n﹣2n)=…=2n(b1﹣2)=﹣2n<0∴b n•b n+2<b n+125.已知等差数列{a n}满足a1+a2=10,a4﹣a3=2(1)求{a n}的通项公式;(2)设等比数列{b n}满足b2=a3,b3=a7,问:b6与数列{a n}的第几项相等?【解答】解:(I)设等差数列{a n}的公差为d.∵a4﹣a3=2,所以d=2∵a1+a2=10,所以2a1+d=10∴a1=4,∴a n=4+2(n﹣1)=2n+2(n=1,2,…)(II)设等比数列{b n}的公比为q,∵b2=a3=8,b3=a7=16,∴∴q=2,b1=4∴=128,而128=2n+2∴n=63∴b6与数列{a n}中的第63项相等6.设等差数列{a n}的前n项和为S n,且a5+a13=34,S3=9.(1)求数列{a n}的通项公式及前n项和公式;(2)设数列{b n}的通项公式为,问:是否存在正整数t,使得b1,b2,b m(m≥3,m∈N)成等差数列?若存在,求出t和m的值;若不存在,请说明理由.【解答】解:(1)设等差数列{a n}的公差为d.由已知得即解得.故a n=2n﹣1,S n=n2(2)由(1)知.要使b1,b2,b m成等差数列,必须2b2=b1+b m,即,(8分).移项得:=﹣=,整理得,因为m,t为正整数,所以t只能取2,3,5.当t=2时,m=7;当t=3时,m=5;当t=5时,m=4.故存在正整数t,使得b1,b2,b m成等差数列.7.设{a n}是等差数列,b n=()an.已知b1+b2+b3=,b1b2b3=.求等差数列的通项a n.【解答】解:设等差数列{a n}的公差为d,则a n=a1+(n﹣1)d.∴b1b3=•==b22.由b1b2b3=,得b23=,解得b2=.代入已知条件整理得解这个方程组得b1=2,b3=或b1=,b3=2∴a1=﹣1,d=2或a1=3,d=﹣2.所以,当a1=﹣1,d=2时a n=a1+(n﹣1)d=2n﹣3.当a1=3,d=﹣2时a n=a1+(n﹣1)d=5﹣2n.8.已知等差数列{a n}的公差大于0,且a3,a5是方程x2﹣14x+45=0的两根,数列{b n}的前n项的和为S n,且S n=1﹣(1)求数列{a n},{b n}的通项公式;(2)记c n=a n b n,求证c n+1≤c n.【解答】解:(1)∵a3,a5是方程x2﹣14x+45=0的两根,且数列{a n}的公差d>0,∴a3=5,a5=9,公差∴a n=a5+(n﹣5)d=2n﹣1.又当n=1时,有b1=S1=1﹣当∴数列{b n}是等比数列,∴(2)由(Ⅰ)知,∴∴c n+1≤c n.9.已知等差数列{a n}的前n项和为S n,S5=35,a5和a7的等差中项为13.(Ⅰ)求a n及S n;(Ⅱ)令(n∈N﹡),求数列{b n}的前n项和T n.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,因为S5=5a3=35,a5+a7=26,所以,…(2分)解得a1=3,d=2,…(4分)所以a n=3+2(n﹣1)=2n+1;S n=3n+×2=n2+2n.…(6分)(Ⅱ)由(Ⅰ)知a n=2n+1,所以b n==…(8分)=,…(10分)所以T n=.…(12分)10.已知等差数列{a n}是递增数列,且满足a4•a7=15,a3+a8=8.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=(n≥2),b1=,求数列{b n}的前n项和S n.【解答】解:(1)根据题意:a3+a8=8=a4+a7,a4•a7=15,知:a4,a7是方程x2﹣8x+15=0的两根,且a4<a7解得a4=3,a7=5,设数列{a n}的公差为d由.故等差数列{a n}的通项公式为:(2)=又∴=11.设f(x)=x3,等差数列{a n}中a3=7,a1+a2+a3=12,记S n=,令b n=a n S n,数列的前n项和为T n.(Ⅰ)求{a n}的通项公式和S n;(Ⅱ)求证:;(Ⅲ)是否存在正整数m,n,且1<m<n,使得T1,T m,T n成等比数列?若存在,求出m,n的值,若不存在,说明理由.【解答】解:(Ⅰ)设数列{a n}的公差为d,由a3=a1+2d=7,a1+a2+a3=3a1+3d=12.解得a1=1,d=3∴a n=3n﹣2∵f(x)=x3∴S n==a n+1=3n+1.(Ⅱ)b n=a n S n=(3n﹣2)(3n+1)∴∴(Ⅲ)由(2)知,∴,∵T1,T m,T n成等比数列.∴即当m=1时,7=,n=1,不合题意;当m=2时,=,n=16,符合题意;当m=3时,=,n无正整数解;当m=4时,=,n无正整数解;当m=5时,=,n无正整数解;当m=6时,=,n无正整数解;当m≥7时,m2﹣6m﹣1=(m﹣3)2﹣10>0,则,而,所以,此时不存在正整数m,n,且1<m<n,使得T1,T m,T n成等比数列.综上,存在正整数m=2,n=16,且1<m<n,使得T1,T m,T n成等比数列.12.已知等差数列{a n}的前n项和为S n=pn2﹣2n+q(p,q∈R),n∈N+.(Ⅰ)求的q值;(Ⅱ)若a1与a5的等差中项为18,b n满足a n=2log2b n,求数列{b n}的前n和T n.【解答】解:(Ⅰ)当n=1时,a1=S1=p﹣2+q当n≥2时,a n=S n﹣S n﹣1=pn2﹣2n+q﹣p(n﹣1)2+2(n﹣1)﹣q=2pn﹣p﹣2∵{a n}是等差数列,a1符合n≥2时,a n的形式,∴p﹣2+q=2p﹣p﹣2,∴q=0(Ⅱ)∵,由题意得a3=18又a3=6p﹣p﹣2,∴6p﹣p﹣2=18,解得p=4∴a n=8n﹣6由a n=2log2b n,得b n=24n﹣3.∴,即{b n}是首项为2,公比为16的等比数列∴数列{b n}的前n项和.13.已知等差数列{a n}的前n项和为S n,且满足:a2+a4=14,S7=70.(Ⅰ)求数列a n的通项公式;(Ⅱ)设b n=,数列b n的最小项是第几项,并求出该项的值.【解答】解:(I)设公差为d,则有…(2分)解得以a n=3n﹣2.…(4分)(II)…(6分)所以=﹣1…(10分)当且仅当,即n=4时取等号,故数列{b n}的最小项是第4项,该项的值为23.…(12分)14.己知各项均为正数的数列{a n}满足a n+12﹣a n+1a n﹣2a n2=0(n∈N*),且a3+2是a2,a4的等差中项.(1)求数列{a n}的通项公式a n;(2)若b n=a n a n,S n=b1+b2+…+b n,求S n+n•2n+1>50成立的正整数n的最小值.【解答】解:(Ⅰ)∵a n+12﹣a n+1a n﹣2a n2=0,∴(a n+1+a n)(a n+1﹣2a n)=0,∵数列{a n}的各项均为正数,∴a n+1+a n>0,∴a n+1﹣2a n=0,即a n+1=2a n,所以数列{a n}是以2为公比的等比数列.∵a3+2是a2,a4的等差中项,∴a2+a4=2a3+4,∴2a1+8a1=8a1+4,∴a1=2,∴数列{a n}的通项公式a n=2n.(Ⅱ)由(Ⅰ)及b n=得,b n=﹣n•2n,∵S n=b1+b2++b n,∴S n=﹣2﹣2•22﹣3•23﹣4•24﹣﹣n•2n①∴2S n=﹣22﹣2•23﹣3•24﹣4•25﹣﹣(n﹣1)•2n﹣n•2n+1②①﹣②得,S n=2+22+23+24+25++2n﹣n•2n+1=,要使S n+n•2n+1>50成立,只需2n+1﹣2>50成立,即2n+1>52,∴使S n+n•2n+1>50成立的正整数n的最小值为5.15.设数列{a n}的前n项和为S n,且a1=1,a n+1=2S n+1,数列{b n}满足a1=b1,点P(b n,b n+1)在直线x﹣y+2=0上,n∈N*.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)设,求数列{c n}的前n项和T n.【解答】解:(Ⅰ)由a n+1=2S n+1可得a n=2S n﹣1+1(n≥2),两式相减得a n+1﹣a n=2a n,a n+1=3a n(n≥2).又a2=2S1+1=3,所以a2=3a1.故{a n}是首项为1,公比为3的等比数列.所以a n=3n﹣1.由点P(b n,b n+1)在直线x﹣y+2=0上,所以b n+1﹣b n=2.则数列{b n}是首项为1,公差为2的等差数列.则b n=1+(n﹣1)•2=2n﹣1(Ⅱ)因为,所以.则,两式相减得:.所以=.。
数列通项公式的完整求法,还有例题详解

一.不雅察法例1:依据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,…(2) ,17164,1093,542,211(3) ,52,21,32,1(4) ,54,43,32,21-- 解:(1)变形为:101-1,102―1,103―1,104―1,……∴通项公式为:110-=n n a(2);122++=n n n a n(3);12+=n a n (4)1)1(1+⋅-=+n na n n .点评:症结是找出各项与项数n的关系.二.公式法:当已知前提中有a n 和s n 的递推关系时,往往运用公式:a n =1*1(1)(2,)n n s n s s n n N -=⎧⎪⎨-≥∈⎪⎩来求数列的通项公式. 例1: 已知数列{a n }是公役为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),(1)求数列{ a n }和{ b n }的通项公式;解:(1)∵a 1=f (d -1) = (d -2)2,a 3 = f (d +1)= d 2,∴a 3-a 1=d 2-(d -2)2=2d ,∴d =2,∴a n =a 1+(n -1)d = 2(n -1);又b 1= f (q +1)= q 2,b 3 =f (q -1)=(q -2)2,∴2213)2(q q b b -==q 2,由q ∈R ,且q ≠1,得q =-2,∴b n =b ·qn -1=4·(-2)n -1例2. 等差数列{}n a 是递减数列,且432a a a ⋅⋅=48,432a a a ++=12,则数列的通项公式是( )(A)122-=n a n (B)42+=n a n (C)122+-=n a n(D)102+-=n a n解析:设等差数列的公役位d,由已知⎩⎨⎧==+⋅⋅+12348)()(3333a d a a d a ,解得⎩⎨⎧±==243d a ,又{}n a 是递减数列,∴2-=d ,81=a ,∴=--+=)2)(1(8n a n 102+-n ,故选(D).例 3. 已知等比数列{}n a 的首项11=a ,公比10<<q ,设数列{}n b 的通项为21+++=n n na ab ,求数列{}n b 的通项公式.解析:由题意,321++++=n n n a a b ,又{}n a 是等比数列,公比为q ∴q a a a a b b n n n n n n =++=+++++21321,故数列{}n b 是等比数列,)1(211321+=+=+=q q q a q a a a b ,∴)1()1(1+=⋅+=-q q q q q b n n n点评:当已知数列为等差或等比数列时,可直接运用等差或等比数列的通项公式,只需求得首项及公役公比.例4: 已知无限数列{}n a 的前n 项和为n S ,并且*1()n n a S n N +=∈,求{}n a 的通项公式?【解析】:1n n S a =-,∴111n n n n n a S S a a +++=-=-,∴112n n a a +=,又112a =, ∴12nn a ⎛⎫= ⎪⎝⎭.反思:运用相干数列{}n a 与{}n S 的关系:11a S =,1n n n a S S -=-(2)n ≥与提设前提,树立递推关系,是本题求解的症结.{}n a 的前n 项和n S ,知足关系()1lg nS n +=(1,2)n =⋅⋅⋅.试证数列{}n a 是等比数列.例5:已知数列{}n a 前n 项的和为s n =23a n -3,求这个数列的通项公式.剖析:用a n 调换s n -s 1-n (n ≥2)得到数列项与项的递推关系来求.解: a 1=23a 1-3, ∴ a 1=6s n =23a n -3 (n ∈N *) ① ∴s 1-n =23a 1-n -3 (n ≥2且n ∈N *) ②①- ②得:a n =23a n -23a 1-n∴21 a n =23a 1-n ,即1-n n a a =3(n ≥2且n ∈N *) ∴数列{}na 是以a 1=6,公比q 为3的等比数列. ∴a n=a 1q 1-n =6⨯31-n =2⨯3n.例6:已知正项数列{}n a 中,s n =21(a n +na 1),求数列{}n a 的通项公式.剖析:用s n -s 1-n (n ≥2)调换a n 得到数列n s 与1n s -的递推关系来求较易.解 s n =21(a n +na 1),∴a 1=21( a 1+11a )∴ a 1=1又a n = s n -s 1-n (n ≥2且n ∈N *)∴ s n =21(s n -s 1-n +1n s 1--n s )∴2s n =s n -s 1-n +1n s 1--n s∴sn+s 1-n =1n s 1--n s∴ s n2-s 1-n 2=1 (n ≥2且n ∈N *)∴数列{}2n s 是以a 21=1为首项,公役为1的等差数列. ∴ s n 2=1+(n -1)⨯1=n,即s n=n ,当n ≥2时,s n -s 1-n =a n =n -1-n 将n =1代入上式得a n =n -1-n演习:数列{}n a 前n 项和为n S ,已知n a =5n S -3(*n N ∈),求n a 三.累加法:求形如1n a +=n a +f(n)的递推数列的通项公式的根本办法.(个中f(n)能求前n 项和即可)运用1211()()n n n a a a a a a -=+-+⋅⋅⋅-求通项公式的办法称为累加法.累加法是求型如1()n n a a f n +=+的递推数列通项公式的根本办法(()f n 可求前n 项和).例1.已知数列{}n a 中,1129,21,(2,*)n n a a a n n n N -==+-≥∈,求这个数列的通项公式.剖析:由已知121n n a a n -=+-,得121n n a a n --=-,留意到数列{}n a 的递推公式的情势与等差数列的递推公式相似,因而,可累加法求数列的通项.解:数列{}n a 中,1129,21,(2,*)n n a a a n n n N -==+-≥∈,可得:以上各式相加,将n =1代入上式得228n a n =+演习:已知数列{}n a 中,113,2,(*)n n n a a a n N ==+∈+,求n a例2:已知数列6,9,14,21,30,…求此数列的一个通项. 解易知,121-=--n a a n n ∵,312=-a a ,523=-a a ,734=-a a ……,121-=--n a a n n各式相加得)12(7531-++++=-n a a n ∴)(52N n n a n ∈+=点评:一般地,对于型如)(1n f a a n n +=+类的通项公式,只要)()2()1(n f f f +++ 能进行乞降,则宜采取此办法求解.例3. 若在数列{}n a 中,31=a ,n a a n n +=+1,求通项n a . 解析:由na a n n +=+1得na a n n =-+1,所以11-=--n a a n n ,221-=---n a a n n ,…,112=-a a ,将以上各式相加得:1)2()1(1+⋅⋅⋅+-+-=-n n a a n ,又31=a 所以n a =32)1(+-n n例4已知无限数列{}n a 的的通项公式是12nn a ⎛⎫= ⎪⎝⎭,若数列{}n b 知足11b =,(1)n ≥,求数列{}n b 的通项公式.【解析】:11b =,112nn n b b +⎛⎫-= ⎪⎝⎭(1)n ≥,∴1211()()n n n b b b b b b -=+-+⋅⋅⋅-=1+12+⋅⋅+112n -⎛⎫⎪⎝⎭=1122n -⎛⎫- ⎪⎝⎭.反思:用累加法求通项公式的症结是将递推公式变形为1()n n a a f n +=+.112a =,112nn n a a +⎛⎫=+ ⎪⎝⎭*()n N ∈,求数列{}n a 通项公式.3.累乘法:求形如1n a +=g(n)n a 的递推数列通项公式的根本办法.(个中g(n)可求前n 项 积即可).运用恒等式321121(0,2)n n n n a a a a a a n a a a -=⋅⋅⋅≠≥求通项公式的办法称为累乘法,累乘法是求型如: 1()n n a g n a +=的递推数列通项公式的根本办法(数列()g n 可求前n 项积). 例1.若知足111,(*),1n n a na n N a n +==∈+求这个数列的通项公式. 剖析:由11n na n a n +=+知数列{}n a 不是等比数列,但其递推公式的情势与等比数列递推公式相似,因而,可累加法求数列的通项.解: 111,(*),1n n a na n N a n +==∈+ 以上各式相乘得:11231...234n a n a n -=⨯⨯⨯⨯1n a n∴=(2)n ≥∈*且n N将n =1代入上式得1n a n=变式演习:设{}n a 是首项为1的正数构成的数列,且2211(1)0(12)n n n n n a na a a n +++-+==,,…,则它的通项公式为n a =. 例2:在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式.解:由(n+1)·1+n a =n ·n a 得11+=+n n a a n n ,1a an =12a a ·23a a ·34a a …1-n n a a =n n n 11433221=-⋅⋅ 所以n a n 1=例3 已知数列{}n a 中,311=a ,前n 项和n S 与n a 的关系是n n a n n S )12(-= ,试求通项公式n a .解析:起首由n n a n n S )12(-=易求的递推公式:1232,)32()12(11+-=∴-=+--n n a a a n a n n n n n 5112521221=--=∴--a a n n a a n n 将上面n —1个等式相乘得:点评:一般地,对于型如1+n a =f (n)·n a 类的通项公式,当)()2()1(n f f f ⋅⋅ 的值可以求得时,宜采取此办法.例四 已知11a =,1()n n n a n a a +=-*()n N ∈,求数列{}n a 通项公式. 【解析】:1()n n n a n a a +=-,∴11n n a n a n++=,又有321121(0,2)n n n n a a a a a a n a a a -=⋅⋅⋅≠≥= 1×23n×××12n-1⋅⋅⋅=n ,当1n =时11a =,知足n a n =,∴n a n =. 反思: 用累乘法求通项公式的症结是将递推公式变形为1()n n a g n a +=.{}n a 知足11a =,123123(1)(2)n n a a a a n a n -=+++⋅⋅⋅+-≥.则{}n a 的通项公式是.4.结构新数列:经由过程变换递推关系,可将非等差数列或等比数列转化为等差或等比数列而求得通项公式的办法.(待定系数法)例题5:已知数列{}n a 中知足11a =,*123()n n a a n N +=-∈,求数列{}n a 的通项公式.剖析:将一阶线性递推关系形如1(0,1)n n a Aa B A B A B +=+≠≠、为常数,可转化为111(),111n n n n Ba B B A a A a A B A A a A +++-+=+=--+-即的一个新的等比数列或消常数项转化为212111()n n n n n n n na aa a A a a A a a ++++++--=-=-,即的一个等比数列.解法1:数列{}n a 中11=a ,321-=+n n a a (n 1≥)∴数列{}331--+n n a a 是以首项231-=-a ,公比为2的等比数列解法2: 数列{}n a 中11=a ,321-=+n n a a ① ∴3212-=++n n a a ②②-①得)(=-n n n n a a a a -++122又 21231a a =-=-∴数列{}1n n a a --是以首项212,a a -=-公比为2的等比数列∴11122,2n n n n n n a a a a ----⨯-=-=-即,(再运用累加法可求数列的通项公式,以下解法略)可求得()*23n n a n N =-∈+ (倒数法)例题6:已知数列{}n a 中知足11a =,131nn n a a a +=+,求数列的通项n a .剖析:可将形如一阶分式递推公式1nn n Ca a Aa B+=+,(A.B.C 为知足前提的常数),等式双方取倒数得:111.n n B Aa C a C+=+,又可运用求形如1''n n a A a B +=+(A ’.B ’为常数)的办法来求数列的通项.解:数列 {}n a 中, 11a =,131n n n aa a +=+∴1113n n a a +=+,即1113n na a +-= ∴数列1n a ⎧⎫⎨⎬⎩⎭是以111,a =公役为3的等差数列.变式演习:知数列{}n a 中知足11a =,1231nn n a a a +=+,求数列的通项.例题7:已知数列{}n a 中知足11a =,122(n n n a a n N ++=+∈),求数列{}n a 的通项公式.剖析:形如递推公式1.(1,1)n n n a q a d q d d +=+≠≠、为非零常数,q 可转化为111.n n n n a a q d d d d ++=+,若令nnn a b d =,则转化为形如1.(n n a A a B A B +=+、为常数)的办法来求数列的通项.(提醒:将122(n n n a a n N ++=+∈)转化为111222n n n n a a ++-=,解法略.)别的,数列通项求法还稀有学归纳猜测法,可以先求出数列的前n 项,然后不雅察前n 项的纪律,再进行归纳.猜测出通项,最后予以证实,例如:数列{}n a 知足a 1=4,n a =4-14n a -(n ≥2),求n a (理科请求,解略);还有对数变换法,例如:形如1(0,0,01)p n n na Ca a Cpp +=≠且可转化为1lg lg lg n n a p a C +=+问题解决;当然还有特点方程法等等. 六.待定系数法:例10:设数列}{n c 的各项是一个等差数列与一个等比数列对应项的和,若c 1=2,c 2=4,c 3=7,c 4=12,求通项公式c n解:设1)1(-+-+=n n bq d n a c 132211121237242-+=⇒⎪⎪⎩⎪⎪⎨⎧=====⎪⎪⎩⎪⎪⎨⎧=++=++=++=+∴n n n c a b d q bq d a bq d a bq d a b a 例11.已知数列{}n c 中,b b c +=11,bbc b c n n ++⋅=-11,个中b 是与n 无关的常数,且1±≠b .求出用n 和b 暗示的a n 的关系式.解析:递推公式必定可暗示为)(1λλ-=--n n c b c 的情势.由待定系数法知:bbb ++=1λλ 故数列⎭⎬⎫⎩⎨⎧--21b b c n 是首项为112221-=--b b b b c ,公比为b 的等比数列,故111121211222--=∴-=-=--++-b b b c b b b b b b b c n n n n n点评:用待定系数法解题时,常先假定通项公式或前n 项和公式为某一多项式,一般地,若数列}{n a 为等差数列:则c bn a n +=,cn bn s n +=2(b.c为常数),若数列}{n a 为等比数列,则1-=n n Aq a ,)1,0(≠≠-=q Aq A Aq s n n .七.帮助数列法例12:已知数}{n a 的递推关系为121+=+n n a a ,且11=a 求通项n a .解:∵121+=+n n a a ∴)1(211+=++n n a a 令1+=n n a b 则帮助数列}{n b 是公比为2的等比数列∴11-=n n q b b 即n n n q a a 2)1(111=+=+-∴12-=n n a例13:在数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a . 解析:在n n n a a a 313212+=++双方减去1+n a ,得)(31112n n n n a a a a --=-+++ ∴{}n n a a -+1是认为112=-a a 首项,认为31-公比的等比数列,∴11)31(-+-=-n n n a a ,由累加法得na =112211)()()(a a a a a a a n n n n +-+⋅⋅⋅+-+---- =+--2)31(n +--3)31(n …11)31(++-=311)31(11+---n =1])31(1[431+---n = 1)31(4347---n 例14: 已知数列{n a }中11=a 且11+=+n nn a a a (N n ∈),,求数列的通项公式.解:∵11+=+n n n a a a ∴11111+=+=+n n n n a a a a , 设nn a b 1=,则11+=+n n b b故{n b }是认为1111==a b 首项,1为公役的等差数列 ∴n n b n =-+=)1(1∴nb a n n 11==点评:这种办法相似于换元法, 重要用于已知递推关系式求通项公式.五 结构新数列: 类型1 )(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,运用累加法(逐差相加法)求解.例1:已知数列{}n a 知足211=a ,nn a a n n ++=+211,求n a .解:由前提知:111)1(1121+-=+=+=-+n n n n n n a a n n分离令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累加之,即)()()()(1342312--+⋅⋅⋅⋅⋅⋅+-+-+-n n a a a a a a a a)111()4131()3121()211(nn --+⋅⋅⋅⋅⋅⋅+-+-+-= 所以n a a n 111-=-211=a ,nn a n 1231121-=-+=∴类型2 n n a n f a )(1=+解法:把原递推公式转化为)(1n f a a nn =+,运用累乘法(逐商相乘法)求解.例2:已知数列{}n a 知足321=a ,n n a n na 11+=+,求n a . 解:由前提知11+=+n na a n n ,分离令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n个等式累乘之,即1342312-•⋅⋅⋅⋅⋅⋅•••n n a a a a a a a a nn 1433221-⨯⋅⋅⋅⋅⋅⋅⨯⨯⨯=n a a n 11=⇒ 又321=a ,na n 32=∴ 例3:已知31=a ,n n a n n a 23131+-=+)1(≥n ,求n a .解:123132231232)2(31)2(32)1(31)1(3a n n n n a n +-•+⨯-⨯•⋅⋅⋅•+---•+---=3437526331348531n n n n n --=⋅⋅⋅⋅=---.变式:(2004,全国I,)已知数列{a n },知足a 1=1,1321)1(32--+⋅⋅⋅+++=n n a n a a a a (n ≥2),则{a n }的通项1___n a ⎧=⎨⎩12n n =≥ 解:由已知,得n n n na a n a a a a +-+⋅⋅⋅+++=-+13211)1(32,用此式减去已知式,得当2≥n 时,n n n na a a =-+1,即n n a n a )1(1+=+,又112==a a ,n a a a aa a a a a n n =⋅⋅⋅====∴-13423121,,4,3,1,1,将以上n 个式子相乘,得2!n a n =)2(≥n 类型3 q pa a n n +=+1(个中p,q 均为常数,)0)1((≠-p pq ).解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,个中pqt -=1,再运用换元法转化为等比数列求解. 例4:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .解:设递推公式321+=+n n a a 可以转化为)(21t a t a n n -=-+即321-=⇒-=+t t a a n n .故递推公式为)3(231+=++n n a a ,令3+=n n a b ,则4311=+=a b ,且23311=++=++n n n n a a b b .所所以{}n b 认为41=b 首项,2为公比的等比数列,则11224+-=⨯=n n n b ,所以321-=+n n a . 变式:(2006,重庆,文,14)在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项n a =_______________(key:321-=+n n a )类型 4 n n n q pa a +=+1(个中p,q 均为常数,)0)1)(1((≠--q p pq ). (或1n n n a pa rq +=+,个中p,q, r 均为常数) .解法:一般地,要先在原递推公式双方同除以1+n q ,得:q q a q p q a n n n n 111+•=++引入帮助数列{}n b (个中nnnq a b =),得:qb q pb n n 11+=+再待定系数法解决.例5:已知数列{}n a 中,651=a ,11)21(31+++=n n n a a ,求n a .解:在11)21(31+++=n n n a a 双方乘以12+n 得:1)2(32211+•=•++n n n n a a令n n n a b •=2,则1321+=+n n b b ,解之得:n n b )32(23-= 所以nn nn n b a )31(2)21(32-== 类型5 递推公式为n n n qa pa a +=++12(个中p,q 均为常数).解 (特点根法):对于由递推公式n n n qa pa a +=++12,βα==21,a a 给出的数列{}n a ,方程02=--q px x ,叫做数列{}n a 的特点方程. 若21,x x 是特点方程的两个根,当21x x ≠时,数列{}n a 的通项为1211--+=n n n Bx Ax a ,个中A,B 由βα==21,a a 决议(即把2121,,,x x a a 和2,1=n ,代入1211--+=n n n Bx Ax a ,得到关于A.B 的方程组);当21x x =时,数列{}n a 的通项为11)(-+=n n x Bn A a ,个中A,B 由βα==21,a a 决议(即把2121,,,x x a a 和2,1=n ,代入11)(-+=n n x Bn A a ,得到关于A.B 的方程组).例6: 数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求n a 解(特点根法):的特点方程是:02532=+-x x .32,121==x x ,∴1211--+=n n n Bx Ax a 1)32(-⋅+=n B A .又由b a a a ==21,,于是⎩⎨⎧-=-=⇒⎪⎩⎪⎨⎧+=+=)(32332b a B a b A B A b BA a 故1)32)((323--+-=n nb a a b a 演习:已知数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a .1731:()443n n key a -=--. 变式:(2006,福建,文,22)已知数列{}n a 知足*12211,3,32().n n n a a a a a n N ++===-∈求数列{}n a 的通项公式;(I )解: 112211()()...()n n n n n a a a a a a a a ---∴=-+-++-+ 类型6 递推公式为n S 与n a 的关系式.(或()n n S f a =)解法:运用⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-)2()1(11n S S n S a n nn 与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解.例7:数列{}n a 前n 项和2214---=n n n a S .(1)求1+n a 与n a 的关系;(2)求通项公式n a . 解:(1)由2214---=n n n a S 得:111214-++--=n n n a S于是)2121()(1211--++-+-=-n n n n n n a a S S所以11121-+++-=n n n n a a a nnn a a 21211+=⇒+.(2)运用类型4(n n n q pa a +=+1(个中p,q 均为常数,)0)1)(1((≠--q p pq ))的办法,上式双方同乘以12+n 得:22211+=++n n n n a a由1214121111=⇒--==-a a S a .于是数列{}n na 2是以2为首项,2为公役的等差数列,所以n n a n n 2)1(222=-+=12-=⇒n n na归纳法:。
数列求通项公式例题解析

题型1 已知数列前几项求通项公式此题主要通过学生观察、试验、合情推理等活动,且在此基础上进一步通过比较、分析、概括、证明去揭示事物的本质,从而培养学生数学思维能力.相对于填空题或是选择题只需利用不完全归纳法进行猜想即可;对于解答题,往往还需要我们进一步加以证明.1. 在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如下表. 观察表中数据的特点,用适当的数填入表中空白( )内. 年龄(岁) 30 35 40 45 50 55 60 65 收缩压(水银柱 毫米) 110 115 120 125 130 135 (140)145 舒张压(水银柱 毫米) 70 73 75 78 80 83 ( 85)882. 根据下列5个图形及相应点的个数的变化规律,猜测第n 个图中有__n 2-n+1_个点.(1) (2) (3) (4) (5) 题型2 由a n 与S n 的关系求通项公式 3. 已知数列{}n a 的前n 项和21()2n S n n =+,则n a = n .4. 已知数列{}n a 的前n 项和32nn S =+,则n a = 152n -⎧⎨⎩12n n =≥,, .这类题目主要注意n s 与n a 之间关系的转化.即:n a =11n n S S S -⎧⎨-≥⎩ (n=1)(n 2)一般已知条件中含a n 与S n 的关系的数列题均可考虑用上述公式.点评:利用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-211n S S n S a n nn n 求解时,要注意对n 分类讨论,但若能合写时一定要合并.题型3定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.已知数列递推公式求通项公式5. 已知数列{}n a 的首项11a =,且13(2)n n a a n -=+≥,则n a = 3n-2 .6. 已知数列{}n a 的首项11a =,且13(2)n n a a n -=≥,则n a = 13n - .7. 等差数列}a {n 是递增数列,前n 项和为n S ,且931a ,a ,a 成等比数列,255a S =.求数列}a {n 的通项公式解:设数列}a {n 公差为)0d (d >。
完整版)数列典型例题(含答案)

完整版)数列典型例题(含答案)等差数列的前n项和公式为代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得。
因此,前项和为。
⑵由已知条件可得代入等差数列的前n项和公式,得到化简得因此,前项和为。
8.(2010山东理) 已知等差数列 $a_1,a_2,\ldots,a_n,\ldots$,其中 $a_1=1$,公差为 $d$。
1) 求 $a_5$ 和 $a_{10}$。
2) 满足 $a_1+a_2+\ldots+a_k=100$,$a_1+a_2+\ldots+a_{k+1}>100$,$k\in\mathbb{N}$,求该等差数列的前 $k$ XXX。
考查目的:考查等差数列的通项公式和前项和公式等基础知识,考查数列求和的基本方法以及运算求解能力。
答案:(1) $a_5=5d+1$,$a_{10}=10d+1$;(2) $k=13$,前$k$ 项和为 $819$。
解析:(1) 根据等差数列的通项公式 $a_n=a_1+(n-1)d$,可得 $a_5=1+4d$,$a_{10}=1+9d$。
2) 设该等差数列的前 $k$ 项和为 $S_k$,则由等差数列的前项和公式可得 $S_k=\dfrac{k}{2}[2a_1+(k-1)d]$。
根据已知条件可列出不等式组:begin{cases}S_k=100\\S_{k+1}>100end{cases}将 $S_k$ 代入得:frac{k}{2}[2+(k-1)d]=100整理得:$k^2+kd-400=0$。
等比数列的前n项和例题详细解法

等比数列的前n项和例题详细解法・例题解析【例1】设等比数列的首项为a(a>0),公比为q(q>0),前n项和为80,其中最大的一项为54,又它的前2n项和为6560,求a和q.解:由S n=80,S2n=6560,故q≠1∵a>0,q>1,等比数列为递增数列,故前n项中最大项为an.∴a n=aq n-1=54④将③代入①化简得a=q-1 ⑤由⑤,⑥联立方程组解得a=2,q=3证∵Sn=a1+a1q+a1q2+...+a1q n-1S2n=S n+(a1q n+a1q n+1+...+a1q2n-1)=S n+q n(a1+a1q+...+a1q n-1)=S n+q n S n=S n(1+q n)类似地,可得S3n=S n(1+q n+q2n)说明本题直接运用前n项和公式去解,也很容易.上边的解法,灵活地处理了S2n、S3n与S n的关系.介绍它的用意在于让读者体会利用结合律、提取公因式等方法将某些解析式变形经常是解决数学问题的关键,并且变得好,则解法巧.【例2】一个有穷的等比数列的首项为1,项数为偶数,其奇数项的和为85,偶数项的和为170,求这个数列的公比和项数.分析设等比数列为{a n},公比为q,取其奇数项或偶数项所成的数列仍然是等比数列,公比为q2,首项分别为a1,a1q.解设项数为2n(n∈N*),因为a1=1,由已知可得q≠1.即公比为2,项数为8.说明运用等比数列前n项和公式进行运算、推理时,对公比q要分情况讨论.有关等比数列的问题所列出的方程(组)往往有高次与指数方程,可采用两式相除的方法达到降次的目的.【例3】已知S n是数列{a n}的前n项和,S n=p n(p∈R,n∈N*),那么数列{a n}.[ ]A.是等比数列B.当p≠0时是等比数列C.当p≠0,p≠1时是等比数列D.不是等比数列分析:由S n=p n(n∈N*),有a1=S1=p,并且当n≥2时,a n=S n-S n-1=p n-p n-1=(p-1)p n-1但满足此条件的实数p是不存在的,故本题应选D.【例4】已知等比数列1,x1,x2,...,x2n,2,求x1・x2・x3*...・x2n.解∵1,x1,x2,...,x2n,2成等比数列,公比q∴2=1・q2n+1x1x2x3...x2n=q・q2・q3...q2n=q1+2+3+ (2)式;(2)已知a3・a4・a5=8,求a2a3a4a5a6的值.∴a4=2【例5】设a、b、c、d成等比数列,求证:(b-c)2+(c-a)2+(d-b)2=(a-d)2.证法一∵a、b、c、d成等比数列∴b2=ac,c2=bd,ad=bc∴左边=b2-2bc+c2+c2-2ac+a2+d2-2bd+b2=2(b2-ac)+2(c2-bd)+(a2-2bc+d2)=a2-2ad+d2=(a-d)2=右边证毕.证法二∵a、b、c、d成等比数列,设其公比为q,则:b=aq,c=aq2,d=aq3∴左边=(aq-aq2)2+(aq2-a)2+(aq3-aq)2=a2-2a2q3+a2q6=(a-aq3)2=(a-d)2=右边证毕.说明这是一个等比数列与代数式的恒等变形相综合的题目.证法一是抓住了求证式中右边没有b、c的特点,走的是利用等比的条件消去左边式中的b、c的路子.证法二则是把a、b、c、d 统一化成等比数列的基本元素a、q去解决的.证法二稍微麻烦些,但它所用的统一成基本元素的方法,却较证法一的方法具有普遍性.【例6】求数列的通项公式:(1){an}中,a1=2,a n+1=3a n+2(2){an}中,a1=2,a2=5,且a n+2-3a n+1+2a n=0思路:转化为等比数列.∴{a n+1}是等比数列∴a n+1=3・3n-1 ∴a n=3n-1∴{a n+1-a n}是等比数列,即a n+1-a n=(a2-a1)・2n-1=3・2n-1再注意到a2-a1=3,a3-a2=3・21,a4-a3=3・22,...,a n-a n-1=3・2n-2,这些等式相加,即可以得到说明解题的关键是发现一个等比数列,即化生疏为已知.(1)中发现{a n+1}是等比数列,(2)中发现{a n+1-a n}是等比数列,这也是通常说的化归思想的一种体现.证∵a1、a2、a3、a4均为不为零的实数∴上述方程的判别式Δ≥0,即又∵a1、a2、a3为实数因而a1、a2、a3成等比数列∴a4即为等比数列a1、a2、a3的公比.。
人教版高考数学一轮专项复习:数列题型11种(含解析)

数列题型11种(方法+例题+答案)1.作差法求通项公式2.累乘法求通项公式3.累加法求通项公式4.构造法求通项公式(一)5.构造法求通项公式(二)6.取倒法求通项公式7.分组求和法求前n项和8.错位相减法求前n项和9.裂项相消法求前n项和10.数列归纳法与数列不等式问题11.放缩法与数列不等式问题1、作差法求数列通项公式已知n S (12()n a a a f n +++= )求n a ,{11,(1),(2)n n n S n a S S n -==-≥注意:分两步,当2≥n 时和1=n 时一、例题讲解1、(2015∙湛江)已知数列{}n a 的前n 项和n S 满足1121n n n S S S +-+=+(2n ≥,n *∈N ),且12a =,23a =. ()1求数列{}n a 的通项公式2、(2015∙茂名)已知数列}{n a 的前n 项和为n S ,11=a ,且)1()1(221+=+-+n n S n nS n n ,)(*∈N n ,数列}{n b 满足,0212=+-++n n n b b b )(*∈N n ,53=b ,其前9项和为63(1)求数列}{n a 和}{n b 的通项公式3、(2015∙中山)设等差数列}{n a 的前n 项和为n S ,且,40,842==S a 数列}{n b 的前n 项和为n T ,且,032=+-n n b T *∈N n 。
(1)求数列}{n a ,}{n b 的通项公式4、(2015∙揭阳)已知n S 为数列}{n a 的前n 项和,)1(3--=n n na S n n ,(*∈N n ),且,112=a (1)求1a 的值;(2)求数列}{n a 的通项公式5、(2014∙汕头)数列{}n a 中,11=a ,n S 是{}n a 前n 项和,且)2(11≥+=-n S S n n(1)求数列{}n a 的通项公式6、(2014∙肇庆)已知数列}{n a 的前n 项和为n S ,且满足,21=a )1(1++=+n n S na n n (1)求数列}{n a 的通项公式7、(2014∙江门)已知数列}{n a 的前n 项和122-=n S n ,求数列}{n a 的通项公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列·例题解析
【例1】 求出下列各数列的一个通项公式
(1)14(2)23,,,,,…,,,,…38516732964418635863 (3)(4)12--13181151242928252
,,,,…,,,,… 解 (1)所给出数列前5项的分子组成奇数列,其通项公式为2n -1,而前5项的分母所组成的数列的通项公式为2×2n ,所以,已知数列的
通项公式为:.a =2n 12
n n+1- (2)从所给数列的前四项可知,每一项的分子组成偶数列,其通项公式为2n ,而分母组成的数列3,15,35,63,…可以变形为1×3,3×5,5×7,7×9,…即每一项可以看成序号n 的(2n -1)与2n +1的积,也即(2n -1)(2n +1),因此,所给数列的通项公式为:
a n n n n =-+22121()()
. (3)从所给数列的前5项可知,每一项的分子都是1,而分母所组成的数列3,8,15,24,35,…可变形为1×3,2×4,3×5,4×6,5×7,…,即每一项可以看成序号n 与n +2的积,也即n(n +2).各项的符号,奇数项为负,偶数项为正.因此,所给数列的通项公式为:
a n n n n =-+()()
112·. (4)所给数列可改写为,,,,,…分子组成的数列为124292162252
1,4,9,16,25,…是序号n 的平方即n 2,分母均为2.因此所
给数列的通项公式为.a =n n 2
2
【例2】 求出下列各数列的一个通项公式.
(1)2,0,2,0,2,…
(2)10000,,,,,,,, (131517)
(3)7,77,777,7777,77777,…
(4)0.2,0.22,0.222,0.2222,0.22222,…
解 (1)所给数列可改写为1+1,-1+1,1+1,-1+1,…可以看作数列1,-1,1,-1,…的各项都加1,因此所给数的通项公式a n =(-1)n+1+1.
所给数列亦可看作2,0,2,0…周期性变化,因此所给数列的
通项公式为奇数为偶数这一题说明了数列的通项公式不唯一.a =2(n )0(n )n ⎧⎨⎩
(2)100012345所给数列,,,,,,,…可以改写成,,,,,,…分母组成的数列为,,,,,,,…是自然13151711021304150617
67 数列n ,分子组成的数列为1,0,1,0,1,0,…可以看作是2,
02020,,,,,…的每一项的构成为,因此所给数列的通项公式为.1211211211()()-+=-+++n n n a n (3)7777777777777779所给数列,,,,,…可以改写成×,79 7979797979
79797979
79
×,×,×,×…,可以看作×-,×-,×-,×-,×-,…因此所给数列的通项公式为-.99999999999999(101)(1001)(10001)(100001)(1000001)a = (101)n n (4)所给数列0.2,0.22,0.222,0.2222,0.22222,…可以改写
成×,×,×,×,×,…可以看作×-,×-,×-,×-,×-,…因此所给数列的通式公式为.2929292929
2929292929
291110
0.90.990.9990.99990.99999(10.1)(10.01)(10.001)(10.0001)(10.00001)a =n ()-n
说明
1.用归纳法写出数列的一个通项公式,体现了由特殊到一般的思维规律.对于项的结构比较复杂的数列,可将其分成几个部分分别考虑,然后将它们按运算规律结合起来.
2.对于常见的一些数列的通项公式(如:自然数列,a n =n ;自然数的平方数列,a n =n 2;奇数数列,a n =2n -1;偶数数列,a n =2n ;
倒数数列,=要很熟悉,由联想将较复杂的数列通过合理的转化归a n 1n
) 纳出数列的通项公式.
3.要掌握对数列各项的同加、同减、同乘以某一个不等于零的数的变形方法,将其转化为常见的一些数列.
【例3】 已知数列,,,,…则是这个数列的第25221125 几项.
解 4a =3n 1n n 77n 由所给数列的前项,,,可归纳得通项公式为.此时运用方程的思想问题转化为解关于正整数的方程,解得=,即是该数列的第项.
252211253125-=-n 【例4】 已知下面各数列{a n }的前n 项和S n 的公式,求数列的通项公式.
(1)S n =2n 2-3n (2)S n =n 2+1
(3)S n =2n +3 (4)S n =(-1)n+1·n
解 (1)当n=1时,a 1=S 1=-1;
当n ≥2时,a n =S n -S n-1=(2n 2-3n)-[2(n -1)2-3(n -1)]=4n -5,由于a 1也适合此等式,因此a n =4n -5.
(2)当n =1时,a 1=S 1=1+1=2;
当n ≥2时,a n =S n -S n-1=n 2+1-[(n -1)2+1]=2n -1,由于a 1不适合于此等式,
因此,≥且∈.a = 2 n =12n 1
n 2n N *n -⎧⎨⎩ (3)当n =1时,a 1=S 1=2+3=5;
当n ≥2时,a n =S n -S n-1=2n +3-(2n-1+3)=2n-1,由于a 1不适合于此等式,
因此,=≥且∈.a 5 n =12 n 2n *n 1n N -⎧⎨⎩
(4)当n =1时,a 1=S 1=(-1)2·1=1;
当n ≥2时,a n =S n -S n-1=(-1)n+1·n -(-1)n ·(n -1)=(-1)n+1(2n -1),由于a 1也适可于此等式,因此a n =(-1)n+1(2n -1),n ∈N*.
说明 已知S n 求a n 时,要先分n =1和n ≥2两种情况分别进行计算,然后验证能否统一.
【例5】 a =a
1n(n 1)
(n 2)a 1n n 11已知+≥,=,-- (1)写出数列的前5项;
(2)求a n . 解 (1)a =a (n 2)a =1a a n n 1123由已知+≥,得=·=·--+-=+=+=111122132
3213291653
n n ()
() a a 45=·=·53143
531122112747415474120362095
+=+==+=+== (2)由第(1)小题中前5项不难求出.
a n n a n
n n =-=-2121()或
【例6】 数列{a n }中,a 1=1,对所有的n ≥2,都有a 1·a 2·a 3·…·a n =n 2.
(1)求a 3+a 5;
(2)256225
是此数列中的项吗? 解 由已知:a 1·a 2·a 3·…·a n =n 2得
a a a a a a a a a n n N a n n n n n n n ==--1231231
2
2212···……····……·≥,∈,≥.由于=不适合于此等式.因此(*)()
a 11
a = 1 n =1 n n 2n *n 2
()n N -⎧⎨⎪⎩⎪12,≥且∈
(1)a a =3(2)n =16n 16*16352+令,解方程可得∵=∈,∴是此数列的第项.254
61162562251256225
2222
2
+==-n n N () 说明 (1)“知和求差”、“知积求商”是数列中常用的基本方法.
(2)运用方程思想求n ,若n ∈N*,则n 是此数列中的项,反之,则不是此数列中的项.
【例7】 已知数a n =(a 2-1)(n 3-2n)(a=≠±1)是递增数列,试确定a 的取值范围.
解法一 ∵数列{a n }是递增数列,∴a n+1>a n
a n+1-a n =(a 2-1)[(n +1)3-2(n +1)]-(a 2-1)(n 3-2n)
=(a 2-1)[(n +1)3-2(n +1)-n 3+2n]
=(a 2-1)(3n 2+3n -1)
∵(a2-1)(3n2+3n-1)>0
又∵n∈N*,∴3n2+3n-1=3n(n+1)-1>0
∴a2-1>0,解得a<-1或a>1.
解法二∵{a n}是递增数列,∴a1<a2即:
(a2-1)(1-2)<(a2-1)(8-4)
化简得a2-1>0
∴a<-1或a>1
说明本题从函数的观点出发,利用递增数列这一已知条件,将求取值范围的问题转化为解不等式的问题。