图形的翻折--知识讲解
图形的旋转与翻折变换

图形的旋转与翻折变换数学是一门抽象而又实用的学科,其中的几何学更是与我们生活息息相关。
在初中数学学习中,图形的旋转与翻折变换是一个重要的内容,它不仅能够帮助我们更好地理解几何形状,还可以应用于实际问题的解决。
本文将围绕图形的旋转与翻折变换展开讨论,希望能够给中学生及其父母带来一些启示和帮助。
一、图形的旋转变换图形的旋转变换是指围绕某一点或某一直线旋转图形,使得图形在平面上发生位置改变。
旋转变换有两个重要的概念:旋转中心和旋转角度。
以正方形为例,当我们将正方形绕着一个点旋转时,这个点就是旋转中心。
而旋转角度则是指旋转的角度大小,可以是顺时针或逆时针旋转。
通过旋转变换,我们可以观察到图形在平面上的位置、大小和形状的改变。
例如,我们可以通过旋转变换将一个正方形变成一个菱形,或者将一个长方形变成一个平行四边形。
这种变换不仅可以让我们更好地理解图形之间的关系,还可以应用于实际问题的解决。
二、图形的翻折变换图形的翻折变换是指将图形沿着某一直线对称翻折,使得图形在平面上发生位置改变。
翻折变换有两个重要的概念:对称轴和对称点。
以三角形为例,当我们将三角形沿着一条直线对称翻折时,这条直线就是对称轴。
对称点则是指对称轴上的一个点,使得该点与图形上的另一个点关于对称轴对称。
通过翻折变换,我们可以观察到图形在平面上的位置、大小和形状的改变。
例如,我们可以通过翻折变换将一个正方形变成一个长方形,或者将一个长方形变成一个平行四边形。
这种变换不仅可以帮助我们更好地理解图形之间的关系,还可以应用于实际问题的解决。
三、应用举例图形的旋转与翻折变换在实际问题中有广泛的应用。
我们可以通过一些例子来说明。
例一:小明要设计一个标志,标志上有一个正方形和一个菱形,他希望将正方形旋转一定角度后与菱形重叠,从而形成一个新的图形。
他应该如何选择旋转的角度呢?解析:首先,我们可以确定旋转中心为正方形的中心点。
然后,通过观察可以发现,当正方形旋转45度时,它与菱形重叠。
翻折问题解题技巧

翻折问题解题技巧翻折问题解题技巧翻折问题是指在平面上将一张纸沿着某个方向折叠后形成的图形,通常需要根据已知条件求出未知部分的面积、周长等数值。
以下是一些解决翻折问题的技巧。
一、理解基本概念在解决翻折问题之前,需要先掌握几个基本概念:1.对称轴:指将纸张对称折叠所得到的直线,通常存在于图形中心或边缘。
2.重心:指图形所占面积各点的平均位置,可以通过细分图形来计算。
3.相似:指两个图形具有相同的比例尺寸和形状,但大小不同。
二、利用对称性质许多翻折问题都具有对称性质,利用这种性质可以简化计算过程。
以下是一些常见的对称性质:1.中心对称:当纸张沿着中心对称轴折叠时,两侧图形完全相同。
2.轴对称:当纸张沿着轴对称轴折叠时,两侧图形关于该轴对称。
3.点对称:当纸张沿着点对称轴折叠时,图形关于该点对称。
三、分割图形对于复杂的翻折图形,可以将其分割成多个简单的图形来计算。
以下是一些常用的分割方法:1.平移法:将图形沿着某个方向平移,然后利用重叠部分计算未知量。
2.切割法:将图形沿着某条线段切割成两个或多个简单的图形进行计算。
3.投影法:将图形在一个平面上投影到另一个平面上,然后计算未知量。
四、利用相似性质当翻折后得到的两个图形相似时,可以利用相似性质来求解未知量。
以下是一些常见的相似性质:1.比例关系:当两个相似的三角形中,对应边长之比相等时,它们的面积之比也相等。
2.高度关系:当两个相似的三角形中,高度之比等于对应边长之比时,它们的面积之比也相等。
3.底角关系:当两个相似的三角形中,底角之间互为对应角时,它们的面积之比也相等。
五、实际问题解决翻折问题不仅存在于数学练习中,也常常出现在实际生活中。
以下是一些实际问题的解决方法:1.纸箱设计:当需要设计一个纸箱时,可以利用翻折技巧计算出所需的纸张面积和尺寸。
2.衣服剪裁:当需要剪裁一件衣服时,可以利用翻折技巧计算出各个部分的面积和尺寸。
3.建筑设计:当需要设计一个建筑物时,可以利用翻折技巧计算出各个部分的面积和尺寸。
图形的旋转、平移与翻折

图形的旋转、平移与翻折在几何学中,图形的旋转、平移与翻折是常见的操作,可以通过这些操作改变图形的位置、形状和方向。
这些操作在数学、物理学和计算机图形学等领域都有广泛的应用。
本文将介绍图形的旋转、平移与翻折的基本概念和相关应用。
一、图形的旋转图形的旋转是指将图形绕一个旋转中心按一定角度旋转。
旋转可以使图形发生变化,同时保持图形的大小和形状不变。
旋转操作常用的单位是度数,顺时针为正方向,逆时针为负方向。
图形的旋转可以通过旋转矩阵来描述。
设图形的坐标为(x, y),旋转的角度为θ,旋转中心为(x0, y0),则旋转后的坐标可以表示为:x' = (x - x0) * cosθ - (y - y0) * sinθ + x0y' = (x - x0) * sinθ + (y - y0) * cosθ + y0通过这个公式,我们可以将任意点围绕旋转中心进行旋转变换。
图形的旋转可以应用于很多领域,例如地理学中的地图旋转变换、物理学中的刚体旋转运动等。
在计算机图形学中,旋转操作经常用于图像处理、动画制作等方面。
二、图形的平移图形的平移是指将图形沿着特定的方向和距离进行移动。
平移操作只改变图形的位置而不改变图形的形状和方向。
图形的平移可以通过平移向量来表示。
设图形的坐标为(x, y),平移向量为(dx, dy),则平移后的坐标可以表示为:x' = x + dxy' = y + dy通过这个公式,我们可以将图形沿水平方向和垂直方向进行平移变换。
图形的平移操作在几何学中经常用于研究几何关系、证明定理等方面。
在计算机图形学中,平移操作经常用于图像编辑、游戏开发等方面。
三、图形的翻折图形的翻折是指将图形在一个轴线上进行对称变换。
翻折操作将图形上的每个点关于轴线镜像对称,使得图形在镜像轴两侧成为对称的。
图形的翻折可以通过翻折矩阵来表示。
设图形的坐标为(x, y),轴线为x轴或y轴,对称变换为x轴翻折或y轴翻折,对应的翻折矩阵为:对于x轴翻折:x' = xy' = -y对于y轴翻折:x' = -xy' = y通过这个公式,我们可以将图形关于x轴或y轴进行翻折变换。
翻折与轴对称图形概述

翻折与轴对称图形概述翻折图形翻折图形是指将平面图形沿折痕折叠后所得到的图形。
翻折是重叠、翻转和旋转的组合,具有对称性质。
翻折图形通常由两份或更多的重叠的图形构成,其中一部分可以被折叠,以覆盖另一部分。
在几何学中,翻折可以用于证明对称性质和相等性质。
从计算机图形学的角度来看,翻折图形可以用于生成3D几何图形,并用于建模、动画和游戏等应用。
翻折图形的特点主要体现在以下方面:对称性质翻折图形具有显著的对称性质,其中的每个部分都与其他部分对称。
这使得翻折图形具有美学价值,并容易识别和记忆。
平面几何中的应用翻折图形在平面几何中有广泛的应用,包括证明对称性质、相等性质和角度关系等。
在计算机科学的研究领域中,翻折图形可以用于进行基本的几何图形建模和数值计算,例如得到一些经典的几何图形表达式。
良好的计算机可视化性翻折图形具有良好的计算机可视化性质,因为它们可以很容易地用于生成3D几何模型,从而在计算机图形学中得到广泛的应用。
这使得翻折图形成为了计算机科学中最受欢迎的几何形式之一。
轴对称图形轴对称图形(或称为镜像图形)是指通过对称轴旋转180度而变换而来的图形。
轴对称图形的特点是其具有完全相同的外观,在镜面前和镜面后形状一致。
因此,很多生物体,例如昆虫、植物和动物等都具有显著的轴对称性质。
轴对称图形的特点主要体现在以下方面:对称性质轴对称图形具有杰出的对称性质,其中的每个部分都具有镜像对称。
由于这种对称性质,轴对称图形在美学上具有强烈的吸引力,并易于识别和记忆。
广泛的应用轴对称图形在生物学中的广泛应用是其最大的亮点之一。
它被应用于解释许多生物相关问题,例如致死基因、细胞生长和随机变异等。
此外,在计算机科学中,轴对称图形还可以应用到很多应用领域,例如计算机辅助设计、数字印制和3D制模等。
良好的计算机可视化性轴对称图形具有良好的计算机可视化性质,因为它们可以用于生成3D几何模型,并且在计算机科学中得到广泛的应用。
这种对称性质也使它成为计算机科学中最常见的几何形式之一。
圆中的重要模型之翻折(学生版)-初中数学

圆中的重要模型之翻折模型圆中的翻折模型是将一个圆形的纸片沿着一条直线翻折,使得纸片的边缘与直线重合,从而形成新的圆形或圆环。
翻折前后,对应边相等,对应角相等,对应点之间的连线被折痕垂直平分。
这种模型可以用于创建各种不同的图形和图案,是一种非常有趣的几何模型。
模型1.圆中的翻折模型(弧翻折必出等腰)【知识储备】1、翻折变换的性质:翻折前后,对应边相等,对应角相等,对应点之间的连线被折痕垂直平分;2、圆的性质:在同圆或等圆中,相等的圆周角所对的弧、弦相等;同弧或等弧所对的圆周角相等;3、等圆相交:如图,圆O和圆G为两个相等的圆,圆O和圆G相交,相交形成的弦为AB,则弦AB为整个图形的对称轴,圆心O和圆心G关于AB对称,弧ACB和弧ADB为等弧,且关于AB对称;4、弧翻折(即等圆相交):如图,以弦BC为对称轴,将弧BC翻折后交弦AB于点D,那么弧CDB所在的圆圆G与圆O是相等的圆,且两个圆关于BC对称,故圆心O、G也关于BC对称。
模型1.圆中的翻折模型(弧翻折必出等腰)1)条件:如图,以圆O的一条弦BC为对称轴将弧BC折叠后与弦AB交于点D,结论:CD=CA2)条件:特别地,弧BC 折叠后过圆心,结论:CD =CA ,∠CAB =60°1)证明:如图,设折叠后的BDC所在的圆心是G ,连接AC ,CD .由题意得(折叠):BC =BDC ,即:BC =BD +DC ,∴∠CAB =∠DCB +∠CBD ,∵∠CDA =∠DCB +∠CBD ,∴∠CAB =∠CDA ,∴CD =CA 。
2)证明:如图,连接AC ,CD ,CO ;由1)中证明知:CO =CA ,∵OA =OC ,∴CO =CA =OA ,∴△OAC 为等边三角形,∴∠CAB =60°。
1.(23-24九年级上·浙江台州·阶段练习)如图,在⊙O 中,AB 为直径,C 为圆上一点,将劣弧AC 沿弦AC 翻折,交AB 于点D (不与点O 重合),连结CD .若∠BAC =24°,则∠ACD 的度数为()A.44°B.46°C.48°D.42°2.(23-24九年级上·安徽合肥·期末)如图,△ABC 为⊙O 的内接三角形,AB =8,CD 为AB 边上的中线,将BC 沿BC 翻折后刚好经过点D ,若已知⊙O 的半径为25,则BC 的长是()A.43B.62C.65D.533.(2023·山西吕梁·模拟预测)如图,AC 是半圆O 的一条弦,以弦AC 为折线将弧AC 折叠后过圆心O ,⊙O 的半径为2,则圆中阴影部分的面积为()A.23B.2π-3C.3D.3+14.(23-24九年级上·江苏无锡·期末)如图,将⊙O 上的BC �沿弦BC 翻折交半径OA 于点D ,再将BD �沿BD 翻折交BC 于点E ,连接DE .若AD =2OD ,则DE AB 的值.5.(2024·陕西西安·模拟预测)如图,在⊙O 中,点C 为AB 的中点,将弦AB 下方的部分沿弦AB 翻折,使点C 与圆心O 重合.点D 为优弧AB 上一点连接BD 、CD 、BC .若∠BCD =45°,AB =23,则CD =()A.6+2B.23C.1+23D.326.(2023春·江苏盐城·九年级校考期末)如图,AB 是半径为2的⊙O 的弦,将AB 沿着弦AB 折叠,正好经过圆心O ,点C 是折叠后的AB上一动点,连接并延长BC 交⊙O 于点D ,点E 是CD 的中点,连接AC ,AD,EO.则EO的最小值为.7.(23-24九年级上·浙江金华·期中)在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连接CD.(1)如图1,若点D与圆心O重合,AC=3,求⊙O的半径r;(2)如图2,若点D与圆心O不重合,∠BAC=20°,请求出∠DCA的度数.(3)如图2,如果AD=6,DB=2,求AC的长.8.(2023·安徽淮南·一模)如图,已知,AB是⊙O的直径,点C为圆上一点.(1)如图①,将AC 沿弦AC翻折,交AB于D,若点D与圆心O重合,AC=23,则⊙O的半径为;(2)如图②,将BC 沿弦BC翻折,交AB于D,把BD 沿直径AB翻折,交BC于点E.(Ⅰ)若点E恰好是翻折后的BD 的中点,则∠B的度数为;(Ⅱ)如图③,连接DE,若AB=10,OD=1,求线段DE的长.1.(2023春·浙江金华·九年级校联考阶段练习)如图,△ABC 是⊙O 的内接三角形,将劣弧AC沿AC 折叠后刚好经过弦BC 的中点D .若AC =6,∠C =60°,则⊙O 的半径长为()A.137B.237C.1321 D.23212.(2023·吉林长春·统考模拟预测)如图,在⊙O 中,点C 在优弧AB 上,将BC 沿BC 折叠后刚好经过AB的中点D ,连接AC ,CD .则下列结论中错误的是()①AC =CD ;②AD =BD ;③AC +BD =BC ;④CD 平分∠ACBA.1B.2C.3D.43.(2022春·福建福州·九年级校考阶段练习)如图,AB 是⊙O 的直径,BC 是⊙O 的弦,先将BC 沿BC 翻折交AB 于点D ,再将BD 沿AB 翻折交BC 于点E .若BE =DE ,则∠BCD 的度数是()A.22.5°B.30°C.45°D.60°4.(2022秋·湖北武汉·九年级校考阶段练习)若直角三角形中两直角边之比是1:22,则称直角三角形为完美三角形.如图,C是⊙O上半圆上一点,将⊙O沿着BC折叠,与直径AB交于圆心O右侧一点D,若△ABC是完美三角形,则BD:AD为()A.3:1B.22:1C.3:22D.7:25.(2022春·九年级课时练习)如图,已知半圆O的直径AB=8,C是半圆上一点,沿AC折叠半圆得到弧ADC,交直径AB于点D,若DA、DB的长均不小于2,则AC的长可能是()A.7B.6C.5D.46.(2023·河南周口·统考二模)如图①,AB为半圆O的直径,点C在AB 上从点A向点B运动,将BC 沿弦BC,翻折,翻折后BC 的中点为D,设点A,C间的距离为x,点O,D间的距离为y,图②是点C运动时y 随x变化的关系图象,则AB的长为.7.(2023·北京·统考二模)如图,AB是⊙O的直径,C是⊙O上一点,将弧AC沿直线AC翻折,若翻折后的图形恰好经过点O,则∠CAB=°.8.(2023秋·湖北武汉·九年级校考阶段练习)如图,以AB为直径的半圆沿弦BC折叠后,AB与CB 相交于点D .若CD =13BD ,则∠ACD =.9.(2023·浙江宁波·校考一模)如图,⊙O 的半径为4.将⊙O 的一部分沿着弦AB 翻折,劣弧恰好经过圆心O .则这条劣弧的弧长为.10.(2023春·广西·九年级专题练习)如图,CD 是⊙O 的直径,AB 是⊙O 的弦,AB ⊥CD ,垂足为G ,OG :OC =3:5,AB =8,点E 为圆上一点,∠ECD =15°,将CE沿弦CE 翻折,交CD 于点F ,图中阴影部分的面积=.11.(2023秋·四川南充·九年级统考期末)如图,在⊙O 中,将劣弧AB 沿弦AB 折叠得弧AmB ,P 是弧AmB 上一动点,过点P 作弧AmB 的切线与⊙O 交于C ,D 两点,若⊙O 的半径为13,AB =24,则CD 的长度最大值为.12.(2024·浙江杭州·九年级校考阶段练习)在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.(1)如图1,若点D与圆心O重合,则∠BAC的度数为;(2)如图2,若点D与圆心O不重合,∠BAC=16°,则∠DCA的度数为.13.(2022秋·湖北武汉·九年级校考阶段练习)如图,C是半圆上一点,AB是直径,将弧BC沿BC翻折交AB于点D,再将弧BD沿BD翻折交BC于点E,若E是弧BD的中点,AD=2,则阴影部分面积为.14.(2024·浙江金华·九年级校考期中)在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连接CD.(1)如图1,若点D与圆心O重合,AC=3,求⊙O的半径r;(2)如图2,若点D与圆心O不重合,∠BAC=20°,请求出∠DCA的度数.(3)如图2,如果AD=6,DB=2,求AC的长.15.(2023·河北张家口·校考模拟预测)如图1,在平行四边形ABCD中,∠BAD=45°,AB=4,BC=a,以AB为直径在AB的上方作半圆O,交AD于点E,P为AB 上一动点(不与点A,B重合),将半圆O沿BP折叠,得到点A的对称点A ,点O的对称点O .(1)当点O 在半圆O 上时,∠ABA 的度数为;(2)如图2,连接BD ,BP 与AE 交于点F .已知P A ∥BD ,且a =22+26.①求BD 的长度及EF BF 的值;②求阴影部分的面积;(3)点P 在AB 上运动过程中,当直线DC 能与A P 所在的圆相切时,直接写出a 的取值范围.16.(2023·河北承德·九年级校考期末)如图,⊙O 的直径AB =4,AC 是弦,沿AC 折叠劣弧AC,记折叠后的劣弧为AmC .(1)如图1,当AmC 与AB 相切于A 时.①为画出AmC 所在圆的圆心P ,请选择你认为正确的答案.甲:在AmC 上找一点E ,连AE 、CE 并分别作它们的中垂线,交点为P ;乙:分别以A 、C 为圆心,以AO 为半径作弧,除O 外两弧另一个交点即为圆心P .A.甲正确B.乙正确C.甲乙都正确D.都不正确②选择合适的方法做出圆心P ,求AC 的长;直接写出此时∠CAO 的度数.(2)如图2,当AmC经过圆心O 时,求AC 的长;(3)如图3,当AmC 覆盖圆心且与直径交于点D ,若∠CAO =25°,直接写出∠ACD 的度数.17.(2023·广东汕头·九年级校考期中)如图,在⊙O中,点C、D在AB 上,将BC 沿BC折叠后,点D的对应点E刚好落在弦AB上,连接AC、EC.(1)证明:AC=EC;(2)连接AD,若CE=5,AD=8,求⊙O的半径.18.(2023·江苏扬州·九年级统考阶段练习)在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.(1)如图1,若点D与圆心O重合,AC=3,求⊙O的半径r.(2)如图2,若点D与圆心O不重合,∠BAC=26°,请直接写出∠DCA的度数是.(3)如图2,若点D与圆心O不重合,BD=5,AD=7,求AC的长.。
初中几何翻折问题总结

初中几何翻折问题总结几何翻折问题是初中数学中较为有趣且富有挑战性的部分。
通过对几何图形的翻折,我们可以培养空间想象能力和逻辑思维能力。
本文将对初中阶段的几何翻折问题进行总结,帮助大家更好地掌握这一知识点。
一、翻折问题基本概念1.翻折:将一个几何图形沿着某条线(折痕)翻转到另一个位置,使得翻折前后的图形完全重合。
2.折痕:翻折过程中,图形沿着某条线折叠,这条线称为折痕。
3.对称轴:翻折过程中,图形两侧关于折痕对称的直线称为对称轴。
二、翻折问题类型及解题方法1.点的翻折(1)问题:已知点A关于直线l翻折得到点A",求点A"的坐标。
(2)解题方法:利用对称性,找到点A关于直线l的对称点A",根据对称点的性质求解。
2.线段的翻折(1)问题:已知线段AB关于直线l翻折得到线段A"B",求线段A"B"的长度及位置关系。
(2)解题方法:利用对称性,找到线段AB关于直线l的对称线段A"B",根据对称线段的性质求解。
3.角的翻折(1)问题:已知角∠ABC关于直线l翻折得到角∠A"B"C",求角∠A"B"C"的大小及位置关系。
(2)解题方法:利用对称性,找到角∠ABC关于直线l的对称角∠A"B"C",根据对称角的性质求解。
4.几何图形的翻折(1)问题:已知几何图形ABC关于直线l翻折得到几何图形A"B"C",求几何图形A"B"C"的面积、周长等。
(2)解题方法:利用对称性,找到几何图形ABC关于直线l的对称图形A"B"C",根据对称图形的性质求解。
三、翻折问题注意事项1.注意翻折过程中图形的形状、大小、位置关系的变化。
2.熟练掌握对称点的性质,如:对称点关于对称轴的距离相等、对称点连线的延长线交于对称轴等。
三角形的翻折课件

在三角形翻折的过程中,图形的形状和大小不会发生变化,只是位置和方向可能会 改变。
轴对称与中心对称
轴对称是指一个图形关于一条直线对称 ,折叠后两部分完全重合。
中心对称是指一个图形关于一个点对称 ,旋转180度后两部分完全重合。
等边三角形的翻折
等边三角形翻折后形成的三个直角三 角形是全等的,因此可以通过翻折来 证明等边三角形的性质。
翻折后形成的三个直角三角形可以通 过勾股定理来证明其边长关系,从而 证明等边三角形的性质。
一般三角形的翻折
一般三角形翻折后形成的两个直角三角形不一定是全等的,因此需要通过其他方 法来证明其性质。
可以通过将一般三角形划分为几个小三角形,然后利用勾股定理来证明其边长关 系,从而证明一般三角形的性质。
04
三角形翻折的解题策略
理解翻折的本质
翻折是一种几何变换,通过将一个平面图形沿着一条直线折 叠,使图形的一部分与另一部分重合,从而得到一个新的图 形。
在三角形翻折问题中,关键是要理解翻折的本质是图形的对 称性,即图形经过翻折后,其对称轴两侧的部分是全等的。
高阶练习题与解析
题目5
将一个三角形进行多次翻折,每次翻折都使相邻两边中点连线与翻折线重合,求所有折痕的总长度。
解析
这道题需要运用三角形的中位线性质和翻折的性质,通过逐步推导和计算,求出所有折痕的总长度。
THANKS
感谢观看
基础练习题
题目1
将一个等边三角形进行翻折,使其一 个顶点与相对边的中点重合,求折痕 的长度。
题目2
将一个直角三角形进行翻折,使一条 直角边与斜边的中点重合,求折痕的 长度。
数学翻折知识点总结

数学翻折知识点总结翻折是数学中一个重要的概念,涉及到几何、代数、空间几何和统计等多个领域。
翻折是指将一个几何图形或者曲线沿着一条直线或一个平面进行对称折叠,从而得到与原图形或曲线相似但方向相反的图形或曲线。
翻折可以改变图形或曲线的位置、方向和形状,对于解决数学问题和解题方法有着重要的作用。
在数学中,翻折的相关知识点主要包括基本概念、性质、应用以及解题技巧等方面。
一、基本概念1. 翻折的基本定义翻折是指将一个平面图形或者曲线按某一直线或面对称折叠,得到与原图形相似但方向相反的图形。
翻折可以分为折痕在同一平面上的平面翻折和折痕不在同一平面上的空间翻折两种情况。
2. 翻折的基本术语翻折中涉及到一些基本的术语,比如折叠线、折叠点、对称中心、对称轴等。
折叠线是指沿着哪条直线或者平面进行翻折;折叠点是指图形或曲线上的一个点经过翻折后与自身重合的点;对称中心是指图形或曲线的中心点,围绕对称中心进行翻折可以得到对称图形;对称轴是指图形或曲线的轴线,围绕对称轴进行翻折可以得到对称图形。
二、性质1. 翻折的不变性翻折可以保持图形的大小、形状和角度不变。
也就是说,翻折前后的图形是全等的,它们的对应边和对应角相等。
这个性质在解题中有着重要的作用,可以通过翻折来研究图形的性质和解决问题。
2. 翻折的对称性翻折后的图形与原图形是关于折叠线或者对称轴对称的。
这个性质可以帮助我们判断图形的对称性,并且可以通过对称性来求解问题。
三、应用1. 几何图形的翻折在几何中,翻折是一个重要的概念,常常用于图形的对称性判断、对称图形的性质研究和证明等。
比如,通过翻折可以得出一些图形的性质,如正方形的对角线相等、矩形的对边相等等。
2. 曲线的翻折在代数和空间几何中,常常涉及到曲线的翻折。
通过翻折可以将曲线转化为对称形式,从而简化问题的求解。
比如,通过翻折可以证明一些函数的性质,如奇函数和偶函数的定义和性质等。
3. 空间几何中的翻折在空间几何中,翻折是一个重要的方法,可以用于求解平面和立体图形的性质和解题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的翻折--知识讲解
【学习目标】
1.理解轴对称图形以及两个图形成轴对称的概念,弄清它们之间的区别与联系,能识别轴对称图形.2.理解图形成轴对称的性质,会画一些简单的关于某直线对称的图形.
【要点梳理】
要点一、轴对称图形
轴对称图形的定义
一个图形沿着某一条直线翻折过来,直线两旁的部分能互相重合,这个图形叫做轴对称图形,这条直线就是它的对称轴.
要点诠释:
轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定.
要点二、轴对称
1.轴对称定义
把一个图形沿着某一条直线翻折,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,这条直线叫做对称轴.两个图形中的对应点,叫做关于这条直线的对称点.要点诠释:
1.轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合.2.成轴对称的两个图形对应线段的长度和对应角的大小相等,他们的形状相同,大小不变.
2.轴对称与轴对称图形的区别与联系
轴对称与轴对称图形的区别主要是:轴对称是指两个图形,而轴对称图形是一个图形;轴对称图形和轴对称的关系非常密切,若把成轴对称的两个图形看作一个整体,则这个整体就是轴对称图形;反过来,若把轴对称图形的对称轴两旁的部分看作两个图形,则这两个图形关于这条直线(原对称轴)对称.要点三、轴对称与轴对称图形的性质
轴对称的性质:若两个图形关于某直线对称,那么对称轴垂直平分任何一对对应点所连线段;
轴对称图形的性质:轴对称图形的对称轴也垂直平分任何一对对应点所连线段.
要点四、对称轴的作法
在成轴对称的两个图形中,分别联结两对对应点,取中点,联结两个中点所得的直线就是对称轴.要点诠释:
在轴对称图形和成轴对称的两个图形中,对应线段、对应角相等.成轴对称的两个图形,如果它
们的对应线段或延长线相交,那么交点一定在对称轴上.如果两个图形的对应点连线被同一条直线垂
直平分,那么这两个图形关于这条直线对称.
【典型例题】
类型一、判断轴对称图形
1、在下图的几何图形中,一定是轴对称图形的有()
A.2个B.3个C.4个D.5个
【答案】D;
【解析】每个图形都能找到对称轴,使对称轴两边的图形重合
【总结升华】我们将图中的图形分别沿着某条直线对折,看看图形的两边能否重合,若重合则是轴对称图形,否则就不是.
举一反三:
【变式】下列图形中,对称轴最少的对称图形的是 ( )
【答案】A;
提示:A一条对称轴,B四条对称轴,C五条对称轴,D三条对称轴.
2、将一个正方形纸片依次按图a,b的方式对折,然后沿图c中的虚线裁剪,成图d样式,将纸展
开铺平,所得到的图形是图中的()
【思路点拨】根据轴对称的性质将最后一个图形一步一步的还原,做出他关于某条对称轴的对称图形,即可得到最后的答案.
【答案】D;
【解析】
【总结升华】只需要根据对称轴补全图形就能找到答案,或者就真正的实际动手操作一下,这里推荐利用我们所学过的轴对称的知识解决问题.
举一反三:
【变式】将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余
部分展开后的平面图形是( )
【答案】A ;
类型二、作轴对称图形
3、如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC (即三角形的顶点都在格点上).
(1)在图中作出△ABC 关于直线l 对称的△A 1B 1C 1;(要求:A 与A 1,B 与B 1,C 与C 1相对应)
(2)在(1)问的结果下,连接BB 1,CC 1,求四边形BB 1C 1C 的面积.
【思路点拨】(1)关于轴对称的两个图形,各对应点的连线被对称轴垂直平分.做BM ⊥直线l 于点M ,并延长到B 1,使B 1M=BM ,同法得到A ,C 的对应点A 1,C 1,连接相邻两点即可得到所求的图形;
(2)由图得四边形BB 1 C 1C 是等腰梯形,BB 1=4,CC 1=2,高是4,根据梯形的面积公式进行计算即可.
【答案与解析】 解(1)如图,△A 1B 1C 1 是△ABC 关于直线l 的对称图形.
(2)由图得四边形BB 1C 1C 是等腰梯形,BB 1=4,CC 1=2,高是4.
()11111BB CC 42
S =+⨯四形B B C C 边=12(4+2)×4=12.
【总结升华】此题主要考查了作轴对称变换,在画一个图形的轴对称图形时,先确定一些特殊点的对称点,找到这些特殊点的对称点之后,联结即可.
【变式】以直线l 为对称轴画出图的另一半.
【答案】
做圆弧的对称图形时以原来圆弧的圆点为圆点,原半径为半径作出圆弧的对称图形.对于矩形的对称图形和外框图形的对称图形首先作出各顶点关于l的对称点,连接对称点即为原图形的对称图形.
类型三、作对称轴
4、下图中的两个图形是轴对称图形,如何画出它们的对称轴呢?
【答案与解析】
(1)联结AA'、BB'(2)取AA'的中点E ,BB'的中点F,(3)联结EF,则直线EF为所求的对称轴.。