新鲁教版六年级数学下册《整式的乘法(1)》导学案

合集下载

鲁教版(五四制)六年级下册6.5整式的乘法(第一课时)学案()

鲁教版(五四制)六年级下册6.5整式的乘法(第一课时)学案()

6.5 整式的乘法(第一课时)学案学习目标: 1、 能准确说出,并理解单项式乘单项式的法则。

2、熟练应用单项式乘单项式的法则进行单项式的乘法运算。

学习重点:单项式乘法的法则,以及应用法则进行单项式的乘法运算。

学习难点:应用法则进行单项式的乘法运算时,符号问题和前面几个法则的综合运用。

情境导入:京京用两张大小相同的纸(长为1.2x,宽为x ),精心制作了两幅画,如下图所示,第一幅画的大小与纸的大小相同,第二幅画在纸的上、下方各留有xm 81的空白,(1) 第一幅画的面积是多少?第二幅呢?你是怎样计算的?(同桌交流方法)(2) 若把图中的长1.2xm 改为xm ,其他不变,两幅图画的面积又是多少呢? 说说你的想法。

新课学习:一、 想一想:(1)z y xyz ab b a 22223••和怎样计算,说说你的做法。

(让学生分别说说自己的想法)(2)总结一下,如何进行单项式乘单项式的运算。

二、单项式乘单项式的法则单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

如:3a 2b ·2ab 2=(3×2)·(a 2·a )·(b ·b 2)=6a 3b 3 三、 例题学习:例1 计算:(先让学生看课本36页,自学) (2)[]3332326)()3()2()3()2(b a b a a a b a =•••-⨯-=-•- (3)2432222222847)2(7z y x z y x xy xyz z xy =•=•说明:在今后的运算中,单项式和其它单项式或多项式作运算时,本身可以不加括号。

随堂练习:计算: 提高练习:(学生板演,订正)计算 四、 问题解决:(1) 一家住房的结构如图所示,这家房子的主人打算把卧室以外的部分都铺上地砖,至少需要多少平方米的地砖?如果某种地砖每平方米的价格是a 元,那么购买所需地砖至少需要多少元?(2) 已知房屋的高度为h 米,那么至少需要多少平方米的壁纸?如果壁纸每平方米的价格是b 元,那么购买所需壁纸至少需要多少元?(计算时不扣除门窗所占的面积) 分析:(1)客厅的面积:2x ·4y 卧室的面积:2x ·2y 厨房的面积:x ·2y 卫生间的面积:xy32233232222533)(2)()6()()()5(8552)4()()3()2()2(4)1(c a abc ab y x z xy xyz y x xy c ab b a xy xy ••--•-•-••-•2225323222223)(631)6()4()2()5(2)4(23)3()4()3()2(25)1(ac c b a b a xy y x z y yz a ab b ab yx x -••-•••-•-•2xxy2y4x卫生间厨房卧室客厅你能类似分析需要壁纸的面积吗? (自己列式计算,小组对照) 五、 集中练习; 选择题1.计算2322)(xy y x -⋅的结果是( ) A. 105y x B. 84y x C. 85y x - D.126y x2.计算)3()21(23322y x z y x xy -⋅-⋅的结果是( )A. z y x 663B. z y x 663-C. z y x 553D.z y x 553- 3.计算22232)3(2)(b a b a b a -⋅+-的结果为( ) A. 3617b a - B. 3618b a - C. 3617b a D. 3618b a 4.992213y x yxyx n nm m =⋅⋅++-,则=-n m 34( )A. 8B. 9C. 10D.无法确定 5.下列计算错误的是( )A.122332)()(a a a =-⋅ B.743222)()(b a b a ab =-⋅-C.212218)3()2(++=-⋅n n n n y x y x xyD.333222))()((z y x zx yz xy -=--- 填空题:1..___________))((22=x a ax 2.3522)_)((_________y x y x -= 3..__________)()()3(343=-⋅-⋅-y x y x4.._____________)(4)3(523232=-⋅-b a b a5.解答题 1.计算下列各题(1))83(4322yz x xy -⋅ (2))312)(73(3323c b a b a - (3))125.0(2.3322n m mn - (4))53(32)21(322yz y x xyz -⋅⋅-2、已知:81,4-==y x ,求代数式52241)(1471x xy xy ⋅⋅的值.其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。

鲁教版数学六下整式的乘法学案(20201124144624)

鲁教版数学六下整式的乘法学案(20201124144624)

文档从网络中收集,已重新整理排版.word版本可编借•欢迎下载支持.整式的乘法学法指导例1计算(l)(-3.5x2y2) • (0.6A>I4Z)⑵(-6/Z?3)2• (~a2b)点拨:先确定运算顺序,再利・用单项式乘单项式的法则进行讣算.(1)直接作乘法即可,(2)先作乘方运算,再作乘法运算.解:(1)(-3.5灼2)・(0 6兀我)(在疋・兀中,x的指数是1,不要漏掉)⑵(-d/?3)2• (~a2b)“炉・(~a2b)——先算乘方=-(a2・a2)(b6・b)——再算乘法=-a4b7例2计算(1)R"(N”-R+9)(2)(4,)2 ・[T-x ・(W-l)]点拨:先确定运算顺序,再运用相应的公式进行计算.(2)中用到了幕的乘方,单乘多及去括号儿种运算公式及方法,要一步步进行.解:(1)0 (宀/+9)=a,n・a m~a in・加+9宀=a2m~a m+3+9a m(2)(4X3)2・[x3— x ・丄2疋一1)]=16炉_ 2 y+力——r先算乘方=16X6[-X3+A]——合并中括号里的同类项= -16x9+16x7例3计算(1 )(2a+3b)(3a+2b)(2)(3m-n)2点拨:这两题都需运用多项式相乘的法则进行计算,能合并同类项的要将结果化文档从网络中收集,已重新整理排版.word 版本可编辑:•欢迎下载支持.到最简的形式•注意第(2)题要化为多乘多的形式.解:(1) (2d+3b)(3"+2b 「)=2a • 3a+2a • 2b+3b • 3a+3b • 2b=6(r+4ah+9ab+6h 2=6(r+13ab+()b 2(2) (3m-n)2注意乘方的意义=(3〃”)(3d) =3m • 3m -3m • n -n • 3m+n • n=9m 2-3mn-3rnn+n 2=9nr-6mn+n 2例4 (1)(冷小2)2・[巧(*刃+与2] r(2)(-3x)2-2(x-5)(x-2)点拨:对于混合运算,一定要注意运算顺序,尤其是乘方运算,每次运算后的结 果要打上括号才能进行下一步运算.「解:(1)(- ^xy 2)2 • [_xy(2x-y)+xy 2^\9(2)(-3X )2-2(X -5)(X -2)=9X 2-2(X 2-Z¥-5,V + 10)=9启2(启7.丫+]0.)=9^-2^2+14^-20=lx 2+\4x-20说明:一般来说,为了简化运算,能合并同类项的可先合并同类项,减少项 数,再进行下一步的运算.= -x 4y 5例5解下列方程8.r-(2x-3)(4x+2)=14文档从网络中收集,已重新整理排版.word版本可编输欢迎下载支持. 点拨:利用多"乘多法则将方程左边部分化简,再运用解方程的方法求出X.解:8X2-(Z V-3)(4X+2)=148.r-(8x2+4.v-12x-6)=148.r-(8x2-8x-6)=148,V2-8,V2+8A+6=148*8x=\例6长方形的一边长3〃?+2“,另一边比它大〃求长方形的面积.点拨:先分别求出长和宽,再根据长方形的面积二长X宽”求出面积.列式的时候,表示每条越的多项式都要用括号括起来.解:长方形的宽:3m+2n长方形的长=(3m+2n)+(m-n)=4m+n长方形的面积:(3m+2n) • (4m+n)=3m • 4m+3m • n+2n • 4m+2n T• n=12nr+3mn+Smn+2n2=\2nr+\\nm+hr答:长方形的面积是\2m2+llmn+2n2.。

中学六年级数学下册 6.5 整式的乘法(第1课时)导学案(无答案)(新版)鲁教版五四制 学案

中学六年级数学下册 6.5 整式的乘法(第1课时)导学案(无答案)(新版)鲁教版五四制 学案

6.5 整式的乘法〔第1课时〕【学习目标】1.通过观察,能归纳出单项式乘以单项式的运算法那么。

2.会熟练利用单项式乘单项式的法那么进展相关运算.【学教过程】复习回忆1. 同底底数幂的乘法: 幂的乘方: 积的乘方: 同底数幂的除法:2. 叫单项式。

叫单项式的系数。

3.计算:①22()a = ②32(2)-= ③231[()]2-= ④-3m 2·2m 4 = ⑤ ()()=-÷-a a 5 其中④⑤题计算结果的系数分别是 , 。

新知探究1光的速度约为3×105千米/秒,太阳光照射到地球上需要的时间大约是5×102秒,你知道地球与太阳的距离约是多少千米吗?列式为:该式的结果等于多少呢?〔运用交换律和结合律〕× =〔 〕×〔 〕=2如果将上式中的数字改为字母,即ac 5·bc 2,这是何种运算?你能算吗?ac 5·bc 2=〔 〕×〔 〕=3.仿照第2题写出以下式子的结果(1)3a 2·2a 3 = 〔 〕×〔 〕= (2) -3m 2·2m 4 =〔 〕×〔 〕=(3)x 2y 3·4x 3y 2 = 〔 〕×〔 〕= (4)2a 2b 3·3a 3= 〔 〕×〔 〕=4.观察第3题的每个小题的式子有什么特点?由此你能得到的结论是:单项式与单项式相乘,新知应用〔写出计算过程〕①〔13a 2〕·〔6ab 〕 ②4y· (-2xy 2) ③2(5)(3)a b a -- ④〔2x 3〕·22 ⑤2333(3)(2)a b abc -- ⑥(-3x 2y) ·(-2x)2归纳总结: (1)通过计算,我们发现单项式乘单项式法那么实际分为三点:一是先把各因式的__________相乘,作为积的系数;二是把各因式的_____ 相乘,底数不变,指数相加;三是只在一个因式里出现的________,连同它的________作为积的一个因式。

六年级数学下册 6.5.1 整式的乘法导学案1(无答案) 鲁教版五四制

六年级数学下册 6.5.1 整式的乘法导学案1(无答案) 鲁教版五四制

6.5.1整式的乘法【学习目标】1、理解并熟记单项式乘法法则;2、能熟练进行单项式乘法法则进行相关运算。

【学习重点】单项式乘法运算法则的应用。

【学习过程】一、复习回顾、引入新课。

3、问题思考:如何进行单项式乘以单项式的运算?4、将自己不会的问题记录在下面:三、学生展示、教师点拨。

1、学生展示自主学习成果。

2、教师点拨,知识点总结。

单项式与单项式相乘,把它们的_________、____________分别相乘,其余字母________________________,_______________。

3、学生展示随练,学生订正,教师点评。

4、巩固练习:写课本习题6.8的习题。

(写在下在的空白处)并有学生板书过程,并点评。

四、分层训练、人人达标。

A组:1、判断,不对的加以改正( 1 ) 3a2 ·2a3 = 6a6 ( ),改正:__________________( 2 ) 2x2 ·3x2=6x4 ( ) ,改正:__________________( 3 ) 3x2 ·4x2=12x2 ( ) ,改正:__________________( 4 ) 5y3 ·3y5=15y15 ( ) ,改正:__________________2、计算下列各题:(1)3a2b · 2ab3c; (2)(xyz2)·(4y2z3)(3)(2xy2)·3xyz (4)(2xy)2 ·3xyzB 组:1、计算(1));2(53ab ab -∙ (2) abc b a 944332∙(3) 22)-2ab b a (∙ (4) 3223)(2z x xyz xy ∙∙-(5)(31ab 2)3 · 27a 2bc (6)()2351091031⨯⋅⎪⎭⎫⎝⎛⨯五、拓展提高,知识延伸若(a m+1 b n+2)·(a 2n-1 b 2m )=a 5 b 3,则m+n 的值为多少?六、课堂小结:七、作业布置:2、必做题:完成基训基础园、缤纷园。

鲁教版六年级下册第6章 整式的乘除-教案(含答案)

鲁教版六年级下册第6章 整式的乘除-教案(含答案)

一、同底数幂的乘法(一) 知识点知识点1 同底数幂的意义及同底数幂的乘法法则 ★1.同底数幂的意义同底数幂是指底数相同的幂。

如32与52有相同底数2,()52-与()72-有相同底数-2,(ab)³与(ab)7有相同底数ab ,(x-y)²与(x-y)³有相同底数(x-y )等. ★2.同底数幂的乘法法则:nm nmaa a +=⋅(m ,n 都是正整数)。

同底数幂相乘,底数不变,指数相加。

★注意:(1)用同底数幂的意义来解释法则∶a m ·a n = am a a a 个)(•••⋅⋅⋅·an a a a 个)(•••⋅⋅⋅= an m a a a 个)(+•••⋅⋅⋅=a m+n (2)单个字母或数字可以看成指数为1的幂.(3)底数a 可以是数,也可以是单项式或多项式,指数必须是正整数. (4)底数不同的幂相乘不能应用此法则,如3223⋅.(5)有些底数不同的幂可设法转化为相同的底数,再按法则计算,如底数互为相反数的幂 (6)特别注意符号问题:当n 为正整数且a>0时,()n na a 22-= ()1212--±±=n n a a(7)三个或三个以上同底数幂相乘时,也具有这一性质,如∶pn m pnma a a a ++=⋅⋅(m ,n ,p 都是正整数).【小试牛刀】 1. 计算(1) (-3)7×(-3)6; (2) (101)3×(101);(3) -x 3·x 5;(4) b 2m ·b 2m+1.【答案】 D 解:(1)(-3)7×(-3)6=(-3)7+6=(-3)13;(2)(101)3×(101)=(101)3+1=(101)4; (3)-x 3·x 5=[(-1)×x 3]·x 5=(-1)[x 3·x 5]=-x 8; (4)b 2m ·b 2m+1=b 2m+2m+1=b 4m+1. 2. 计算(1)52×57;(2)7×73×72; (3) -x 2·x 3; (4) (4)(-c)3·(-c)m .【答案】 解:(1)52×57=59;(2)7×73×72=71+3+2=76; (3)-x 2·x 3=-(x 2·x 3)=-x 5; (4)(-c)3·(-c)m =(-c)3+m .3. 补充练习:判断(正确的打“√”,错误的打“×”)(1)x 3·x 5=x 15( ) (2)x·x 3=x 3( ) (3)x 3+x 5=x 8( )(4)x 2·x 2=2x 4( )(5)(-x)2·(-x)3=(-x)5=-x 5 ( ) (6)a 3·a 2-a 2·a 3=0( )(7)a 3·b 5=(ab)8( )(8)y 7+y 7=y 14( )【答案】解:(1)×.因为x 3·x 5是同底数幂的乘法,运算性质应是底数不变,指数相加,即x 3·x 5=x 8.(2)×.x·x 3也是同底数幂的乘法,但切记x 的指数是1,不是0,因此x·x 3=x 1+3=x 4.(3)×.x 3+x 5不是同底数幂的乘法,因此不能用同底数幂乘法的性质进行运算,同时x 3+x 5是两个单项式相加,x 3和x 5不是同类项,因此x 3+x 5不能再进行运算.(4)×.x 2·x 2是同底数幂的乘法,直接用运算性质应为x 2·x 2=x 2+2=x 4. (5)√.(6)√.因为a 3·a 2-a 2·a 3=a 5-a 5=0.(7)×.a 3·b 5中a 3与b 5这两个幂的底数不相同.(8)×.y 7+y 7是整式的加法且y 7与y 7是同类项,因此应用合并同类项法则,得出y 7+y 7=2y 7.知识点2 逆用同底数幂的乘法法则 ★逆用::n m nm a a a⋅=+(m ,n 都是正整数)如:33154262222222⋅=⋅=⋅=【小试牛刀】1. 已知m2=3,n2=4,求nm 2+的值;2. 已知x2=3,求3x 2+的值.【答案】 1. 12 2. 24(二) 例题精讲题型一 同底数幂的乘法与合并同类项 计算:4353a a a a a ⋅⋅+⋅【答案】 一定要先确定运算顺序,再计算 82a 题型二 同底数幂乘法法则中的方程思想 已知31123x x xx m m =⋅⋅+(x>0且x ≠1),求m 的值【答案】解∶因为'·311m 23123x x x x x m m m ==⋅⋅++++,所以3+2m+1+m=31,所以m=9.题型三 同底数幂乘法法则在科学计数法中的运用一个长方体的水池,长为3.6×10³cm ,宽为2.5×10²cm ,高为1.2x10²cm ,求它的容积. 【答案】分析∶首先应根据题意正确列出算式,然后再计算.解∶3.6x10³×2.5×10²×1.2x10²=108x10=1.08×108(cm ³). 所以它的容积为1.08×108cm ³ 题型四 拓展创新题1. 计算:2-22-23-24-25-26-27-28-29+210.【答案】[过程]注意到210-29=29·2-29×1=29·(2-1)=29,同理,29-28=28,…23-22=22,即2n +1-2n =2·2n -2n =(2-1)·2n =2n .逆用同底数幂的乘法的运算性质将2n+1化为21·2n .[结果]解:原式=210-29-28-27-26-25-24-23-22+2=2·29-29-28-27-26-25-24-23-22+2=29-28-27-26-25-24-23-22+2=…=22+2=62. 比较大小∶218×310与210x315【答案】分析∶就本题而言,先计算出它们的结果,再比较大小是相当困难的.若逆用同底数幂的乘法法则,找出它们相同的因数,再比较不同因数的大小就可以将问题简化。

鲁教版小学数学六年级下册《整式的乘法(1)》参考教案

鲁教版小学数学六年级下册《整式的乘法(1)》参考教案

6.5 整式的乘法(一)●教学目标(一)教学知识点1.经历探索单项式与单项式相乘的运算法则的过程,会进行单项式与单项式相乘的运算.2.理解单项式与单项式相乘的算理,体会乘法交换律和结合律的作用和转化的思想.(二)能力训练要求1.发展有条理的思考和语言表达能力.2.培养学生转化的数学思想.(三)情感与价值观要求在探索单项式与单项式相乘的过程中,利用乘法的运算律将问题转化,使学生从中获得成就感,培养学习数学的兴趣.●教学重点单项式与单项式相乘的运算法则及其应用.●教学难点灵活地进行单项式与单项式相乘的运算.●教学方法引导——发现法●教具准备投影片四张第一张:问题情景,记作(§6.5.1A)第二张:想一想,记作(§6.5.1B)第三张:例题,记作(§6.5.1C)第四张:练习,记作(§6.5.1D)●教学过程Ⅰ.创设问题情景,引入新课[师]整式的运算我们在前面学习过了它的加减运算,还记得整式的加减法是如何运算的吗?[生]如果遇到有括号,利用去括号法则先去括号,然后再根据合并同类项法则合并同类项.[师]很棒!其实整式的运算就像数的运算,除了加减法,还应有整式的乘法,整式的除法.下面我们先来看投影片§6.5.1A 中的问题:为支持北京申办2008年奥运会,一位画家设计了一幅长6000米、名为“奥运龙”的宣传画.受他的启发,京京用两张同样大小的纸,精心制作了两幅画,如图6-1所示,第一幅画的画面大小与纸的大小相同,第二幅画的画面在纸的上、下方各留有81x 米的空白.图6-1(1)第一幅画的画面面积是 米2; (2)第二幅画的画面面积是 米2.[生]从图形我们可以读出条件,第一个画面的长、宽分别为x 米,mx 米;第二个画面的长、宽分别为mx 米、(x -81x -81x)即43x 米.因此,第一幅画的画面面积是x·(mx)米2;第二幅画的画面面积是(mx)·(43x)米2.[师]我们一起来看这两个运算:x·(mx),(mx)·(43x).这是什么样的运算.[生]x,mx,43x 都是单项式,它们相乘是单项式与单项式相乘.[师]大家都知道整式包括单项式和多项式,从这节课开始我们就来研究整式的乘法.我们先来学习单项式与单项式相乘.Ⅱ.运用乘法的交换律、结合律和同底数幂乘法的运算性质等知识,探索单项式与单项式相乘的运算法则出示投影片(§6.5.1B)想一想:(1)对于上面的问题小明也得到如下的结果:第一幅画的画面面积是x·(mx)米2;3x)米2.第二幅画的画面面积是(mx)·(4可以表达的更简单些吗?说说你的理由.(2)类似地,3a2b·2ab3和(xyz)·y2z可以表达得更简单些吗?为什么?(3)如何进行单项式与单项式相乘的运算?[师]我们来看“想一想”中的三个问题.[生]我认为这两幅画的画面面积可以表达的更简单些.x·(mx)=m·(x·x)——乘法交换律、结合律=mx2——同底数幂乘法运算性质3x)(mx)·(43m)(x·x)——乘法交换律、结合律=(43mx2——同底数幂乘法运算性质=4[生]类似地,3a2b·2ab3和(xyz)·y2z也可以表达得更简单些.3a2b·2ab3=(3×2)·(a2·a)·(b·b3)——乘法交换律、结合律=6a3b4——同底数幂乘法运算性质(xyz)·y2z=x·(y·y2)·(z·z)——乘法交换律、结合律=xy3z2——同底数幂乘法的运算性质[师]很棒!这两位同学恰当地运用了乘法交换律、结合律以及同底数幂乘法的运算性质将这几个单项式与单项式相乘的结果化成最简.在(1)(2)的基础上,你能用自己的语言描述总结出单项式与单项式相乘的运算法则吗?你们一定做得会更棒.[生]单项式与单项式相乘,利用乘法交换律和结合律,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,一起作为积的因式.[师]我们接下来就用这个法则去做几个题,出示投影片(§6.5.1C) [例1]计算: (1)(2xy 2)·(31xy);(2)(-2a 2b 3)·(-3a);22(3)7(2)xy z xyz ⋅.解:(1)(2xy 2)·(31xy)=(2×31)·(x·x)(y 2·y)=32x 2y 3;(2)(-2a 2b 3)·(-3a)=[(-2)·(-3)](a 2a)·b 3=6a 3b 3;222222343(3)7(2)7428.xy z xyz xy z x y z x y z ⋅=⋅=[师生共析]单项式与单项式相乘的乘法法则在运用时要注意以下几点: 1.积的系数等于各因式系数的积,先确定符号,再计算绝对值.这时容易出现的错误是,将系数相乘与指数相加混淆,如2a 3·3a 2=6a 5,而不要认为是6a 6或5a 5.2.相同字母的幂相乘,运用同底数幂的乘法运算性质.3.只在一个单项式里含有的字母,要连同它的指数作为积的一个因式.4.单项式乘法法则对于三个以上的单项式相乘同样适用.5.单项式乘以单项式,结果仍是一个单项式.Ⅲ.练习,熟悉单项式与单项式相乘的运算法则,及每一步运算的算理 出示投影片(§6.5.1D) 1.计算: (1)(5x 3)·(2x 2y); (3)(-3ab)·(-4b 2); (3)(2x 2y)3·(-4xy 2).2.一种电子计算机每秒可做4×109次运算,它工作5×102秒,可做多少次运算?(由几位同学板演,最后师生共同讲评) 1.解:(1)(5x 3)·(2x 2y)=(5×2)(x 3·x 2)·y=10x 3+2y=10x 5y; (2)(-3ab)·(-4b 2)=[(-3)×(-4)]a·(b·b 2)=12ab 3;(3)(2x 2y)3·(-4xy 2) =[23(x 2)3·y 3]·(-4xy 2) =(8x 6y 3)·(-4xy 2)=[8×(-4)]·(x 6·x)(y 3·y 2)=-32x 7y 5 2.解:(4×109)×(5×102) =(4×5)×(109×102) =20×1011=2×1012(次)答:工作5×102秒,可做2×1012次运算. Ⅳ.课时小结这节课我们利用乘法交换律和结合律及同底数幂乘法的法则探索出单项式相乘的运算法则,并能熟练地运用.Ⅴ.课后作业 课本习题6.8 Ⅵ.活动与探究若(a m+1b n+2)·(a 2n -1b 2m )=a 5b 3,则m+n 的值为多少?[过程]根据单项式乘法的法则,可建立关于m,n 的方程,即(a m+1b n+2)·(a 2n-1b 2m )=(a m+1·a 2n -1)·(b n+2·b 2m )=a 2n+m b 2m+n+2=a 5b 3,所以2n+m=5①,2m+n+2=3即2m+n=1②,观察①②方程的特点,很容易就可求出m+n.[结果]根据题意,得2n+m=5①,2m+n=1②,①+②得3n+3m=6,3(m+n)=6,所以m+n=2.●板书设计§6.5 整式的乘法(一)——单项式与单项式相乘问题:如何将x·(mx);(mx)·(43x)化成最简?探索:x·(mx)=m·(x·x)——乘法交换律、结合律 =mx 2——同底数幂乘法运算性质(mx)·(43x)=(43m)·(x·x)——乘法交换律、结合律3mx2——同底数幂乘法运算性质=4类似地,3a2b·2ab3=(3×2)(a2·a)(b·b3)=6a3b4;(xyz)·y2z=x·(y·y2)(z·z)=xy3z2.归纳:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.例题:例1.(师生共析)练习:(学生板演,师生共同讲评)●备课资料有趣的“3x+1问题”现有两个代数式:3x+1 ①1x ②2如果随意给出一个正整数x,那么我们都可以根据代数式①或②求出一个对应值.我们约定:若正整数x为奇数,我们就根据①式求出对应值;若正整数x 为偶数,我们就根据②式求出对应值.例如,根据这种规则,若取正整数x为18(偶数),则由②式求得对应值为9;而9是奇数,由①式求得对应值为28;同样正整数28(偶数)对应14……我们感兴趣的是,从某一个正整数出发,不断地这样对应下去,会是一个什么样的结果呢?也许这是一个非常吸引人的数学游戏.下面我们以正整数18为例,不断地做下去,如a所示,最后竟出现了一个循环:4,2,1,4,2,1…再取一个奇数试试看,比如取x为21,如b所示,结果是一样的——仍然是一个同样的循环.大家可以随意再取一些正整数试一试,结果一定同样奇妙——最后总是落入4,2,1的“黑洞”,有人把这个游戏称为“3x+1问题”.是不是从所有的正整数出发,最后都落入4,2,1的“黑洞”中呢?有人借助计算机试遍了从1到7×10的所有正整数,结果都是成立的.遗憾的是,这个结论至今还没有人给出数学证明(因为“验证”得再多,也是有限多个,不可能把正整数全部“验证”完毕).这种现象是否可以推广到整数范围?大家不妨取几个负整数或0再试一试.。

鲁教版六年级数学下册整式的乘除全章教案

鲁教版六年级数学下册整式的乘除全章教案
2、引导学生建立幂的运算法则
计算103×102.
解:103×102=(10×10×10)×(10×10)(幂的意义)
=10×10×10×10×10(乘法的结合律)
=105.
若将上题中的指数用m,n表示,你会计算吗?即 =?
用字母m,n表示正整数,则有
即am·an=am+n
3.引导学生剖析法则
(1)等号左边是什么运算?
措施
自学引导
教法
探索发现法
学法
教师引导,学生自主学习
教学准备
多媒体课件
教师活动
学生活动
二次备课
一:复习回顾
二、讲授新课
1、导入新课:
现在看两个具体的幂:102103
思考:这两个幂之间有什么关系呢?
结论:我们把这种底数相同的幂叫做同底数幂
如果我们让这两个幂相乘得到的结果会是什么呢?这就是我们今天要学习的内容------同底数幂的乘法
3.保证基本的运算技能。




1.注重对运算法则的探索过程以及对算理的理解,发展有条理的思考能力与表达能力。
2.注重在代数学习中发展学生的推理能力。教学中,教师应有意识的培养学生的推理能力,鼓励学生通过合情推理了进行大胆推测,利用符号间的3.运算验证猜测或解决问题,同时鼓励学生有条理的表达自己的思考过程。
2.了解零指数幂和负整数指数幂的意义
3.理解整式乘法和整式除法运算的算理,发展有条理的思考能力及语言表达能力
4.会推导平方差公式以及完全平方公式,并能运用公式进行简单的计算




1.经历探索整式运算法则的过程,理解整式运算的算理,进一步发展观察、归纳、类比、概括等能力,发展有条理的思考能力及语言表达能力。

六年级下数学教学设计整式的乘除_鲁教版

六年级下数学教学设计整式的乘除_鲁教版

六年级下数学教学设计整式的乘除_鲁教版
第六章整式的乘除
教学目标1、知识目标:在现实情境中认识线段、射线、直线、角、多边形、扇形、圆等简单平面图形,了解其含义及性质,并能用符号表示,会用比较线、角的大小,知道两角的和、差的意义,了解线段的中点、角平分线的意义。

2、技能目标:观察、操作、合作交际,画图、比较、归纳
3、情感态度价值观目标:能通过角的比较等体验数、符号和图形是描述现实世界的重要手段。

教学重点应用图形与几何的知识解释生活中的现象以及解决简单的实际问题。

教学难点学生形成初步完整的几何概念,丰富学生基本几何图形概念的认识。

个人备课
小结:学
科知识构建
反思
与重建。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.5 整式的乘法(一)
一、学习目标与要求:
1、经历探索单项式乘法法则的过程,在具体情境中了解单项式乘法的意义,理解单项式乘法法则
2、会利用法则进行单项式的乘法运算
3、理解单项式乘法运算的算理,发展有条理的思考能力和语言表达能力
二、重点与难点:
重点:单项式乘法法则及其应用
难点:理解运算法则及其探索过程
三、学习过程:
复习巩固:运用幂的运算性质计算下列各题:
(1)(-a 5)5
(2) (-a 2b)3
(3) (-2a)2(-3a 2)3
(4) (-y n )2 y n-1
探索发现:
一、探索单项式乘法法则
1、如图,你能不能表示出两幅画的面积
(说明:两张纸的大小是一样的,第一幅画
的大小与纸的大小相同,第二幅上下个留有18x 米的空白) (1)第一幅画的画面面积是_____________米2;
(2)第二幅画的画面面积是____________米2
2、说说你的方法,并思考上面的结果能不能表达的更简单?说说你的理由
3、类似地,你能把下面的算式表达的更简单吗?
(1)2332a b ab ⋅
(2) 2()xyz y z ⋅
4、你能说出上面的运算属于什么运算吗?_____________,你能归纳一下这种运算的方
法吗?
5、经历了上面的探索过程,请在下面写出单项式乘法法则:
___________________________________________________________________________________
二、巩固与练习
例1 计算(请利用单项式乘法法则进行计算,并归纳计算的注意事项或者技巧) (1) 21(2)()3xy xy ⋅ (2) 23(2)(3)a b a -⋅- 22(3)7(2)xy z xyz ⋅
巩固练习:
1、计算:
(1) 32(5)(2)x x y ⋅
(2) 2(3)(4)ab b -⋅- (3) 2325()()58x y xyz ⋅
(4) 38(210)(810)⨯⋅⨯
(5) 232(2)(4)x y xy ⋅- (6) 23223()()xy z x y -⋅-
2、一种电子计算机每秒可做9410⨯次运算,它工作2510⨯秒,可做多少次运算?
3、一家住房的结构如图示,房子的主人打算把卧室以外的部分
全都铺上地砖,至少需要多少平方米的地转?如果某种地砖的
价格是a 元/平方米,那么购买所需地砖至少需要多少元?
4、122153())m n n a b a b a b m n ++-⋅⋅=+若(求的值?,
学习小结:谈一谈本节课你的收获。

相关文档
最新文档