蛋白质的一级结构与功能的关系蛋白质的空间结构与功能的关系
蛋白质的一二三四级结构与功能的关系

蛋白质的一二三四级结构与功能的关系【最新版】目录一、蛋白质的结构层次二、蛋白质的一级结构与功能的关系三、蛋白质的二级结构与功能的关系四、蛋白质的三级结构与功能的关系五、蛋白质的四级结构与功能的关系正文蛋白质是生命的物质基础,是有机大分子,是构成细胞的基本有机物,是生命活动的主要承担者。
没有蛋白质就没有生命。
氨基酸是蛋白质的基本组成单位。
它是与生命及与各种形式的生命活动紧密联系在一起的物质。
机体中的每一个细胞和所有重要组成部分都有蛋白质参与。
蛋白质占人体重量的 18%,最重要的还是其与生命现象有关。
蛋白质的结构层次可以从一级结构、二级结构、三级结构和四级结构来描述。
蛋白质一级结构又称化学结构(primary structure),是指氨基酸在肽键中的排列顺序和二硫键的位置,肽链中氨基酸间以肽键为连接键。
蛋白质的一级结构是最基本的结构,它决定了蛋白质的二级结构和三级结构,其三维结构所需的全部信息都贮存于氨基酸的顺序之中。
二级结构(secondary structure)是指蛋白质分子中肽链的局部折叠和构象,它由氢键和其他非共价作用力所决定。
蛋白质的三级结构(tertiary structure)是指整个蛋白质分子的空间构象,它由肽链中所有氨基酸残基的相对位置和空间取向所决定。
蛋白质的四级结构(quaternary structure)是指由多个多肽链组成的蛋白质分子的立体结构,它由各多肽链之间的相互作用所决定。
蛋白质的一级结构与功能的关系非常密切。
一级结构相似的蛋白质,其功能也相似,因为功能不同的蛋白质总是有不同的序列。
例如,哺乳动物胰岛素分子结构都是由 a 链和 b 链构成,且二硫键配对和一级结构均相似,它们都执行相同的调节血糖代谢等功能。
蛋白质的二级结构与功能的关系也非常重要。
二级结构决定了蛋白质的空间构象和功能。
蛋白质分子中的氢键和其他非共价作用力决定了肽链的局部折叠和构象,从而影响了蛋白质的功能。
蛋白质结构与功能的关系

生物名称
氨基酸差异数
生物名称
氨基酸差异数
黑猩猩 恒河猴 兔 袋鼠 鲸 牛羊猪 狗
0 1 9 10 10 10 11
鸡、火鸡 响尾蛇 乌龟 金枪鱼 狗鱼 蚕蛾 小麦
13 14 15 21 23 31 43
骡 马
11 12
面包酵母
红色面包霉
45 48
结论二:一级结构相似的蛋白质功能相似
例一
MSH 促黑激素
α-螺旋 正常
PrPsc β-折叠
疯牛病
应用前景
蛋白质工程 通过改变蛋白质构象,获得新功能蛋白 质。
讨论
血友病 血友病是一组遗传性凝血因子缺乏引起 的出血性疾病。 血友病是凝血酶一级结构改变造成的?
The end! Thank you!
Mb 和 Hb结构相似性
血红蛋白(Hb)
血红蛋白具有4个亚基 组成的四级结构,每 个亚基中间有一个疏 水袋形空穴,可结合 一个血红素并携带1分 子氧, 因此1分子Hb 共结合4分子氧。 Hb各亚基的三级结构 与Mb极为相似。 成人红细胞中Hb主要 是由两条α 肽链和两 条β 肽链组成。
血红素 辅基
3、空间结构破坏对功能的影响
例一
蛋白质的变性与复性 天然蛋白质受物理或化学因素的影响,其 共价键不变,非共价键被破坏,分子内部 原有的有序紧密的结构变为无序而松散, 致使其原有性质发生部分或全部丧失,称 为蛋白质的变性。 变性后蛋白质的特性:生物活性丧失、理 化性质改变、一些侧链基团暴露、生物化 学性质改变。
血红蛋白(Hb)的功能
血红蛋白是血细胞携带和分配氧的蛋白 质。
在从肺部经心脏到达外周组织的动脉血中 Hb约为96%氧饱和度。在回到心脏的静脉 血中Hb仅为64%氧饱和度。因此每100ml血 经过组织约释放Hb携带的1/3氧或相当于大 气压和体温下6.5ml氧气。
蛋白质的一级结构与功能的关系

蛋白质的一级结构与功能的关系蛋白质的一级结构是指蛋白质分子中从N端到C端的氨基酸序列。
蛋白质的一级结构对其功能具有重要影响,因为不同的氨基酸序列可以形成不同的高级结构,进而赋予蛋白质不同的生物学功能。
1.氨基酸序列与蛋白质功能蛋白质的氨基酸序列是决定其一级结构和高级结构的基础,因此也是影响其功能的主要因素。
例如,一些具有催化活性的蛋白质,如酶,具有特定的氨基酸序列,这些序列形成了其活性位点。
这些特定的氨基酸序列可以与底物结合并催化化学反应。
另外,一些蛋白质的功能依赖于其与其他蛋白质的相互作用。
这些相互作用通常是通过蛋白质表面的特定氨基酸序列实现的。
这些序列可以与靶蛋白的互补序列相互作用,从而调节蛋白质的活性或定位。
2.蛋白质翻译后修饰与功能除了氨基酸序列外,蛋白质的功能还可能受到其翻译后修饰的影响。
这些修饰包括磷酸化、糖基化、甲基化、乙酰化等,它们可以改变蛋白质的结构和功能。
例如,磷酸化可以调节蛋白质的电荷和构象,从而影响其与配体的相互作用。
糖基化可以增加蛋白质的分子量,并参与细胞识别和信号转导。
3.蛋白质相互作用与网络除了单个蛋白质的功能外,蛋白质之间还可以相互作用形成复合物或网络。
这些相互作用通常是通过蛋白质表面上的特定氨基酸序列实现的。
例如,一些蛋白质可以形成二聚体或更复杂的寡聚体,这些复合物具有与单个蛋白质不同的生物学功能。
另外,蛋白质也可以与其他生物分子相互作用,如DNA、RNA和脂质,从而调节基因表达、细胞信号转导和细胞代谢等生物学过程。
这些相互作用通常是由蛋白质表面的特定氨基酸序列介导的。
4.结构域与功能蛋白质的一级结构还可以决定其不同结构域的相互作用和功能。
一些蛋白质可以包含多个结构域,每个结构域都具有特定的生物学功能。
例如,一些酶可以包含催化结构域和调节结构域。
催化结构域可以催化化学反应,而调节结构域可以调节酶的活性或与其他蛋白质相互作用。
此外,一些蛋白质的结构域可以形成复合物或与其他生物分子相互作用。
蛋白质的结构与功能的关系

蛋白质的结构与功能的关系
答:蛋白质的结构与功能的关系是:
1.蛋白质的结构决定了其功能。
蛋白质的特定构象和结构决定了其特定的生物学功能。
例如,蛋白质的催化作用、运输作用、免疫作用等,都是由其特定的结构决定的。
2.蛋白质的一级结构决定其高级结构,因此,最终决定了蛋白质的功能。
一级结构相
似的蛋白质具有相似的功能。
3.蛋白质的进化。
类似物指具有相同的功能,但起源于不同的祖先基因的蛋白质,是
基因趋同进化的产物。
同源蛋白质的氨基酸序列具有明显的相似性,这种相似性称为序列同源。
蛋白质一级结构,空间结构与功能的关系

蛋白质一级结构,空间结构与功能的关系
蛋白质是生物体中最重要的分子,它们参与细胞的各种生理过程,如细胞代谢、信号传导、膜蛋白等。
蛋白质的一级结构、空间结构和功能之间存在着密切的联系。
蛋白质的一级结构是指蛋白质的分子结构,它是由氨基酸残基组成的链状分子,这些氨基
酸残基之间通过键的形成而组成。
蛋白质的一级结构决定了蛋白质的空间结构,也决定了
蛋白质的功能。
蛋白质的空间结构是指蛋白质的三维结构,它是由蛋白质的一级结构经过折叠而形成的。
蛋白质的空间结构决定了蛋白质的功能,因为蛋白质的活性中心是由空间结构决定的,而
蛋白质的活性中心是蛋白质的功能的核心。
蛋白质的功能是指蛋白质在生物体中所发挥的作用,它可以参与细胞的各种生理过程,如细胞代谢、信号传导、膜蛋白等。
蛋白质的功能受到蛋白质的一级结构和空间结构的影响,因为蛋白质的活性中心是由一级结构和空间结构决定的。
因此,蛋白质的一级结构、空间结构和功能之间存在着密切的联系。
蛋白质的一级结构决
定了蛋白质的空间结构,而蛋白质的空间结构又决定了蛋白质的功能。
因此,蛋白质的一级结构、空间结构和功能之间的关系是十分重要的,它们之间的关系是蛋白质的功能的核心。
蛋白质的一级结构与功能的关系

蛋白质的一级结构与功能的关系
1. 由较短肽链组成的蛋白质一级 结构,其结构不同,生物功能也 不同. 2. 由较长肽链组成的蛋白质一级 结构中,其中“关键”部分结构 相同,其功能也相同;“关键” 部分改变,其功能也随之改变。
蛋白质空间橡象与功能活性的关系 < 一>
白质多种多样的功能与各种蛋白质特定的空间构象密切相关,蛋白质的 空间构象是其功能活性的基础,构象发生变化,其功能活性也随之改变。 蛋白质变性时,由于其空间构象被破坏,故引起功能活性丧失,变性蛋 白质在复性后,构象复原,活性即能恢复。 在生物体内,当某种物质特异地与蛋白质分子的某个部位结合,触 发该蛋白质的构象发生一定变化,从而导致其功能活性的变化,这种现 象称为蛋白质的别构效应(allostery)。
关于蛋白质的一级结构
蛋白质的空间结构
蛋白质的结构和功能
催化功能 调节功能 保护和支持功能 运输功能 储存和营养功能 收缩和运动功能 防御功能 识别功能 信息传递功能 基因表达调控功能 凝血功能 级键对于维系Hb分子空间构象 有重要作用,例如在四亚基间的8对 盐键(见前图—血红蛋白结构与亚基 间连接示意),它们的形成和断裂将 使整个分子的空间构象发生变化。
蛋白质的空间结构与功能的关系
蛋白质结构与功能的关系

肌红蛋白
结合氧
释放氧
血红蛋白
肌红蛋白与血红蛋白的带氧曲线 肌红蛋白的氧饱和曲线为距形双曲线,血氧饱和度为20%时仍能带氧,肌肉 缺氧时(氧饱和度为5%)大量释放氧,以供肌肉收缩需要;血红蛋白的氧饱和曲线
为S形曲线,表明血红蛋白四个亚基对氧的结合具有正协同效应。
N
F8 His
N
N
F8 His
N
I
18 角鲨
响尾蛇
软骨鱼类
七鳃鳗
蛾,天蛾
蜜蜂
9
16
苍蝇
昆虫类
16
8
1
蝗虫
7
13
真菌
5
植物
动物体细胞色素C一级结构的进化树
图中的数字表示该类动物与其祖先相比细胞色素C一级结构氨基酸残基的差异数
(四)一级结构与分子病
例镰刀状红细胞贫血
HbA β肽链
N-Val .his .leu .thr .pro .glu .glu ….C (146)
NH2
1
Gly
15
Tyr Gln
Leu
Leu
Ile
Ser
Glu
HOOC Thr 30
A链 Val 5 Cys Ile 10
Glu Gln Cys
Ser
Cys Thr
Asn Gln His Leu
Val 1 Phe
5
Cys
Gly
Ser
Asn
COOH
Tyr
20
Cys
Asn
Lys Pro Thr
Tyr
C、D、E、F、G、H),其辅基为血红素。
2
C
1
N
N
2
2-1蛋白质的一级结构与功能的关系

2-1蛋白质的一级结构与功能的关系一、蛋白质分子的一级结构多肽链是蛋白质分子的最基本结构形式。
氨基酸排列顺序是由遗传信息决定的,氨基酸的排列顺序是决定蛋白质空间结构的基础,而蛋白质的空间结构则是实现其生物学功能的基础。
1953年,英国生物化学家Fred Sanger报道了胰岛素的一级结构,这是世界上第一个被确定一级结构的蛋白质。
同年,Watson与Crick发现DNA的双螺旋结构。
生物化学由此迈向了一个更高层次——分子生物学时代。
图人胰岛素的一级结构蛋白质多肽链中氨基酸按一定排列顺序以肽键相连形成蛋白质的一级结构。
蛋白质的一级结构是其高级结构的基础。
蛋白质分子中的多肽链经折叠盘曲而具有一定的构象称为蛋白质的高级结构。
高级结构又可分为二级、三级和四级结构。
维持蛋白质高级结构的化学键主要是次级键,有氢键、离子键、疏水键、二硫键以及范德华引力。
二、蛋白质的一级结构与其构象及功能的关系蛋白质一级结构是空间结构的基础,特定的空间构象主要是由蛋白质分子中肽链和侧链R 基团形成的次级键来维持,在生物体内,蛋白质的多肽链一旦被合成后,即可根据一级结构的特点自然折叠和盘曲,形成一定的空间构象。
一级结构相似的蛋白质,其基本构象及功能也相似,例如,不同种属的生物体分离出来的同一功能的蛋白质,其一级结构只有极少的差别,而且在系统发生上进化位置相距愈近的差异愈小。
在蛋白质的一级结构中,参与功能活性部位的残基或处于特定构象关键部位的残基,即使在整个分子中发生一个残基的异常,那么该蛋白质的功能也会受到明显的影响。
被称之为“分子病”的镰刀状红细胞性贫血仅仅是574个氨基酸残基中,一个氨基酸残基即β亚基N端的第6号氨基酸残基发生了变异所造成的,这种变异来源于基因一场信息的突变。
正常红细胞镰刀状红细胞。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蛋白质的空间结构与功能的关系
❖ 血红蛋白(Hb)为例加以说明(Hb的结构如图所示)
❖
Hb由4条肽链组成:2α、2β,功能是运载O2;在去氧
❖
Hb与O2结合后,Hb的构象发生变化,这类变化称
为变构效应,即通过构象变化影响蛋白质的功能。Hb
称为变构蛋白(allosteric protein)。
❖
构型(configuration):L、D,改变时有共价键的
断裂。
构象(conformation):改变无须有共价键的断裂, 只是次级键断裂。
❖
一级结构是蛋白质生物学功能的基础,空间结构与
系组合时,就可形成多种多样的空间结构和不同生物学活性的蛋白质分子。
二、蛋白质的空间结构
❖ 蛋白质分子的多肽链并非呈线形伸展,而是折叠和盘曲构成特有的比较稳定的空 间结构。蛋白质的生物学活性和理化性质主要决定于空间结构的完整,因此仅仅 测定蛋白质分子的氨基酸组成和它们的排列顺序并不能完全了解蛋白质分子的生 物学活性和理化性质。例如球状蛋白质(多见于血浆中的白蛋白、球蛋白、血红 蛋白和酶等)和纤维状蛋白质(角蛋白、胶原蛋白、肌凝蛋白、纤维蛋白等), 前者溶于水,后者不溶于水,显而易见,此种性质不能仅用蛋白质的一级结构的 氨基酸排列顺序来解释。
❖
在生物体内,当某种物质特异地与蛋白质分子的某个部位结合,触
发该蛋白质的构象发生一定变化,从而导致其功能活性的变化,这种现
象称为蛋白质的别构效应(allostery)。
蛋白质空间橡象与功能活性的关系<二>
❖ 以血红蛋白(hemoglobin,简写Hb)为 例来说明构象与功能的关系。
血红蛋白(avi)是红细胞中所含有的一种结 合蛋白质,它的蛋白质部分称为珠蛋白非 蛋白质部分(辅基)称为血红素(见下图)。 Hb分子由四个亚基构成,每一亚基结合 一分子血红素。正常成人Hb分子的四个 亚基为两条α链,两条β链。
❖ Gly、Pro、Asp、Ser是β转角最强生成者,
❖
Ile、Val、Leu是β转角最强破坏者。
❖ 一级结构决定了三级结构:
❖
如牛胰核糖核酸酶
❖ 一级结构决定了四级结构:
❖
如血红蛋白的四级结构,见球状蛋白质。
.蛋白质的一级结构与其构象及功能的关系
❖ 蛋白质一级结构是空间结构的基础, 特定的空间构象主要是由蛋白质分子 中肽链和侧链R基团形成的次级键来 维持,可根据一级结构的特点自然折
蛋白质的一级结构与功能的关系
❖ 1. 由较短肽链组成的蛋白质一级 结构,其结构不同,生物功能也 不同.
❖ 2. 由较长肽链组成的蛋白质一级 结构中,其中“关键”部分结构 相同,其功能也相同;“关键” 部分改变,其功能也随之改变。
❖
蛋白质空间橡象与功能蛋白质特定的空间构象密切相关,蛋白质的 空间构象是其功能活性的基础,构象发生变化,其功能活性也随之改变。 蛋白质变性时,由于其空间构象被破坏,故引起功能活性丧失,变性蛋 白质在复性后,构象复原,活性即能恢复。
❖
迄今已有约一千种左右蛋白质的一级结构被研究确定,如胰岛素,胰核糖核酸酶、胰蛋白酶等。
❖
蛋白质的一级结构决定了蛋白质的二级、三级等高级结构,成百亿的天然蛋白质各有其特殊的生物
学活性,决定每一种蛋白质的生物学活性的结构特点,首先在于其肽链的氨基酸序列,由于组成蛋白质
的20种氨基酸各具特殊的侧链,侧链基团的理化性质和空间排布各不相同,当它们按照不同的序列关
功能的表现有关。
蛋白质结构预测
❖ 一种生物体的基因组规定了所有构成该生物体的蛋白质,基因规定了组成蛋白质的氨基酸 序列。虽然蛋白质由氨基酸的线性序列组成,但是,它们只有折叠成特定的空间构象才能 具有相应的活性和相应的生物学功能。了解蛋白质的空间结构不仅有利于认识蛋白质的功 能,也有利于认识蛋白质是如何执行其功能的。确定蛋白质的结构对于生物学研究是非常 重要的。目前,蛋白质序列数据库的数据积累的速度非常快,但是,已知结构的蛋白质相 对比较少。尽管蛋白质结构测定技术有了较为显著的进展,但是,通过实验方法确定蛋白 质结构的过程仍然非常复杂,代价较高。因此,实验测定的蛋白质结构比已知的蛋白质序 列要少得多。另一方面,随着DNA测序技术的发展,人类基因组及更多的模式生物基因组 已经或将要被完全测序,DNA序列数量将会急增,而由于DNA序列分析技术和基因识别方 法的进步,我们可以从DNA推导出大量的蛋白质序列。这意味着已知序列的蛋白质数量和 已测定结构的蛋白质数量(如蛋白质结构数据库PDB中的数据)的差距将会越来越大。人 们希望产生蛋白质结构的速度能够跟上产生蛋白质序列的速度,或者减小两者的差距。那 么如何缩小这种差距呢?我们不能完全依赖现有的结构测定技术,需要发展理论分析方法, 这对蛋白质结构预测提出了极大的挑战。20世纪60年代后期,Anfinsen首先发现去折叠蛋 白或者说变性(denatured)蛋白质在允许重新折叠的实验条件下可以重新折叠到原来的结构, 这种天然结构(native structure)对于蛋白质行使生物功能具有重要作用,大多数蛋白质只 有在折叠成其天然结构的时候才能具有完全的生物活性。自从Anfinsen提出蛋白质折叠的 信息隐含在蛋白质的一级结构中,科学家们对蛋白质结构的预测进行了大量的研究,分子 生物学家将有可能直接运用适当的算法,从氨基酸序列出发,预测蛋白质的结构。本章主 要着重介绍蛋白质二级结构及空间结构预测的方法。
叠和盘曲,形成一定的空间构象。 蛋白质的一级结构中,参与功能 活性部位的残基或处于特定构象 关键部位的残基,即使在整个分 子中发生一个残基的异常,那么 该蛋白质的功能也会受到明显的 影响。被称之为“分子病”的镰 刀状红细胞性贫血仅仅是574个 氨基酸残基中,一个氨基酸残基 即β亚基N端的第6号氨基酸残基 发生了变异所造成的,这种变异 来源于基因上遗传信息的突变。
蛋白质的一级结构与功能的关系 蛋白质的空间结构与功能的关系
.1 蛋白质的一级结构与其构象及功能的关系
2. 蛋白质空间橡象与功能活性的关系
一、蛋白质的一级结构
❖ 白质的一级结构(primary structure)就是蛋白质多肽链中氨基酸残基的排列顺序(sequence),也是 蛋白质最基本的结构。它是由基因上遗传密码的排列顺序所决定的。各种氨基酸按遗传密码的顺序,通 过肽键连接起来,成为多肽链,故肽键是蛋白质结构中的主键。
蛋白质一级结构是空间结构的基础
一级结构决定了二级结构
❖ 一级结构决定了二级结构:
❖
Chou和Fasman对29种蛋白质的一级结构和二级结构关系
❖
进行统计分析,发现:
❖ Glu、Met、Ala和Leu残基是α-螺旋最强的生成者,
❖
Gly、Pro是α-螺旋最强的破坏者
❖ Gly、Ala、Ser是β折迭最强生成者
Hb亚基中有下列几对盐键:
α1-α2:141α2Arg-COOH-1α1Val-NH2
α1-α2:141α2 Arg 胍基-126α1Asp-COOH
α1-β2:40a1Lsy的ξ-NH2-146β2 His-COOH
β1-β2:146β2 His-咪唑基-94β1Asp-β-COOH
❖ 第一个O2结合时,要打开的盐键不只是4个亚基间盐 键的1/4,而是要多一些,打开盐键需要能量。因此, 第一个O2的结合需要的能量多于第2、第3个O2。结合 到第4个O2时,需能更少,带O2速度比第1个时大几百 倍。如图所示