等差数列与等比数列综合问题(3)
2023高考数学----等差等比数列的交汇问题规律方法与典型例题讲解

2023高考数学----等差等比数列的交汇问题规律方法与典型例题讲解【规律方法】在解决等差、等比数列综合问题时,要充分利用基本公式、性质以及它们之间的转化关系,在求解过程中要树立“目标意识”,“需要什么,就求什么”,并适时地采用“巧用性质,整体考虑”的方法.可以达到减少运算量的目的.【典型例题】例1.(2022·河南·一模(理))已知等比数列{}n a 的前n 项和为n S ,()121n n a S n *+=+∈N .(1)求数列{}n a 的通项公式;(2)在n a 和1n a +之间插入n 个数,使这2n +个数组成一个公差为n d 的等差数列,在数列{}n d 中是否存在3项,,m k p d d d (其中,,m k p 是公差不为0的等差数列)成等比数列?若存在,求出这3项;若不存在,请说明理由.【解析】(1)当2n ≥时,由121n n a S +=+得:121n n a S −=+,11222n n n n n a a S S a +−∴−=−=,则13n n a a +=,{}n a 为等比数列,∴等比数列{}n a 的公比为3;当1n =时,2112121a S a =+=+,11321a a ∴=+,解得:11a =,()13n n a n −*∴=∈N(2)假设存在满足题意的3项,由(1)得:13nn a +=,又()11n n n a a n d +=++,1113323111n n n n n n a a d n n n −−+−−⋅∴===+++; ,,m k p d d d 成等比数列,2km p d d d ∴=⋅,即()()()2211224323234311111k m p m p m p m p k −−−+−⋅⋅⋅⋅=⋅=+++++, ,,m k p 成等差数列,2k m p ∴=+,()()()2224343111m p m p m p k +−+−⋅⋅∴=+++,()()()2111121k m p mp m p mp k ∴+=++=+++=++,整理可得:2k mp =,又222m p k +⎛⎫= ⎪⎝⎭,222224m p m mp p mp +++⎛⎫∴== ⎪⎝⎭, 即()20m p −=,解得:m p =,则m p k ==,与已知中,,m k p 是公差不为0的等差数列相矛盾,∴假设错误,即不存在满足题意的3项.例2.(2022·全国·高三专题练习)已知数列{}n a 的前n 项和为n S ,()12,2(1)N n n a n a n S n *=⋅=+⋅∈. (1)求数列{}n a 的通项公式;(2)判断数列231⎧⎫−⎨⎬+⎩⎭n n a n 中是否存在成等差数列的三项,并证明你的结论. 【解析】(1)N n *∈,2(1)n n n a n S ⋅=+⋅,则当2n ≥时,()12(1)−⋅−=+⋅n n n n S S n S ,即121−=⋅−n n S Sn n ,而121S =,因此,数列{}n S n 是公比为2的等比数列,则11221n n n S S n −=⋅=,即2n n S n =⋅,所以1(1)(1)22−+⋅==+⋅n nn n S a n n. (2)记231=−+nn n b a n ,由(1)知,123(1)2321−=−⋅+=−+n n n n n b n n ,不妨假设存在,,()<<m n p b b b m n p 三项成等差数列,则()2323232−=−+−n n m m p p ,因为(),,N m n p m n p *<<∈,所以1+≤n p ,令()()32N nnf n n *=−∈,则3()212⎡⎤⎛⎫=−⎢⎥ ⎪⎝⎭⎢⎥⎣⎦n nf n ,于是有()f n 对N n *∈是递增的,则()(1)≥+f p f n ,即113232++−≥−p p n n ,因此()1123232323232++−=−+−≥−+−n n m m p p m m n n ,即332n m m −≥−,其左边为负数,右边为正数,矛盾,所以数列231⎧⎫−⎨⎬+⎩⎭n n a n 中不存在成等差数列的三项. 例3.(2022·福建省福州华侨中学高三阶段练习)已知在正项等比数列{}n a 中13213,,22a a a 成等差数列,则2022202120202019a a a a +=+__________.【答案】9【解析】设正项等比数列{}n a 的公比为q ,则0q >,因为13213,,22a a a 成等差数列,所以31212322a a a ⨯=+,即211132a q a a q =+,又10a >,2230q q ∴−−=所以3q =或1q =−(不符合题意,舍去).所以20212020322202220211120192018202020191191a a a q a q q q q a a a q a q q ++===+=+++, 故答案为:9.例4.(2022·湖北·高三期中)已知{}n a 是等差数列,{}n b 是等比数列,n S 是数列{}n a 的前n 项和,1111S =,573b b =,则6326log a b =______. 【答案】−1【解析】因为{}n a 是等差数列,且n S 是数列{}n a 的前n 项和,所以()1111161111112a a S a +===,解得61a =,因为{}n b 是等比数列,所以25763b b b ==,则633261log log 13a b ==−. 故答案为:1−.例5.(2022·河南省淮阳中学模拟预测(理))已知等差数列{}n a 的前n 项利为n S ,若9S ,5a ,1成等比数列,且20400S ≥,则{}n a 的公差d 的取值范围为______. 【答案】[)2,+∞【解析】因为9S ,5a ,1成等比数列,所以()192595992a a a S a +===,所以59a =,即149a d +=,即194a d =−.由20400S ≥,得()1201902094190400a d d d +=⨯−+≥,解得2d ≥,即{}n a 的公差d 的取值范围为[)2,+∞. 故答案为:[)2,+∞.例6.(2022·上海·华东师范大学第一附属中学高三阶段练习)已知等差数列{}n a 的公差d 不为零,等比数列{}n b 的公比q 是小于1的正有理数.若1a d =,21b d =,且222123123a a ab b b ++++是正整数,则q 的值可以是______. 【答案】12【解析】由题意知:{}n a 是首项为d ,公差为d ,且0d ≠的等差数列,{}n b 是首项为2d ,公比为q ,且01q <<的等比数列,∴()()()2222222123222222212323141411d d d a a a d b b b d d q d q q q d q q ++++===++++++++, 要使222123123a a ab b b ++++为正整数,即2141q q ++为正整数,∵01q <<,201q <<,∴2113q q <++<,设2141q q n ++=,()0n >,即1413n <<,即14143n <<, 又∵21414141n q q n==++,∴n 为正整数,则满足范围的n 的值有:5,6,7,8,9,10,11,12,13, 又221314124q q q n ⎛⎫++=++= ⎪⎝⎭,即111222q =−=−=−又由题意知:01q <<,且为有理数,∴12q =−8n =时,满足题意,此时:111112222q =−−−+=.故答案为:12.例7.(2022·贵州·顶效开发区顶兴学校高三期中(理))对于集合A ,B ,定义集合{|}A B x x A x B −=∈∉且. 己知等差数列{}n a 和正项等比数列{}n b 满足14a =,12b =,212n n n b b b ++=+,332a b =+.设数列{}n a 和{}n b 中的所有项分别构成集合A ,B ,将集合A B −的所有元素按从小到大依次排列构成一个新数列{}n c ,则数列{}n c 的前30项和30S =_________. 【答案】1632【解析】{}n b 为正项等比数列,则2221222n n n n n n b b b b q b q b q q ++=+⇒=+⇒=+,解得2q =或1q =−(舍),∴1122n nn b b −==;{}n a 为等差数列,则331222a a d =+=+,∴3d =,∴()41331n a n n =+−⋅=+.由231,*nn m b a m n m =⇒=+∈N 、,可得当2468n =、、、时,152185m =、、、, 故数列{}n c 的前30项包含数列{}n a 前33项除去数列{}n b 第2、4、6项,()3043331334166416322S +⨯+⨯=−−−=.故答案为:1632例8.(2022·全国·模拟预测(文))设数列{}n a ,{}n b 满足2n n a =,38n b n =−,则它们的公共项由小到大排列后组成新数列{}n c .在k c 和()1N*k c k +∈中插入k 个数构成一个新数列{}n e :1c ,1,2c ,3,5,3c ,7,9,11,4c ,…,插入的所有数构成首项为1,公差为2的等差数列,则数列{}n e 的前20项和20T =______. 【答案】1589【解析】2nn a =,∴数列{}n a 是以2首项,公比为2的等比数列,12a ∴=,24a =,38a =,416a =,因为38n b n =−,所以15b =−,22b =−,31b =,44b = 知1a 显然不是数列{}n b 中的项.424a b ==,2a ∴是数列{}n b 中的第4项,设2kk a =是数列{}n b 中的第m 项,则238(k m k =−、*N )m ∈.112222(38)616k k k a m m ++==⨯=−=−, 1k a +∴不是数列{}n b 中的项.222424(38)3(48)8k k k a m m ++==⨯=−=−−,2k a +∴是数列{}n b 中的项.21c a ∴=,42c a =,63c a =,⋯,2n n c a =,∴数列{}n c 的通项公式是224n n n c ==.因为12345520+++++=,所以{}n e 的前20项包括n c 的前5项,以及21n −的前15项,所以 1234520444441329T =++++++++()()5414129151589142−+⨯=+=−故答案为:1589.。
等差数列与等比数列例题和知识点梳理

等差数列及其前n 项和 等比数列及其前n 项和等差数列及其前n 项和1.等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示. 2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d . 3.等差中项由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列.这时,A 叫做a 与b 的等差中项.4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(6)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列.(7)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也是等差数列,其首项与{a n }的首项相同,公差为12d .5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n (a 1+a n )2或S n =na 1+n (n -1)2d .6.等差数列的前n 项和公式与函数的关系 S n =d2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).7.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值. 概念方法微思考1.“a ,A ,b 是等差数列”是“A =a +b2”的什么条件?提示 充要条件.2.等差数列的前n 项和S n 是项数n 的二次函数吗?提示 不一定.当公差d =0时,S n =na 1,不是关于n 的二次函数.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)等差数列{a n }的单调性是由公差d 决定的.( )(3)等差数列的前n 项和公式是常数项为0的二次函数.( )(4)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( ) 题组二 教材改编2.设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( ) A .31 B .32 C .33 D .343.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=________.题组三 易错自纠4.一个等差数列的首项为125,从第10项起开始比1大,则这个等差数列的公差d 的取值范围是( ) A .d >875B .d <325C.875<d <325D.875<d ≤3255.(多选)设{a n }是等差数列,S n 是其前n 项的和,且S 5<S 6,S 6=S 7>S 8,则下列结论正确的是( ) A .d <0 B .a 7=0C .S 9>S 5D .S 6与S 7均为S n 的最大值6.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =____时,{a n }的前n 项和最大.7.一物体从1 960 m 的高空降落,如果第1秒降落4.90 m ,以后每秒比前一秒多降落9.80 m ,那么经过________秒落到地面.等差数列基本量的运算1.(2018·全国Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5等于( ) A .-12 B .-10 C .10 D .122.(2019·全国Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A .a n =2n -5 B .a n =3n -10 C .S n =2n 2-8n D .S n =12n 2-2n3.(2019·江苏)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是________.4.(2019·全国Ⅲ)记S n 为等差数列{a n }的前n 项和.若a 1≠0,a 2=3a 1,则S 10S 5=________.等差数列的判定与证明例1 (2020·日照模拟)已知数列{a n },{b n }满足a 1=1,a n +1=1-14a n ,b n =22a n -1,其中n ∈N *.求证:数列{b n }是等差数列,并求出数列{a n }的通项公式.跟踪训练1 在数列{a n }中,a 1=2,a n 是1与a n a n +1的等差中项.(1)求证:数列⎩⎨⎧⎭⎬⎫1a n -1是等差数列,并求{}a n 的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1n 2a n 的前n 项和S n .等差数列性质的应用命题点1 等差数列项的性质例2 (2019·江西师范大学附属中学模拟)已知数列{a n }为等差数列,S n 为其前n 项和,2+a 5=a 6+a 3,则S 7等于( ) A .2 B .7 C .14 D .28命题点2 等差数列前n 项和的性质例3 (1)(2020·漳州质检)已知等差数列{a n }的前n 项和为S n .若S 5=7,S 10=21,则S 15等于( )A .35B .42C .49D .63(2)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 018,S 2 0192 019-S 2 0132 013=6,则S 2 020=________.跟踪训练2 (1)已知等差数列{a n }、等差数列{b n }的前n 项和分别为S n ,T n ,若S n T n =n +2n +1,则a 6b 8的值是( )A.1316B.1314C.1116D.1115(2)(2019·莆田质检)设等差数列{a n }的前n 项和为S n ,若S 13>0,S 14<0,则S n 取最大值时n 的值为( )A .6B .7C .8D .131.在等差数列{a n }中,a 1=2,a 5=3a 3,则a 3等于( ) A .-2 B .0 C .3 D .62.(2019·晋城模拟)记等差数列{a n }的前n 项和为S n .若a 6=16,S 5=35,则{a n }的公差为( ) A .3 B .2 C .-2 D .-33.在等差数列{a n }中,已知a 1 011=1,则该数列前2 021项的和S 2 021等于( ) A .2 020 B .2 021 C .4 040 D .4 0424.已知数列{a n }是公差不为0的等差数列,前n 项和为S n ,满足a 1+5a 3=S 8,给出下列结论:①a 10=0;②S 10最小;③S 7=S 12;④S 20=0. 其中一定正确的结论是( )A .①②B .①③④C .①③D .①②④5.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为( )A .65B .176C .183D .1846.(2019·宁夏银川一中月考)在等差数列{a n }中,若a 10a 9<-1,且它的前n 项和S n 有最大值,则使S n >0成立的正整数n 的最大值是( ) A .15 B .16 C .17 D .147.(多选)已知数列{a n }是公差不为0的等差数列,前n 项和为S n ,满足a 1+5a 3=S 8,下列选项正确的有( ) A .a 10=0 B .S 10最小 C .S 7=S 12 D .S 20=08.(多选)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则( ) A .a n =-12n-1B .a n =⎩⎪⎨⎪⎧-1,n =1,1n -1-1n,n ≥2,n ∈N *C .数列⎩⎨⎧⎭⎬⎫1S n 为等差数列D.1S 1+1S 2+…+1S 100=-5 0509.(2019·全国Ⅲ)记S n 为等差数列{a n }的前n 项和.若a 3=5,a 7=13,则S 10=________.10.等差数列{a n },{b n }的前n 项和分别为S n ,T n ,且S n T n =3n -12n +3,则a 10b 10=________.11.已知数列{a n }满足(a n +1-1)(a n -1)=3(a n -a n +1),a 1=2,令b n =1a n -1.(1)证明:数列{b n }是等差数列; (2)求数列{a n }的通项公式.12.已知等差数列{a n }的公差d >0,设{a n }的前n 项和为S n ,a 1=1,S 2S 3=36. (1)求d 及S n ;(2)求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65.13.(2020·大连模拟)已知等差数列{a n }的前n 项和为S n ,b n =2n a且b 1+b 3=17,b 2+b 4=68,则S 10等于( )A .90B .100C .110D .12014.已知数列{a n }与⎩⎨⎧⎭⎬⎫a 2n n 均为等差数列(n ∈N *),且a 1=2,则a 20=________.15.(2020·黑龙江省哈尔滨市第三中学模拟)已知x 2+y 2=4,在这两个实数x ,y 之间插入三个实数,使这五个数构成等差数列,那么这个等差数列后三项和的最大值为( ) A .210 B.1210 C.10 D.321016.记m =d 1a 1+d 2a 2+…+d n a nn ,若{}d n 是等差数列,则称m 为数列{a n }的“d n 等差均值”;若{}d n 是等比数列,则称m 为数列{a n }的“d n 等比均值”.已知数列{a n }的“2n -1等差均值”为2,数列{b n }的“3n-1等比均值”为3.记c n =2a n+k log 3b n ,数列{}c n 的前n 项和为S n ,若对任意的正整数n 都有S n ≤S 6,求实数k 的取值范围.等比数列及其前n 项和1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q (n ∈N *,q 为非零常数). (2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 是a 与b 的等比中项⇒a ,G ,b 成等比数列⇒G 2=ab . 2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1. (2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1(q =1),a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1).3.等比数列的常用性质(1)通项公式的推广:a n =a m ·q n -m (n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k. (3)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n},⎩⎨⎧⎭⎬⎫a n bn (λ≠0)仍然是等比数列.(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k .4.在等比数列{a n }中,若S n 为其前n 项和,则S n ,S 2n -S n ,S 3n -S 2n 也成等比数列(n 为偶数且q =-1除外). 概念方法微思考1.将一个等比数列的各项取倒数,所得的数列还是一个等比数列吗?若是,这两个等比数列的公比有何关系?提示 仍然是一个等比数列,这两个数列的公比互为倒数.2.任意两个实数都有等比中项吗?提示 不是.只有同号的两个非零实数才有等比中项. 3.“b 2=ac ”是“a ,b ,c ”成等比数列的什么条件?提示 必要不充分条件.因为b 2=ac 时不一定有a ,b ,c 成等比数列,比如a =0,b =0,c =1.但a ,b ,c 成等比数列一定有b 2=ac .题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( ) (2)如果数列{a n }为等比数列,则数列{ln a n }是等差数列.( ) (3)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a.( )(4)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( ) 题组二 教材改编2.已知{a n }是等比数列,a 2=2,a 5=14,则公比q =______.3.公比不为1的等比数列{a n }满足a 5a 6+a 4a 7=18,若a 1a m =9,则m 的值为( ) A .8 B .9 C .10 D .11题组三 易错自纠4.(多选)已知数列{a n }是等比数列,那么下列数列一定是等比数列的是( )A.⎩⎨⎧⎭⎬⎫1a n B .log 2a 2nC .{a n +a n +1}D .{a n +a n +1+a n +2}5.若1,a 1,a 2,4成等差数列,1,b 1,b 2,b 3,4成等比数列,则a 1-a 2b 2的值为________.6.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=________.7.一种专门占据内存的计算机病毒开机时占据内存1 MB ,然后每3秒自身复制一次,复制后所占内存是原来的2倍,那么开机________秒,该病毒占据内存8 GB.(1 GB =210 MB)等比数列基本量的运算1.(2020·晋城模拟)设正项等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则公比q 等于( )A .5B .4C .3D .22.(2019·全国Ⅲ)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3等于( )A .16B .8C .4D .23.(2019·全国Ⅰ)记S n 为等比数列{a n }的前n 项和,若a 1=1,S 3=34,则S 4=________.4.(2018·全国Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和,若S m =63,求m .等比数列的判定与证明例1 (2019·四川省名校联盟模拟)已知数列{a n }的前n 项和为S n ,且满足2S n =-a n +n (n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫a n -12为等比数列;(2)求数列{a n -1}的前n 项和T n .跟踪训练1 设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2. (1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列; (2)求数列{a n }的通项公式.等比数列性质的应用例2 (1)(2019·黑龙江省大庆第一中学模拟)在各项不为零的等差数列{a n }中,2a 2 019-a 22 020+2a 2 021=0,数列{b n }是等比数列,且b 2 020=a 2 020,则log 2(b 2 019·b 2 021)的值为( ) A .1 B .2 C .4 D .8(2)(2020·长春质检)各项均为正数的等比数列{a n }的前n 项和为S n ,已知S 6=30,S 9=70,则S 3=________.跟踪训练2 (1)(2019·安徽省江淮十校月考)已知等比数列{a n }的公比q =-12,该数列前9项的乘积为1,则a 1等于( ) A .8 B .16 C .32 D .64(2)已知等比数列{a n }的前n 项和为S n ,且S 3S 6=89,则a n +1a n -a n -1=________(n ≥2,且n ∈N *).对于数列通项公式的求解,除了我们已经学习的方法以外,根据所给递推公式的特点,还有以下几种构造方式.构造法1 形如a n +1=ca n +d (c ≠0,其中a 1=a )型 (1)若c =1,数列{a n }为等差数列; (2)若d =0,数列{a n }为等比数列;(3)若c ≠1且d ≠0,数列{a n }为线性递推数列,其通项可通过待定系数法构造等比数列来求.例1 在数列{a n }中,若a 1=1,a n +1=3a n +2,则通项a n =________.构造法2 形如 a n +1=pa n +q ·p n +1(p ≠0,1,q ≠0)型a n +1=pa n +q ·p n +1(p ≠0,1,q ≠0)的求解方法是两端同时除以p n +1,即得a n +1pn +1-a n p n =q ,则数列⎩⎨⎧⎭⎬⎫a n p n 为等差数列. 例2 (1)已知正项数列{a n }满足a 1=4,a n +1=2a n +2n +1,则a n 等于( ) A .n ·2n -1 B .(n +1)·2n C .n ·2n +1 D .(n -1)·2n(2)(2019·武汉市二中月考)已知正项数列{a n }中,a 1=2,a n +1=2a n +3×5n ,则数列{a n }的通项a n 等于( ) A .-3×2n -1 B .3×2n -1 C .5n +3×2n -1 D .5n -3×2n -1构造法3 相邻项的差为特殊数列(形如a n +1=pa n +qa n -1,其中a 1=a ,a 2=b 型) 可化为a n +1-x 1a n =x 2(a n -x 1a n -1),其中x 1,x 2是方程x 2-px -q =0的两根. 例3 数列{a n }中,a 1=1,a 2=2,a n +2=23a n +1+13a n ,求数列{a n }的通项公式.构造法4 倒数为特殊数列(形如a n =pa n -1ra n -1+s 型)例4 已知数列{a n }中,a 1=1,a n +1=2a na n +2,求数列{a n }的通项公式.1.(2020·韶关模拟)若等比数列{a n }的各项均为正数,a 2=3,4a 23=a 1a 7,则a 5等于( ) A.34 B.38 C .12 D .242.等比数列{a n }的前n 项和为S n =32n -1+r ,则r 的值为( ) A.13 B .-13 C.19 D .-193.(2019·天津市河西区月考)设{a n }是公比为q 的等比数列,则“q >1”是“{a n }为递增数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知递增的等比数列{a n }中,a 2=6,a 1+1,a 2+2,a 3成等差数列,则该数列的前6项和S 6等于( )A .93B .189 C.18916 D .3785.(2020·永州模拟)设等比数列{a n }的公比为q ,则下列结论正确的是( ) A .数列{a n a n +1}是公比为q 的等比数列 B .数列{a n +a n +1}是公比为q 的等比数列 C .数列{a n -a n +1}是公比为q 的等比数列D .数列⎩⎨⎧⎭⎬⎫1a n 是公比为1q 的等比数列6.若正项等比数列{a n }满足a n a n +1=22n (n ∈N *),则a 6-a 5的值是( ) A. 2 B .-162 C .2 D .1627.(多选)在等比数列{a n }中,a 5=4,a 7=16,则a 6可以为( ) A .8 B .12 C .-8 D .-128.(多选)在等比数列{a n }中,公比为q ,其前n 项积为T n ,并且满足a 1>1,a 99·a 100-1>0,a 99-1a 100-1<0,下列选项中,结论正确的是( ) A .0<q <1 B .a 99·a 101-1<0C .T 100的值是T n 中最大的D .使T n >1成立的最大自然数n 等于1989.已知等比数列{a n }的前n 项和为S n ,且a 1=2 020,a 2+a 4=-2a 3,则S 2 021=________.10.如图所示,正方形上连接着等腰直角三角形,等腰直角三角形腰上再连接正方形,…,如此继续下去得到一个树状图形,称为“勾股树”.若某勾股树含有1 023个正方形,且其最大的正方形的边长为22,则其最小正方形的边长为________.11.(2018·全国Ⅰ)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a nn .(1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式.12.(2019·淄博模拟)已知数列{a n }的前n 项和为S n ,a 1=34,S n =S n -1+a n -1+12(n ∈N *且n ≥2),数列{b n }满足:b 1=-374,且3b n -b n -1=n +1(n ∈N *且n ≥2).(1)求数列{a n }的通项公式; (2)求证:数列{b n -a n }为等比数列.13.各项均为正数的数列{a n }和{b n }满足:a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1 成等比数列,且a 1=1,a 2=3,则数列{a n }的通项公式为________.14.已知在等比数列{a n }中,a n >0,a 22+a 24=900-2a 1a 5,a 5=9a 3,则a 2 020的个位数字是____.15.在数列的每相邻两项之间插入此两项的积,形成新的数列,这样的操作叫做该数列的一次“扩展”.将数列1,2进行“扩展”,第一次得到数列1,2,2;第二次得到数列1,2,2,4,2,….设第n 次“扩展”后得到的数列为1,x 1,x 2,…,x t ,2,并记a n =log 2(1·x 1·x 2·…·x t ·2),其中t =2n -1,n ∈N *,求数列{a n }的通项公式.16.已知数列{a n }的前n 项和为S n ,且数列⎩⎨⎧⎭⎬⎫S n n 是首项为3,公差为2的等差数列,若b n =2n a ,数列{b n }的前n 项和为T n ,求使得S n +T n ≥268成立的n 的最小值.。
等差数列与等比数列专题辅导(小编推荐)

等差数列与等比数列专题辅导(小编推荐)第一篇:等差数列与等比数列专题辅导(小编推荐)等差数列与等比数列专题辅导(1)在等差数列{an}中, a7=9, a13=-2, 则a25=()A-22B-24C60D64(2)在等比数列{an}中, 存在正整数m, 有am=3,am+5=24, 则am+15=()A864B1176C1440D1536(3)已知等差数列{an}的公差为2,若a1,a3,a4成等比数列, 则a2=()A–4B–6C–8D–10(4)设数列{an}是等差数列,且a2=-6,a8=6,Sn是数列{an}的前n 项和,则()AS4>S3BS4=S2CS6(5)已知由正数组成的等比数列{an}中,公比q=2, a1·a2·a3·…·a30=245, 则a1·a4·a7·…·a28=5101520A 2B2C2D2(6)若{an}是等差数列,首项a1>0,a2003+a2004>0,a2003.a2004<0,则使前n项和Sn>0成立的最大自然数n是:()A.4005B.4006C.4007D.4008(7)在等比数列{an}中, a1<0, 若对正整数n都有anAq>1B0a1(3n-1)(8)设数列{an}的前n项和为Sn,Sn=(对于所有n≥1),且a4=54,则a1=__________.2(9)等差数列{an}的前m项和为30, 前2m项和为100, 则它的前3m项和为_________.(10)定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列, 且a1=2, 公和为5,那么a18的值为_______,这个数列的前21项和S21的值为.(11)已知等差数列{an}共2n+1项, 其中奇数项之和为290, 偶数项之和为261,求第n+1项及项数2n+1的值.(12)设{an}是一个公差为d(d≠0)的等差数列,它的前10项和S10=110且a1,a2,a4成等比数列.(Ⅰ)证明a1=d;(Ⅱ)求公差d的值和数列{an}的通项公式.(13)已知等比数列{an}的各项都是正数, Sn=80, S2n=6560, 且在前n项中, 最大的项为54, 求n的值.(14)ΔOBC的三个顶点坐标分别为(0,0)、(1,0)、(0,2), 设P1为线段BC的中点,P2为线段CO的中点,P3为线段OP1的中点,对于每一个正整数n, Pn+3为线段PnPn+1的中点,令Pn的坐标为(xn,yn), an=(Ⅰ)求a1,a2,a3及an;(Ⅱ)证明yn+4=1-(Ⅲ)若记bn=y4n+41yn+yn+1+yn+2.2yn,n∈N*;4-y4n,n∈N*,证明{bn}是等比数列.答案:1-7 BDBDA BB8.29.21010.3, 5211.29, 1912.(2)d=2 an=2n13.n=414.(1)an=2(2)(3)证明略第二篇:等差数列与等比数列等差数列与等比数列⎧>0,递增数列⎪一、等差数列的定义:an+1-an=d(d:公差)(常数)⎨=0,常数列,⎪<0,递减数列⎩1.证明数列{an}为等差数列:(1)定义:an+1-an=d(常数)(2)等差中项:2an+1=an+an+2注:(1)不可用a2-a1=a3-a2=a4-a3=Λ=“常数”证(2)a1=⎨例1.(1)已知数列{an}为等差数列,求证:数列{an+an+1}为等差数列;变式:①已知数列{an}为等差数列,求证:数列{an+t}(t为常数)为等差数列;②已知数列{an}为等差数列,求证:数列{tan}(t为常数)为等差数列;③已知数列{an}、{bn}均为等差数列,求证:数列{an+bn}为等差数列(2)已知数列{an}的前n项和为Sn,且Sn=n2,求证:数列{an}为等差数列;变式:①已知数列{an}的前n项和为Sn,且Sn=n2+1,求:an②已知数列{an}的前n项和为Sn,且Sn=an2+bn,求:an ③已知数列{an}的前n项和为Sn,且Sn=an2+bn+c,求:an(3)已知数列{an}满足:a1=1,an+1=数列;(4)已知数列{an},a1=1,an+1=为等差数列(5)设数列{an}的前n项和为Sn,求证:数列{an}为等差数列的充要条件是{an}为等差数列⎧S1,n=1⎩Sn-Sn-1,n≥2an1,且bn=,求证:数列{bn}为等差an+1ann1an+,且bn=nan,求证:数列{bn}n+1n+1Sn=n(a1+an)22.证明数列{an}为单调数列:an+1-an=f(n)⎨⎧>0,递增数列递减数列⎩<0,注:(1)求数列{an}中an的极值也可采用此方法(2)已知数列{an}为等差数列ⅰ.若a1<0,d>0,则Sn有最小值;解法:①令an≤0{bn}②Snⅱ.若a1>0,d<0,则Sn有最大值;解法:①令an≥0②Sn例2.已知an=(11-2n)2n,求数列{an}的最大项例3.(1)已知等差数列{an}的前n项和为Sn,且an=10-2n,求Sn的最大值;(2)已知等差数列{an}的前n项和为Sn,且an=2n-13,求Sn的最小值;3.叠加法:已知a1=a,an+1-an=f(n),求an例4.(1)已知数列{an}为等差数列,首项为a1,公差为d,求an;(2)已知数列{an},a1=1,an+1=4.通项公式:an=a1+(n-1)d(1)an=am+(n-m)d(2)an是关于n的一次函数,且n的系数为公差d.例5.已知数列{an}为等差数列,a5=-3,a9=13,求an5.等差中项:若a、b、c成等差数列,则b=(1)若数列{an}为等差数列,则2an+1n+11an+,求an nna+c称为a、c的等差中项2=an+an+2;(2)若已知三个数成等差数列,且其和为定值,则可设这三个数为a-d、a、a+d;(3)若数列{an}为等差数列,且公差d≠0,则am+an=ap+aq⇔m+n=p+q(4)在有穷等差数列{an}中,与首尾两项距离相等的两项的和等于首尾两项的和.即:a1+an=a2+an-1=a3+an-2=Λ=ak+an-k+1例6.(1)已知:等差数列中连续三项的和为21,平方和为179,求这三项(2)在3与19之间插入3个数后成等差数列,求这三个数(3)已知:a、b、c成等差数列求证:①b+c、a+c、a+b成等差数列;②a(b+c)、b(a+c)、c(a+b)成等差数列;③a-bc、b-ac、c-ab 成等差数列(4)已知:a、b、c成等差数列,求证:2222111成等差数列 b+ca+ca+blg(a-c)、lg(a+c-2b)成等差(5)已知:成等差数列,求证:lg(a+c)、数列(6)若方程a(b-c)xb(c-a)x+c(a-b)=0有相等实根,求证:成等差111abc111abc数列例7.在等差数列{an}中,(1)若a5+a10=12,求S14;(2)若a8=m,求S15;(3)若a4+a6+a15+a17=50,求S20;(4)若a2+a4=18,a3+a5=32,求S6;(5)若a2+a5+a12+a15=36,求S16;(6)若a3+a4+a5+a6+a7=450,求a2+a8(7)若等差数列{an}的各项都是负数,且a32+a82+2a3⋅a8=9,则其前10项和S10= ____________(8)在等差数列{an}中,若a3+a15=a5+an,则n=_______6.数列{an}的前n项和Sn=注:(1)倒序法求和;(2)等差数列{an}的前n项和Sn是关于自然数n的二次函数,且n的系数为n(a1+an)n(n-1)n(n-1)=na1+d=nan-d 222d,2常数项为零,即:Sn=An2+Bn(当A=0时数列{an}为常数列);(3)①S2n-1=(2n-1)an(可以将项与和之间进行相互转化)。
2023年高考数学二轮复习第一部分专题攻略专题三数列第一讲等差数列与等比数列

专题三 数列第一讲 等差数列与等比数列——小题备考常考常用结论 1.等差数列(1)通项公式:a n =a 1+(n -1)d ; (2)求和公式:S n =n (a 1+a n )2=na 1+n (n−1)2d ;(3)性质:①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m +a n =a p +a q ; ②a n =a m +(n -m)d ;③S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列. 2.等比数列(1)通项公式:a n =a 1q n -1(q ≠0); (2)求和公式:q =1,S n =na 1;q ≠1,S n =a 1(1−q n )1−q=a 1−a n q 1−q;(3)性质:①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m ·a n =a p ·a q ;②a n =a m ·q n -m ;③S m ,S 2m -S m ,S 3m -S 2m ,…(S m ≠0)成等比数列.微专题1 等差数列与等比数列的基本量计算保分题1.[2022·河北石家庄二模]等差数列{a n }的前n 项和记为S n ,若a 2+a 2 021=6,则S 2 022=( )A .3 033B .4 044C .6 066D .8 0882.[2022·辽宁沈阳三模]在等比数列{a n }中,a 2,a 8为方程x 2-4x +π=0的两根,则a 3a 5a 7的值为( )A .π√πB .-π√πC .±π√πD .π33.[2022·全国乙卷]已知等比数列{a n }的前3项和为168,a 2-a 5=42,则a 6=( ) A .14 B .12 C .6D .3提分题例1 (1)[2022·江苏盐城三模]已知数列{a n},{b n}均为等差数列,且a1=25,b1=75,a2+b2=120,则a37+b37的值为()A.760 B.820C.780 D.860(2)[2022·广东佛山三模]已知公比为q的等比数列{a n}的前n项和S n=c+2·q n,n∈N*,且S3=14,则a4=()A.48B.32 C.16D.8听课笔记:技法领悟1.等差、等比数列基本运算的关注点(1)基本量:在等差或等比数列中,首项a1和公差d(公比q)是两个基本元素;(2)解题思路:①设基本量a1和d(q);②列、解方程(组);把条件转化为关于a1和d(q)的方程(组),然后求解,注意整体计算,减少计算量.2.等差、等比数列性质问题的求解策略(1)解决此类问题的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.(2)应牢固掌握等差、等比数列的性质,特别是等差数列中“若m+n=p+q,则a m+a n =a p+a q”这一性质与求和公式S n=n(a1+a n)2的综合应用.巩固训练11.[2022·河北邯郸二模]在我国古代著作《九章算术》中,有这样一个问题:“今有五人分五钱,令上二人与下三人等,问各得几何?”意思是有五个人分五钱,且得钱最多的两个人的钱数之和与另外三个人的钱数之和相等,问每个人分别分得多少钱?若已知这五人分得的钱数从多到少成等差数列,则这个等差数列的公差d=()A.-16B.-15C.-14D.-132.[2022·山东淄博一模]已知等比数列{a n },其前n 项和为S n .若a 2=4,S 3=14,则a 3=________.微专题2 等差数列与等比数列的综合保分题1.[2022·辽宁沈阳一模]已知等差数列{a n }的公差为2,且a 2,a 3,a 5成等比数列,则{a n }的前n 项和S n =( )A .n(n -2)B .n(n -1)C .n(n +1)D .n(n +2) 2.各项均为正数的等比数列{a n }的前4项和为15,4a 1,2a 3,a 5成等差数列,则a 1=( ) A .5√2-5 B .5√2+5 C .5√2 D .53.已知正项等比数列{a n }的前n 项和为S n ,若S 3=4,S 9=19,则S 6,S 9的等差中项为________.提分题例2 (1)[2022·山东日照三模]在公差不为0的等差数列{a n }中,a 1,a 2,a k 1,a k 2,a k 3成公比为3的等比数列,则k 3=( )A .14B .34C .41D .86(2)[2022·山东潍坊三模](多选)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,则下列结论正确的是( )A .数列{Snn }为等差数列B .对任意正整数n ,b +n 2b n+22 ≥2b n +12 C .数列{S 2n +2-S 2n }一定是等差数列 D .数列{T 2n +2-T 2n }一定是等比数列 听课笔记:技法领悟等差、等比数列综合问题的求解策略对于等差数列与等比数列交汇的问题,要从两个数列的特征入手,理清它们的关系,常用“基本量法”求解,但有时灵活地运用等差中项、等比中项等性质,可使运算简便.巩固训练21.已知等比数列{a n }的前n 项和为S n ,且a 2,2a 5,3a 8成等差数列,则S6S 3=( )A .1或43B .1或13C .2或43D .13或432.[2022·湖北荆州三模](多选)等差数列{a n }的前项n 和为S n ,数列{b n }为等比数列,则下列说法正确的选项有 ( )A .数列{2a n }一定是等比数列B .数列{b a n }一定是等比数列C .数列{Snn }一定是等差数列D .数列{b n +b n +1}一定是等比数列微专题3 数列的递推保分题1.[2022·广东汕头三模]已知数列{a n }中,a 1=-14,当n>1时,a n =1-1a n−1,则a 2 022=( )A .-14 B .45 C .5 D .-45 2.数列{a n }中,若a 1=2,a n +1=2a n a n +2,则a 7=( )A .18 B .17 C .27 D .143.[2022·山东泰安三模]已知数列{a n }满足:对任意的m ,n ∈N *,都有a m a n =a m +n ,且a 2=3,则a 20=( )A .320B .315C .310D .35提分题 例3 (1)[2022·湖南雅礼中学二模](多选)著名的“河内塔”问题中,地面直立着三根柱子,在1号柱上从上至下、从小到大套着n 个中心带孔的圆盘.将一个柱子最上方的一个圆盘移动到另一个柱子,且保持每个柱子上较大的圆盘总在较小的圆盘下面,视为一次操作.设将n 个圆盘全部从1号柱子移动到3号柱子的最少操作数为a n ,则( )A .a 2=3B .a 3=8C .a n +1=2a n +nD .a n =2n -1(2)设{a n }是首项为1的正项数列,且(n +1)a n+12-na n 2+a n +1a n =0(n =1,2,3,…),则它的通项公式是a 100=( )A .100B .1100C .101D .1101听课笔记:技法领悟1.通过验证或者推理得出数列的周期性后求解.2.根据已知递推关系式,变形后构造出等差数列或等比数列,再根据等差数列或等比数列的知识求解.3.三种简单的递推数列:a n +1-a n =f(n),a n+1a n=f(n),a n +1=pa n +q(p ≠0,1,q ≠0),第一个使用累加的方法,第二个使用累乘的方法,第三个可以使用待定系数法化为等比数列(设a n +1+λ=p(a n +λ),展开比较系数得出λ).巩固训练3 1.南宋数学家杨辉所著的《详解九章算法·商功》中出现了如图所示的形状,后人称为“三角垛”.“三角垛”的最上层(即第一层)有1个球,第二层有3个球,第三层有6个球,…,设“三角垛”从第一层到第n层的各层的球数构成一个数列{a n},则() A.a5-a4=4 B.a100=5 000C.2a n+1=a n+a n+2D.a n+1-a n=n+12.[2022·福建漳州二模]已知S n是数列{a n}的前n项和,a1=1,a2=2,a3=3,记b n=a n+a n+1+a n+2且b n+1-b n=2,则S31=()A.171 B.278 C.351 D.395第一讲等差数列与等比数列微专题1等差数列与等比数列的基本量计算保分题=1 011×6 1.解析:由等差数列{a n}知,a2+a2 021=a1+a2 022=6,所以S2 022=2 022(a1+a2 022)2=6 066.答案:C2.解析:在等比数列{a n}中,因为a2,a8为方程x2-4x+π=0的两根,所以a2a8=π=a52,所以a5=±√π,所以a3a5a7=a53=±π√π.故选C.答案:C3.解析:设等比数列{a n }的公比为q.由题意知,{a 2q+a 2+a 2q =168,a 2−a 2q 3=42.两式相除,得1+q+q 2q (1−q 3)=4,解得q =12.代入a 2-a 2q 3=42,得a 2=48,所以a 6=a 2q 4=3.故选D .答案:D提分题[例1] 解析:(1)∵数列{a n },{b n }均为等差数列,设公差分别为d 1,d 2 (a n +1+b n +1)-(a n +b n )=(a n +1-a n )+(b n +1-b n )=d 1+d 2, 则数列{a n +b n }也为等差数列, a 1+b 1=100,a 2+b 2=120,数列{a n +b n }的首项为100,公差为20, ∴a 37+b 37=100+20×36=820,故选B .(2)因为公比为q 的等比数列{a n }的前n 项和S n =c +2·q n ①, 当n =1时a 1=S 1=c +2·q , 当n ≥2时S n -1=c +2·q n -1 ②, ①-②得a n =2·q n -2·q n -1=(2q -2)·q n -1,所以2q -2=c +2q ,则c =-2,又S 3=14,所以S 3=-2+2·q 3=14,解得q =2, 所以a n =2n ,则a 4=24=16. 答案:(1)B (2)C [巩固训练1]1.解析:若分得的钱从多到少分别为a 1,a 2,a 3,a 4,a 5, 所以{a 1+a 2=a 3+a 4+a 5a 1+a 2+a 3+a 4+a 5=5,所以{a 1=−8d5a 1+10d =5,可得{a 1=43d =−16.答案:A2.解析:设等比数列的公比为q ,因为a 2=4,S 3=14,所以a 1+a 3=10,即a2q +a 2q =10,所以2q2-5q+2=0,解得q=2或q=12,所以当q=2时,a3=8;当q=12时,a3=2所以,a3=2或a3=8.答案:2或8微专题2等差数列与等比数列的综合保分题1.解析:设等差数列{a n}公差d=2,由a2,a3,a5成等比数列得,a32=a2·a5,即(a1+2d)2=(a1+d)(a1+4d),解得a1=0,∴S n=n×0+n(n−1)2×2=n(n-1).答案:B2.解析:设等比数列{a n}的公比为q,(q>0),a1≠0,故由题意可得:{a1(1+q+q2+q3)=154a3=4a1+a5,{a1(1+q+q2+q3)=154q2=4+q4,解得q2=2,q=√2,a1=5√2-5.答案:A3.解析:设S6=x,因为{a n}为等比数列,所以S3,S6-S3,S9-S6成等比数列.因为S3=4,S9=19,所以4(19-x)=(x-4)2,解得x=10或x=-6(舍去).所以S6,S9的等差中项为292.答案:292提分题[例2]解析:(1)因为a1,a2,a k1,a k2,a k3成公比为3的等比数列,可得a2=3a1,所以a k3=a1·34=81a1,又因为数列{a n}为等差数列,所以公差d=a2-a1=2a1,所以a k 3=a 1+(k 3-1)d =a 1+2(k 3-1)a 1=(2k 3-1)a 1, 所以(2k 3-1)a 1=81a 1,解得k 3=41. 故选C .(2)设等差数列{a n }的公差为d ,则S n =na 1+n (n−1)2d ,所以,S n n =a 1+(n−1)d 2.对于A 选项,S n+1n+1−S n n=a 1+nd 2-a 1-(n−1)d 2=d 2,所以,{S n n}为等差数列,A 对;对于B 选项,对任意的n ∈N *,b n ≠0,由等比中项的性质可得b n+12=b n b n +2,由基本不等式可得b n 2 +b n +22≥2b n b n +2=2b n+12,B 对;对于C 选项,令c n =S 2n +2-S 2n =a 2n +2+a 2n +1, 所以,c n +1-c n =(a 2n +4+a 2n +3)-(a 2n +2+a 2n +1)=4d , 故数列{S 2n +2-S 2n }一定是等差数列,C 对; 对于D 选项,设等比数列{b n }的公比为q ,当q =-1时,T 2n +2-T 2n =b 2n +2+b 2n +1=b 2n +1(q +1)=0, 此时,数列{T 2n +2-T 2n }不是等比数列,D 错. 答案:(1)C (2)ABC [巩固训练2]1.解析:设等比数列公比为q ,由a 2,2a 5,3a 8成等差数列可得,2×2a 1·q 4=a 1·q +3a 1·q 7,化简得3q 6-4q 3+1=0,解得q 3=13或q 3=1,当q 3=1时,S6S 3=2;当q 3=13时,S 6S 3=a 1(1−q 6)1−q a 1(1−q 3)1−q=1+q 3=43.答案:C2.解析:若{a n }公差为d ,{b n }公比为q , A :由2a n+12a n=2a n+1−a n =2d 为定值,故{2a n }为等比数列,正确; B :由b a n+1b a n=b a n +d b a n=b a n q d b a n=q d 为定值,故{b a n }为等比数列,正确;C :由Sn+1n+1−S nn=a 1+a n+12−a 1+a n 2=a n+12−a n2=d 2为定值,故{Snn}为等差数列,正确; D :当q =-1时b n +b n +1=0,显然不是等比数列,错误. 答案:ABC微专题3 数列的递推保分题1.解析:由题意得:a 2=1-1a 1=5,a 3=1-1a 2=45,a 4=1-1a 3=-14,则数列{a n }的周期为3,则a 2 022=a 674×3=a 3=45.答案:B2.解析:因为a n +1=2a n a n +2,所以1a n+1=12+1a n,即1a n+1−1a n=12,又1a 1=12,则{1a n}是以12为首项,12为公差的等差数列,即1a n=12+12(n -1)=n2,则a n =2n ,所以a 7=27. 答案:C3.解析:因为对任意的m ,n ∈N *,都有a m a n =a m +n , 所以a 1a 1=a 2,a 1a n =a 1+n , 又a 2=3,所以a 1=±√3,所以a n+1a n=a 1,所以数列{a n }是首项为a 1,公比为a 1的等比数列, 所以a n =a 1·(a 1)n -1=(a 1)n , 所以a 20=(a 1)20=310. 答案:C提分题[例3] 解析:(1)将圆盘从小到大编为1,2,3,…号圆盘,则将第n +1号圆盘移动到3号柱时,需先将第1~n 号圆盘移动到2号柱,需a n 次操作;将第n +1号圆盘移动到3号柱需1次操作;再将1~n 号圆需移动到3号柱需a n 次操作,故a n +1=2a n +1,a n +1+1=2(a n +1),又a 1=1,∴{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2×2n -1=2n ,即a n =2n -1,∴a 2=3,a 3=7.(2)∵(n +1)a n+12−na n 2+a n +1a n =0,∴(n +1)a n+12+anan +1-na n 2=0,[(n +1)a n +1-na n ](a n +1+a n )=0,又∵a n >0,∴a n +1=n n+1·a n ,即a n+1a n =n n+1, ∴a 2a 1·a 3a 2·…·a n a n−1=12·23·…·n−1n ,即a n a 1=1n , 又∵a 1=1,∴a n =1n ,∴a 100=1100.答案:(1)AD (2)B[巩固训练3]1.解析:由相邻层球的个数差,归纳可知a n +1-a n =n +1,a 1=1, 对a n +1-a n =n +1累加得a n =n (n+1)2. 所以,a 5-a 4=5,a 100=100(100+1)2=5 050,2a n +1≠a n +a n +2,所以ABC 错误,故选D.答案:D2.解析:由b n +1-b n =2,b n +1-b n =a n +1+a n +2+a n +3-(a n +a n +1+a n +2)=a n +3-a n =2, ∴a 1,a 4,a 7,…是首项为1,公差为2的等差数列,a 2,a 5,a 8,…是首项为2,公差为2的等差数列,a 3,a 6,a 9,…是首项为3,公差为2的等差数列,S 31=(a 1+a 4+…+a 31)+(a 2+a 5+…+a 29)+(a 3+a 6+…+a 30)=1×11+11×10×22+2×10+10×9×22+3×10+10×9×22=351.故选C.答案:C。
高考数学《等差等比数列综合问题》基础知识与练习题(含答案)

高考数学《等差等比数列综合问题》基础知识与练习题(含答案)一、基础知识:1、等差数列性质与等比数列性质:(1)若{}n a 为等差数列,0,1c c >≠,则{}na c成等比数列证明:设{}n a 的公差为d ,则11n n n na a a da c c c c ++−==为一个常数所以{}na c成等比数列(2)若{}n a 为正项等比数列,0,1c c >≠,则{}log c n a 成等差数列 证明:设{}n a 的公比为q ,则11log log log log n c n c n c c na a a q a ++−==为常数 所以{}log c n a 成等差数列 二、典型例题:例1:已知等比数列{}n a 中,若1324,,2a a a 成等差数列,则公比q =( ) A. 1 B. 1−或2 C. 2 D. 1−思路:由“1324,,2a a a 成等差数列”可得:3123122422a a a a a a =+⇒=+,再由等比数列定义可得:23121,a a q a a q ==,所以等式变为:22q q =+解得2q =或1q =−,经检验均符合条件 答案:B例2:已知{}n a 是等差数列,且公差d 不为零,其前n 项和是n S ,若348,,a a a 成等比数列,则( )A. 140,0a d dS >>B. 140,0a d dS <<C. 140,0a d dS ><D. 140,0a d dS <>思路:从“348,,a a a 成等比数列”入手可得:()()()22438111327a a a a d a d a d =⇒+=++,整理后可得:2135a d d=−,所以135d a =−,则211305a d a =−<,且()2141646025a dS d a d =+=−<,所以B 符合要求答案:B小炼有话说:在等差数列(或等比数列)中,如果只有关于项的一个条件,则可以考虑将涉及的项均用1,a d (或1,a q )进行表示,从而得到1,a d (或1,a q )的关系例3:已知等比数列{}n a 中的各项均为正数,且510119122a a a a e +=,则1220ln ln ln a a a +++=_______________思路:由等比数列性质可得:1011912a a a a =,从而51011912a a a a e ==,因为{}n a 为等比数列,所以{}ln n a 为等差数列,求和可用等差数列求和公式:101112201011ln ln ln ln ln 2010ln 502a a a a a a a ++++=⋅==答案:50例4:三个数成等比数列,其乘积为512,如果第一个数与第三个数各减2,则成等差数列,则这三个数为___________ 思路:可设这三个数为,,a a aq q ,则有3=512512aa aq a q⋅⋅⇒=,解得8a =,而第一个数与第三个数各减2,新的等差数列为82,8,82q q −−,所以有:()816282q q ⎛⎫=−+− ⎪⎝⎭,即22252520q q q q+=⇒−+=,解得2q =或者12q =,2q =时,这三个数为4,8,16,当12q =时,这三个数为16,8,4 答案: 4,8,16小炼有话说:三个数成等比(或等差)数列时,可以中间的数为核心。
专题33 等差、等比数列的性质的综合应用(课件)-2019年高考数学(理)名师揭秘之一轮总复习

则a4a5a6=5 2.
3.在正项等比数列{an}中,lg a3+lg a6+lg a9= 6,则a1a11的值是( A )
A.10 000 B.1 000
C.100
D.10
(2)设函数 f(x)=12x,数列{bn}满足条件 b1=2,f(bn +1)=f(-31-bn),(n∈N*).
①求数列{bn}的通项公式; ②设 cn=bann,求数列{cn}的前 n 和 Tn.
【解析】(1)因为a=λb,所以12Sn=2n-1,
Sn=2n+1-2. 当n≥2时,an=Sn-Sn-1=(2n+1-2)-(2n-2) =2n,
1.等差数列的常用性质 (1)通项公式的推广:an=ak+(n-k)d(n,k∈N*). (2)若{an}为等差数列,且 m+n=p+q(m,n,p, q∈N*),则 am+an=ap+aq. (3)若{an}是等差数列,公差为 d,则 an,an+m,an+ 2m,…(n,m∈N*)是公差为__m_d____的等差数列. (4)数列 Sm,S2m-Sm,S3m-S2m,…也是等差数列. (5)S2n-1=(2n-1)an.
≤49,
∴ak(k∈M)组成首项为211,公比为4的等比数列.
则所有ak(k∈M)的和211(11--4445)=2101-32
048 .
例4已知数列{an}的前 n 项和为 Sn,向量 a=(Sn,
1),b=2n-1,12,满足条件 a=λb,λ ∈R 且 λ≠0. (1)求数列{an}的通项公式;
②cn=bann=3n2-n 1,
Tn=221+252+283+…+32nn--14+3n2-n 1
①
12Tn=222+253+284+…+3n2-n 4+32nn-+11
2022数学大题专项三数列学案文含解析新人教A版

数列高考大题专项(三)数列考情分析从近五年高考试题分析来看,高考数列解答题主要题型有:等差、等比数列的综合问题;证明一个数列为等差或等比数列;求数列的通项公式及非等差、等比数列的前n项和;证明数列型不等式。
命题规律是解答题每两年出现一次,命题特点是试题题型规范、方法可循、难度稳定在中档。
典例剖析题型一等差、等比数列的综合问题【例1】(2020山东济宁5月模拟,18)已知数列{a n}为等差数列,且a2=3,a4+a5+a6=0。
(1)求数列{a n}的通项公式a n及前n项和S n。
(2)请你在数列{a n}的前4项中选出三项,组成公比的绝对值小于1的等比数列{b n}的前3项,并记数列{b n}的前n 项和为T n。
若对任意正整数k,m,n,不等式S m<T n+k恒成立,试求k的最小值.解题心得1。
对于等差、等比数列,求其通项公式及求前n 项的和时,只需利用等差数列或等比数列的通项公式及求和公式求解即可。
2.有些数列可以通过变形、整理,把它转化为等差数列或等比数列,进而利用等差数列或等比数列的通项公式或求和公式解决问题.对点训练1(2020陕西西安中学八模,文17)已知数列{a n}的前n项和为S n,且a n是S n与2的等差中项;在数列{b n}中,b1=1,点P(b n,b n+1)在直线x—y+2=0上。
(1)求数列{a n},{b n}的通项公式;(2)设c n=a n+b n,求数列{c n}的前n项和T n。
题型二可转化为等差、等比数列的综合问题a n-1,【例2】已知数列{a n}的前n项的和为S n,S n=32(1)求数列{a n}的前n项和S n;(2)判断数列{S n+1}是递增数列还是递减数列,并证明.S n解题心得无论是求数列的通项公式还是求数列的前n项和,通过变形整理后,能够把数列转化为等差数列或等比数列,进而对点训练2(2020安徽合肥一中模拟,17)已知数列{a n}满足a1+2a2+3a3+…+na n=14[(2n-1)·3n+1].(1)求{a n}的通项公式;(2)若b n=12a n-1,证明:b1+b2+…+b n〈32.题型三证明数列为等差或等比数列【例3】(2018全国1,文17)已知数列{a n}满足a1=1,na n+1=2(n+1)a n。
(完整版)等差等比数列综合练习题

等差数列等比数列综合练习题一.选择题1. 已知031=--+n n a a ,则数列{}n a 是 ( )A. 递增数列B. 递减数列C. 常数列D. 摆动数列 2.等比数列}{n a 中,首项81=a ,公比21=q ,那么它的前5项的和5S 的值是( ) A .231 B .233 C .235 D .2373. 设n S 是等差数列}{n a 的前n 项和,若S 7=35,则a 4=( ) A. 8 B.7C.6D.54. 等差数列}{n a 中,=-=++10915812,1203a a a a a 则( ) A .24B .22C .20D .-85. 数列{}n a 的通项公式为n n a n 2832-=,则数列{}n a 各项中最小项是 ( ) A. 第4项 B.第5项 C. 第6项 D. 第7项6.已知a ,b ,c ,d 是公比为2的等比数列,则dc ba ++22等于( ) A .1 B .21 C .41D .817.在等比数列{}n a 中,7114146,5,a a a a •=+=则2010a a =( ) A.23B.32C.23或32 D.23-或 32- 8.已知等比数列{}n a 中,n a >0,243546225a a a a a a ++=,那么35a a +=( ) A.5 B .10 C.15 D .209.各项不为零的等差数列{}n a 中,有23711220a a a -+=,数列{}n b 是等比数列,且7768,b a b b ==则( )A.2B. 4C.8 D .16 10.已知等差数列{}n a 中, 211210,10,38,n m m m m a m a a a S -+-≠>+-==若且则m 等于 A. 38 B. 20 C.10D. 911.已知n s 是等差数列{}n a *()n N ∈的前n 项和,且675s s s >>,下列结论中不正确的是( )A. d<0B. 110s >C.120s <D. 130s < 12.等差数列}{n a 中,1a ,2a ,4a 恰好成等比数列,则14a a 的值是( ) A .1 B .2 C .3 D .4二.填空题13.已知{a n }为等差数列,a 15=8,a 60=20,则a 75=________ 14. 在等比数列}{n a 中,1682=•a a ,则5a =__________15.在等差数列{a n }中,若a 7=m ,a 14=n ,则a 21=__________ 16. 若数列{}n x 满足1lg 1lg n n x x +=+()n N *∈,且12100100x x x +++=,则()101102200lg x x x +++=________17.等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19的值_________ 18.已知等比数列{a n }中,a 1+a 2+a 3=40,a 4+a 5+a 6=20,则前9项之和等于_________三.解答题19. 设三个数a ,b ,c 成等差数列,其和为6,又a ,b ,1+c 成等比数列,求此三个数.20. 已知数列{}n a 中,111,23n n a a a -==+,求此数列的通项公式.21. 设等差数列{}na的前n项和公式是253ns n n=+,求它的前3项,并求它的通项公式.22. 已知等比数列{}n a的前n项和记为S n,,S10=10,S30=70,求S40。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列与等比数列综合问题(3)教学目标 1.熟练运用等差、等比数列的概念、通项公式、前n 项和式以及有关性质,分析和解决等差、等比数列的综合问题. 2.突出方程思想的应用,引导学生选择简捷合理的运算途径,提高运算速度和运算能力.3.用类比思想加深对等差数列与等比数列概念和性质的理解.教学重点与难点 1.用方程的观点认识等差、等比数列的基础知识,从本质上掌握公式. 2.等差数列与等比数列的综合应用.例1已知两个等差数列5,8,11,…和3,7,11…都有100项,问它们有多少公共项.例2 已知数列{an}的前n 项和,求数列{|an|}的前n项和tn.例3已知公差不为零的等差数列{an}和等比数例{bn}中,a1=b1=1,a2=b2,a8=b3,试问:是否存在常数a,b,使得对于一切自然数n,都有an=logabn+b成立.若存在,求出a,b的值,若不存在,请说明理由.例4已知数列{an}是公差不为零的等差数列,数列{akn}是公比为q的等比数列,且k1=1,k2=5,k3=17,求k1+k2+k3+…+kn的值.例5、已知函数f(x)=2x-2-x ,数列{an}满足f( )= -2n (1)求{an}的通项公式。
(2)证明{an}是递减数列。
例6、在数列{an}中,an>0,= an+1 (n n)求sn和an的表达式。
例7.已1
————来源网络整理,仅供供参考
知数列{an}的通项公式为an= .求证:对于任意的正整数n,均有a2n ─1,a2n,a2n+1成等比数列,而a2n,a2n+1,a2n+2成等差数列。
例8.项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项及项数。
作业1 公差不为零的等差数列的第2,第3,第6项依次成等比数列,则公比是().(a)1 (b)2 (c)3 (d)4 2 若等差数列{an}的首项为a1=1,等比数列{bn},把这两个数列对应项相加所得的新数列{an+bn}的前三项为3,12,33,则{an}的公差为{bn}的公比之和为().(a)-5 (b)7 (c)9 (d)14 3 已知等差数列{an}的公差d≠0,且a1,a3,a9成等比数列,则的值是. 4 在等差数列{an}中,a1,a4,a25依次成等比数列,且a1+a4+a25=114,求成等比数列的这三个数.5 设数列{an}是首项为1的等差数列,数列{bn}是首项为1的等比数列,又cn =an-bn(n∈n+),已知试求数列{cn}的通项公式与前n项和公式.
————来源网络整理,仅供供参考 2。