结构力学第8章位移法(f)

合集下载

《结构力学习题集》第8章位移法

《结构力学习题集》第8章位移法

第8章 位移法习 题一、判断题:1、位移法未知量的数目与结构的超静定次数有关。

( )2、位移法的基本结构可以是静定的,也可以是超静定的。

( ) 4、位移法典型方程的物理意义反映了原结构的位移协调条件。

( )5、图示结构,当支座B 发生沉降∆时,支座B 处梁截面的转角大小为12./∆l ,方向为顺时针方向,设EI =常数。

( )6、图示梁之 EI =常数,当两端发生图示角位移时引起梁中点C 之竖直位移为(/)38l θ(向下)。

( )2θθC7、图示梁之EI =常数,固定端A 发生顺时针方向之角位移θ,由此引起铰支端B 之转角(以顺时针方向为正)是-θ/2 。

( )8、用位移法可求得图示梁B 端的竖向位移为ql EI 324/。

( )q9、结 构 按 位 移 法 计 算 时 , 其 典 型 方 程 的 数 目 与 结 点 位 移 数 目 相 等 。

( ) 10、位移法求解结构内力时如果P M 图为零,则自由项1P R 一定为零。

( ) 11、超 静 定 结 构 中 杆 端 弯 矩 只 取 决 于 杆 端 位 移 。

( ) 12、图示梁之 EI =常数,当两端发生图示角位移时引起梁中点C 之竖直位移为(/)38l θ(向下)。

2θθC二、填空题:13、判断下列结构用位移法计算时基本未知量的数目。

(1) (2) (3)(4) (5) (6)EIEIEIEI 2EI EI EIEIEA EA ab EI=EI=EI=24442第13题14、位移法可解超静定结构、静定结构,位移法典型方程体现了_______条件。

15、图示梁A 截面的角位移φA = ____________。

(杆长l,荷载作用在中点)16、图示结构,M AB = __________。

17、图示刚架,各杆线刚度i 相同,不计轴向变形,用位移法求得 M AD = ,M BA =___________。

Di i i A4518、图示结构M BA 的值为_____________,________________侧受拉。

位移法结构力学知识点概念讲解

位移法结构力学知识点概念讲解

位移法结构力学知识点概念讲解位移法是结构力学中常用的一种分析方法,通过计算结构的位移来求解结构的内力、应力和变形等问题。

它的基本思想是建立结构的位移与应力之间的关系,并利用位移方程和边界条件,求解结构的位移分布,进而获得结构内力、应力和变形等信息。

1.位移概念:结构的位移是指结构中各点相对于参考点的位置变化量。

通常用向量形式表示,位移向量包含所有结构节点的位移分量。

位移分量包括两个方向的位移:横向位移和纵向位移。

横向位移是结构在水平方向上的位置变化,纵向位移是结构在垂直方向上的位置变化。

2.位移分布方程:位移分布方程是描述结构位移与应力之间关系的基本方程。

根据结构的力学特性和边界条件,可以建立位移方程。

一般情况下,位移方程包含多个线性方程,通过求解这些方程组,可以得到结构的位移分布。

常用的位移分布方程包括静平衡方程、变形方程和边界条件等。

3.静平衡方程:静平衡方程是结构力学中最基本的方程之一,它描述结构受力平衡的条件。

根据牛顿第二定律,结构的受力和位移之间存在其中一种关系。

通过建立结构受力平衡的方程,可以获得结构的位移分布。

4.变形方程:变形方程是位移法分析中的重要概念,它用来描述结构的变形与应力之间的关系。

根据结构力学理论,结构受到外力作用时,会发生形变,形成内力和应力。

通过建立变形方程,可以求解结构内力和应力分布。

5.边界条件:边界条件是位移法中必须考虑的条件,它是解决位移方程的关键因素。

边界条件主要包括结构的支座约束条件和结构受力边界条件。

支座约束条件指明结构的一些节点固定或受到特定的位移限制,受力边界条件指明结构的一些部分受到特定的外力或力矩作用。

6.内力和应力计算:通过求解结构的位移分布,可以计算得到结构的内力和应力。

内力是指结构中各点所受的力的大小和方向,包括轴力、剪力和弯矩等。

应力是指结构内部各点处的应力大小和方向,包括正应力和剪应力等。

7.变形计算:位移法可以用来计算结构的变形情况,包括横向变形和纵向变形。

第八章-结构的位移计算

第八章-结构的位移计算
线位移 — 结构上某点沿直线方向移动的距离。 角位移 — 结构上某截面旋转的角度。
绝对位移
相对位移
截面A角位移A ,
A点线位移 A 包含: 水平线位移 AH 竖向线位移 AV
CD两点的水平相对线位移:
(CD )H C D
AB两截面的相对转角:AB A B
以上线位移、角位移及相对位移统称为广义位移
一.局部变形时的位移公式
如图所示,为一悬臂梁在B点附近有微段ds 有局部变形,结构其他部分没有变形,微
段 ds 局部变形包括三部分:
⑴ 轴向应变 ;⑵ 平均剪切应变 0 ;
⑶ 轴线曲率 ( 1 R,R 为轴线变形后
§8-2 结构位移计算的一般公式
—般情况下,结构发生位移在结构内部产生应变,因此,结构的位移计算 属于变形体体系的位移计算问题。计算变形体体系的位移采用的方法以虚 功原理最为普通。推导结构位移(变形体)计算的一般公式有两种途径:
一是根据变形体体系的虚功原理,然后由此导出变形体体系的位移公式, 另一种是先应用刚体体系的虚功原理导出局部变形时的位移公式,然后应 用叠加原理,导出整体变形时的位移公式。
第 六 章 结构位移计算
本章主要内容
➢ 应用虚功原理求刚体体系的位移 ➢ 结构位移计算的一般公式 ➢ 荷载作用下的位移计算 ➢ 图乘法 ➢ 温度作用及支座移动时的位移计算 ➢ 广义位移的计算 ➢ 互等定理
§8-1 应用虚功原理求刚体体系的位移
一.结构位移计算概述
◆结构位移的种类:结构在外界因素作用下发生变形。因此而使结构各点的 位置发生相应的改变,这种改变称为结构的位移。
在材料力学中,曾学过求梁的位移计算方法(如直接积分法等)。但这
些方法对于结构力学的研究对象,如多跨静定梁、桁架、刚架等结构,是

结构力学第8章位移法

结构力学第8章位移法
第八章 位 移 法
§8-1 概述 §8-2 等截面直杆的转角位移方程 §8-3 位移法的基本未知量和基本结构 §8-4 位移法的典型方程及计算步骤 §8-5 直接由平衡条件建立位移法基本方程 §8-6 对称性的利用
§8-1 概 述
力法是计算超静定结构的最基本方法。 当结构庞大复杂时,超静定次数很高,力法基本未知量 多,求解力法基本方程困难,限制力法在分析大型结构 中的应用。
M
AB

4i A

2iB

6i l
ΔAB
MAB=X1,MBA=X2,可得
M
BA

4iB

2i A

6i l
ΔAB
固端弯矩
M
AFB、M
F BA
:单跨梁在荷载作用及温度变化时产生的
杆端弯矩。
当单跨梁除支座位移外,还有荷载作用及温度变化时, 其杆端弯矩为
M AB

4i A
2iB

6i l
ΔAB
M AB 6i / l MBA 6i / l
12i/l2
A
B
FS 12i / l 2
§8-2 等截面直杆的转角位移方程
1
A
BA
B
A
B
3i
3i/l
M AB 3i
FS 3i / l
A
B
3i/l
1
3i/l2
A
B
A
B
M AB 3i / l
FS 3i / l 2
1 A
A
B
A
5ql/8
B
A
B 3ql/8
M
F AB

ql 2

结构力学第8章位移法

结构力学第8章位移法

结构力学第8章位移法位移法是结构力学中一种常用的分析方法。

它基于结构物由刚性构件组成的假设,通过计算结构在外力作用下产生的位移和变形,进而推导出结构的反力和应力分布。

位移法的基本思想是将结构的局部位移组合成整体位移,通过建立位移和反力之间的关系,解决结构的力学问题。

位移法的分析步骤通常包括以下几个方面:1.建立结构的整体位移函数。

位移函数是位移法分析的基础,通过解结构的运动方程建立结构的位移与自由度之间的关系。

2.应用边界条件。

根据边界条件,确定结构的支座的位移和转角值。

支座的位移和转角值可以由结构的约束条件和外力产生的位移计算得出。

3.构建位移方程组。

将结构的整体位移函数带入到结构的平衡方程中,得到位移方程组。

位移方程组是未知反力系数的线性方程组。

4.解位移方程组。

通过解位移方程组,求解未知反力系数。

可以使用高斯消元法、克拉默法则或矩阵方法等解方程的方法求解。

5.求解反力和应力分布。

通过已知的位移和未知的反力系数,可以计算出结构的反力和应力分布。

这些反力和应力分布可以进一步用于结构的设计和评估。

位移法的优点是适用范围广泛,适合复杂结构的分析。

它可以处理线性和非线性的结构,包括静力学和动力学的分析。

同时,位移法具有较高的精度和准确度,在结构的分析和设计中得到广泛应用。

然而,位移法也存在一些限制。

首先,位移法假设结构是刚性的,忽略了结构的变形和位移过程中的非线性效应。

其次,位移法需要建立适当的位移函数,对于复杂结构来说,这是一个复杂和困难的任务。

此外,位移法在处理大变形和非线性结构时可能会遭遇困难。

综上所述,位移法是结构力学中一种重要的分析方法。

它通过计算结构的位移和变形,推导出结构的反力和应力分布,为结构的设计和评估提供基础。

然而,位移法也存在一些限制,需要在具体的分析问题中谨慎应用。

结构力学上第8章 位移法

结构力学上第8章 位移法

(非独立角位移) l FQBA
M AB M BA
F 3i A 3i M AB l 0
3、一端固 FQAB
A
B1
B
l
F M AB i A i B M AB F M BA i A i B M BA
(非独立线位移)
q B EI C L
Z1
q B
EI C
Z2 4i
Z1=1
EI A 原结构
L
=
Z2=1
EI A qL2 8 基本体系
=
3i
M1图×Z1 2i
+
6EI L2 6EI M2图×Z2 L2
+
qL2 8 MP图
在M1、M2、MP三个 图中的附加刚臂和链杆 中一定有约束反力产生, 而三个图中的反力加起 来应等于零。
M
q
应用以上三组转角位移方程,即可求出三种基本的单跨超 静定梁的杆端弯矩表达式,汇总如下:
F 1)两端固定梁 M AB 4i A 2i B 6i M AB
M BA
l F 2i A 4i B 6i M BA l
2)一端固定另一端铰支梁
F M AB 3i A 3i M AB l M BA 0 3)一端固定另一端定向支承梁 F M AB i A i B M AB
3
2
1
结点转角的数目:7个
独立结点线位移的数目:3个
D
E
A
B
C
C
D
刚架结构,有两个刚结点D、E, 故有两个角位移,结点线位移由铰 结体系来判断,W=3×4-2×6=0, 铰结体系几何不变,无结点线位移。
A
B

01-结构力学 位移法知识点小结

01-结构力学 位移法知识点小结

第8章 位移法(知识点小结)一、杆端内力正负号规定(图8-1)杆端弯矩AB M 、BA M :以绕杆端顺时针为正,逆时针为负;对结点或支座而言,截面弯矩以逆时针为正。

杆端剪力SAB F 、SBA F :以绕微段隔离体顺时针转动者为正,反之为负。

结点转角(杆端转角)A θ、B θ:顺时针转动为正。

两端垂直杆轴的相对线位移AB ∆:以使杆件顺时针转动为正,反之为负。

图8-1 杆端内力及杆端位移的正负号规定二、等截面直杆的转角位移方程—位移法计算的基础1、由杆端位移求杆端力——形常数考虑三种不同情况:两端固定直杆、一端固定另一端铰支的直杆及一端固定另一端滑动支承的直杆。

由杆端位移求杆端内力的公式(刚度方程),如表8-1所示,这里/i EI l =。

由杆端位移求出杆端弯矩后,杆端剪力可由平衡条件求出。

表8-1中,杆端内力是根据图示方向的位移方向求得的,当计算某一结构时,应根据其杆件所受的实际位移方向,判断其杆端内力的正负号及受拉侧。

2、由荷载求固定内力——载常数对三种等截面直杆,在荷载作用、温度改变作用下的杆端弯矩和剪力,称为固端弯矩和固端剪力(载常数)。

常见荷载作用下的载常数可查表所得。

3、等截面直杆的转角位移方程对等截面直杆,既有已知荷载作用,又有已知的杆端位移,可根据叠加原理,写出其杆端力的一般表达式,这即为等截面直杆的转角位移方程。

三、位移法的基本未知量包括独立的结点角位移和独立的结点线位移。

独立的结点角位移数目等于刚结点(包括组合结点、弹性抗转弹簧)的数目。

结点线位移的数目可通过增设支杆法(或铰化体系法)来确定。

铰化体系法就是将原结构中所有刚结点和固定支座均改为铰结点形成铰接体系,此铰接体系的自由度数就是原结构的独立结点线位移数。

然后分析该铰接体系的几何组成:如果它是几何不变的,说明结构无结点线位移;相反,如果铰接体系是几何可变的,再看最少需要增设几根附加支杆才能确保体系成为几何不变,或者说使此铰接体系成为几何不变而需添加的最少支杆数就等于原结构的独立结点线位移数目。

结构力学位移法课件

结构力学位移法课件

r11
3i
R1P
r11=6i
3i R1Pql2/8
ql 2 Z1ql2/48i
8 MM 1Z1M P
ql2 /16
Z1
M
位移法基本未知数 ----结点位移.
位移法的基本结构 ----单跨梁系.
=
=
Z1
q
EI
EI
Z1
R1
q
EI
EI
ql 2 / 8
R1P
q
位移法的基本方程 ----平衡方程.
+
MP
Z1=1
三.位移法基本结构与基本未知量 无侧移结构(刚架与梁不计轴向变形)
位移法计算, 1个基本未知量
R1=r11 Z1+ R1P =0
基本未知量:独立的 结点位移.包括角位移和线位移 如果把所有的刚结点(包括固定支座)都改为铰结点,则此铰结体系的自由度数就是原结构的独立结点线位移的数目.
有侧移结构(刚架与梁不计轴向变形) 杆端单位位移引起的杆端内力称为形常数.
杆端剪力:使所研究的分离体 有顺时针转动趋势为正,有逆 时针转动趋势为负。
2. 杆端位移的正、负号规定
杆端转角(角位移):以顺时针方向转动为正,反之 为负 。
杆端相对线位移:指杆件两端垂直于杆轴线方向的相对 线位移,正负号则以使整个杆件顺时针方向转动规定为 正,反之为负。
第八章 位移法
一.单跨超静定梁的形常数与载常数
3. 等截面梁的形常数 杆端单位位移引起的杆端内力称为形常数.
i=EI/l----线刚度
4. 等截面梁的载常数 荷载引起的杆端内力称为载常数.
第八章 位移法
一.单跨超静定梁的形常数与载常数
二.位移法基本概念
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图a所示刚架在荷载F作用下发生虚线所示变形。略去轴向变形,可将 结构分解如图b、c。
思路:将结点1的角位移Z1 作为基本未知量,求 出Z1,进而求出各杆 内力。
需解决的问题:(1)用力法算出单跨超静定梁在各种外因作用 下的内力 (2)确定哪些位移作为基本未知量 (3)如何求出这些位移
§8-2 等截面直杆的转角位移方程
①把结构拆成杆件 (物理条件) ②把杆件装成结构 (变形协调、平衡)
应用位移法求解刚架需要解决三个问题:
①单跨超静定梁的内力分析; ②位移法基本未知量的确定; ③位移法方程的建立与求解。
§8-5 直接由平衡条件建立位移法基本方程
图a所示刚架用位移法求解时有两个基本未知量:刚结点1 的转角Z1,结点1、2的水平位移Z2。
基本结构在荷载和Z1共同作用下的体系称为基本体系,如图b。
附加刚臂上的反力矩R1=R11(Z1引起的)+R1P(荷载引起的)
原结构没有附加刚臂,所以:R1=R11+R1P=0
§8-4 位移法的典型方程及计算步骤
设r11表示Z1=1引起的附加刚臂上的反力矩,所以:R11=r11Z1。 可得 系数
r11Z1 R1P 0
§8-2 等截面直杆的转角位移方程

EI —杆件的线刚度 i l
MAB=X1,MBA=X2,可得
6i M AB 4i A 2i B ΔAB l 6i M BA 4i B 2i A ΔAB l
F F 固端弯矩 M AB :单跨梁在荷载作用及温度变化时产生的 、M BA 杆端弯矩。
当单跨梁除支座位移外,还有荷载作用及温度变化时, 其杆端弯矩为
6i F M AB 4i A 2i B ΔAB M AB l 6i F M BA 4i B 2i A ΔAB M BA l
转角位移方程
§8-2 等截面直杆的转角位移方程
典型方程
主系数:主斜线上的系数rii,或称为主反力,恒为正值。 副系数:其他系数rij,或称为副反力,可为正、负或零。 rij= rji。 每个系数都是单位位移引起的反力或反力矩→结构的刚度系数; 位移法典型方程→结构的刚度方程;位移法→刚度法。
§8-4 位移法的典型方程及计算步骤
例8-1 试用位移法求图a所示阶梯形变截面梁的弯矩图。E=常数。
对于一端固定另一端铰支的等截面梁,设B端为铰支,则有
M BA 4i B 2i A
6i F ΔAB M BA 0 l
1 3 1 F B ( A ΔAB M BA ) 2 l 2i
B 不是独立的
3i F' ΔAB M AB l 1 F F' F M AB M AB M BA 2 M AB 3i A
§8-3 位移法的基本未知量和基本结构
确定独立的结点线位移另种一方法
把原结构的所有刚结点和固定支座均改为铰结点→铰结体系,如图b。 此铰结体系为几何不变,原结构无结点线位移。 此铰结体系为几何可变或瞬变,添加最少的支座链杆保证其几何不变, 添加的链杆数目既是原结构独立的结点线位移数目。如图b,加一个水 平支座链杆,体系成为几何不变的。
第八章 位 移 法
§8-1 概述 §8-2 等截面直杆的转角位移方程 §8-3 位移法的基本未知量和基本结构 §8-4 位移法的典型方程及计算步骤
§8-5 直接由平衡条件建立位移法基本方程
§8-6 对称性的利用 §8-7 有侧移的斜柱刚架 §8-8 温度变化时的计算
§8-1 概 述
位移法:先确定某些位移,再推求内力。
联系得到 基本结构。 (2)建立位移法的典型方程:各附加联系上的反力矩或反力均 应等于零。 (3)绘弯矩图:基本结构在各单位结点位移和外因作用下,由 平衡条件求系数和自由项。 (4)解典型方程:求出作为基本未知量的各结点位移。
(5)绘制最后弯矩图:用叠加法。
§8-4 位移法的典型方程及计算步骤
对于具有n个独立结点位移的结构,可建立n个方程如下
杆端弯矩
杆端剪力
§8-3 位移法的基本未知量和基本结构
基本未知量:结点的角位移、线位移。
1、结点的角位移:每一个刚结点有一个独立的角位移未知量。图 a所示刚架 独立结点角位移数目为2。 2、结点的线位移:略去受弯杆件的轴向变形,设弯矩变形是微小的。如图 a, 4、5、6点不动,三根柱子长度不变,故1、2、3点均无竖 向位移。两根横梁长度不变。因而,1、2、3点有相同的水 平位移。
§8-3 位移法的基本未知量和基本结构
附加刚臂: 阻止刚结点的转动,但不能阻止结点的移动。 附加支座链杆:阻止结点的线位移。
图a所示刚架,在刚结点1、3处分别加上刚臂,在结点3处加上一根
水平支座链杆,则原结构的每根杆件都成为单跨超静定梁。
这个单跨超静定梁的组合体称为位移法的基本结构。如图c。
§8-3 位移法的基本未知量和基本结构
绘弯矩图c、d。取结点C为隔离体。
r11 12i
代入典型方程解得
R1 6i
Z1 R1 r11 2

M M1Z1 M
位移法要点:
1)位移法的基本未知量是结点位移; 2)位移法以单根杆件为计算单元; 3)根据平衡条件建立以结点位移为基本未知量的基本方程。 4)先将结构拆成杆件,再将杆件搭成结构。这就将复杂结构 的计算问题转换为简单的杆件分析与综合问题。 位移法计算刚架时的特点: 1)基本未知量是结点位移; 2)计算单元是一组单跨超静定梁; 3)位移法方程是根据平衡条件建立的。
解:结构的基本未知量:结点B的角位移Z1、 竖向位移Z2,基本体系如图b。
r11 Z1 r12 Z 2 R1P 0 典型方程为 r21 Z1 r22 Z 2 R2P 0
设 i
EI 则iAB=3i,iBC=i l
绘弯矩图c、d、e。 取结点B处的隔离体。
r11 16i
12i r21 l
§8-4 位移法的典型方程及计算步骤
4812i l
R1P 0
R2P F
代入典型方程解得
Fl Fl 2 Z1 , Z2 52i 39i

M M1Z1 M 2 Z 2 M P
§8-4 位移法的典型方程及计算步骤
一个附加联系上的附加反力矩和附加反力都应等于零。
原结构的静力平衡条件
§8-4 位移法的典型方程及计算步骤
为求系数和自由项,绘弯矩图如图a、b、c。
r11 7i
6i r12 l
Fl R1P 8
6i r21 l
15i r22 2 l
F R2 P 2
§8-4 位移法的典型方程及计算步骤
§8-6 对称性的利用
例8-3 试计算图a所示弹性支承连续梁,弹性支座刚度 k EI 3 10m 梁的EI=常数。
解:这是一个对称结构承受正对称荷载 取一半结构如图b,基本体系如图c
r11Z1 r12 Z 2 R1P 0 典型方程为 r21Z1 r22 Z 2 R2 P 0
图b利用对称性简化为图d。 图c利用对称性简化为图e。
用位移法求解
用力法求解
§8-6 对称性的利用
图a所示对称刚架,可将荷载分解为正、反对称两组。在正(反)对称 荷载作用下,基本未知量数目是不同的。如图b、c。
荷 载 位移法基本未知量数目 力法基本未知量数目 6 正对称 3(采用) 6 反对称 3(采用)
自由项 作
位移法基本方程
Z1 1 及荷载作用下的弯矩图,如图a、b。
由a图,取结点B为隔离体,由∑MB=0,可得r11=3i+3i=6i 由b图,取结点B为隔离体,由∑MB=0,可得R1P=-24kN· m
i
EI 8m
§8-4 位移法的典型方程及计算步骤
将 r11和R1P代入方程求出
R1P 4kN m Z1 r11 i
§8-5 直接由平衡条件建立位移法基本方程
由平衡条件可得
6i Fl 7iZ1 Z 2 0 l 8 6i 15i F Z1 2 Z 2 0 l l 2
Z1、Z2
各杆端最后弯矩由转角位移方程求得。
§8-6 对称性的利用
图a所示对称刚架,可将荷载分解为正、反对称两组。在正对称荷载作 用下只有正对称的基本未知量,如图b。在反对称荷载作用下只有反对称的基 本未知量,如图c。
例8-2 求图a所示刚架的支座A产生转角 ,支座B产生竖向位移 3 Δ l 。试用位移法绘其弯矩图,E为常数。
4
EI 设 i l
i AC i

iBC
8i 3
解:刚架的基本未知量:结点C的角位移Z1,基本体系如图b。
典型方程为
r11Z1 R1 0
§8-4 位移法的典型方程及计算步骤
将系数和自由项代入典型方程并求解,可得
9 Fl 22 Fl 2 Z1 , Z2 552 i 552 i
结构的最后弯矩图可由叠加法绘制: M
M1Z1 M 2 Z 2 M P
内力图校核同力法,略。
§8-4 位移法的典型方程及计算步骤
位移法计算步骤
(1)确定基本未知量:独立的结点角位移和线位移,加入附加
结构的最后弯矩图由叠加法绘制
M Z1M1 M P
§8-4 位移法的典型方程及计算步骤
a图所示刚架,13杆和24杆有侧移产生,称为有侧移结构。基本体系如图b。
由图c、d、e可得
R1 R11 R12 R1P 0 R2 R21 R22 R2P 0
§8-4 位移法的典型方程及计算步骤
r11、r12分别表示Z1=1、Z2=1引起的刚臂上的反力矩。 r21、r22分别表示Z1=1、Z2=1引起的链杆上的反力。可得
相关文档
最新文档