上海中考数学考试大纲之欧阳学创编

合集下载

例1 一项工程,甲队单独做完要12天,乙队单独做完要10天之欧阳学创编

例1 一项工程,甲队单独做完要12天,乙队单独做完要10天之欧阳学创编

例1 一项工程,甲队单独做完要12天,乙队单独做完要10天,两队合做多少天就可以完成?【分析1】把这项工程看作整体“1”,甲每天完成工程的112,乙队每天完成工程的110,甲乙合做每天完成工程的1160,工程“1”里包含几个1160,就是两队合做完成这个工程的天数.【解法1】两队合做1天完成的工程?1 12+110=1160两队合做多少天完成这项工程?1÷1160=5511(天)综合算式: 1÷(112+110)=1÷1160=5511(天).【分析2】用最小公倍解法.因为12和10的最小公倍数是60,所以可假设这项工程为60.那么甲队工作效率为60÷12=5,乙队工作效率为60÷10=6,甲乙合做效率为5+6=11.用总工作量60除以甲乙效率和11,即得两队合做完成这个工程的天数.【解法2】假设这项工程总工作量为60.60÷(60÷12+60÷10)=60÷(5+6)=60÷11=5511(天).【分析3】由题意可知,甲队每天的工作量,乙队天就可完成,即天.两队合做1天的工作量由乙队独做需要1+天,即天.所以乙队10天完成的这项工程,两队合做要用10÷=(天)完成.【解法3】 10÷(1+10÷12)=10÷(1+)=10÷=(天).【分析4】甲队12天的工作量,乙队10天即可完成,所以乙队1天的工作量,甲队要用天完时,即天。

那么甲乙两队合做1天的工作量,甲队要用1+=(天).所以乙队10天完成的这项工程,两队合做要用12÷=(天).【解法4】 12÷(1+12÷10)=12÷(1+)=12÷=(天).答:两队合做天就可以完成.【评注】解法1是工程应用题的一般解法,易于理解.是较好的解法。

解法2是利用求公倍数法解工程应用题,这种解法其实是假设解法,读者可根据实际情况选择恰当的数假设为总工程量.例2 一列货车与一列客车同时从甲、乙两站相对开出,经过9小时相遇,相遇后两车都继续以原速前进。

求一个数是另一个数的几分之几之欧阳学创编

求一个数是另一个数的几分之几之欧阳学创编

分数应用题是由求一个数的几倍是多少演变而来的一种具有固定条件结构,解题规律的应用题。

通常有三种基本类型:(1)求一个数是另一个数的几分之几(2)(3)求一个数的几分之几是多少(4)已知一个数的几分之几是多少,求这个数。

把全体数用单位“1”表示,即标准量,部分数占全体数的几分之几叫“对应分率”,部分数也叫“比较量”三个量基本关系为:标准量×对应分率=比较量。

分数应用题有个特点,一个数对应着一个分率,这种关系叫对应关系。

根据对应关系找解题线索是解答分数应用题常用的方法,寻找对应关系的方法有很多种,常用的有画线段图找对应,抓不变量找对应,运用假设法找对应等等。

一、第一类例1某小学五年级学生去栽树,共栽树100棵,其中5棵没有存活,求这次栽树的存活率和死亡率。

例2 一部新款手机,刚上市时售价为3800元,半年后售价降为3200元,每部价格降低了几分之几?例3 一本书共240页,小明每天看15页,看了6天,共看了这本书的几分之几?二、第二类例4 大小汽车共有84辆,其中3/4是小汽车,两种汽车各多少辆?例5.一根铁丝长20米,第一次用去全长的1/4,第二次用去全长的1/5,还剩多少米?例6 车风水泥厂三月份生产水泥250吨,四月份生产的水泥比三月份增加了2/5,四月份生产了水泥多少吨?三、第三类例7五年级三班有女生24人,占全班人数的2/5,全班共多少人?例8小华看一本书,每天看15页,4天后还剩全书的2/5没看,这本故事书有多少页?例9 养鸡场今年养鸡3200只,比去年增加了3/7,去年养鸡多少只?四、综合应用例10 一根竹竿露出水面2米,泥中部分占全长的2/5,水中部分比泥中部分多一米,这根竹竿全场多少米?例11 第一次用去1/5,第二次比第一次多用了20千克,还剩16千克,这桶油有多少千克?例12 一根绳子剪去2/5后又接上5米,比原来短3/20,现在绳长多少米练习:1.某班有男生25人,女生比男生多10人,男生人数是女生人数的几分之几?2.一盒糖,连盒共重500克。

小学数学案例分析题之欧阳学创编

小学数学案例分析题之欧阳学创编

教学案例分析题时间:2021.03.03 创作:欧阳学简答题2 知识与技能目标包括哪四个部分?答:数与代数空间与图形统计与概率实践与综合应用五论述题1 数学课程标准有其特殊的性质,即教师是“用教科书教,而不是教教科书”。

你是怎么理解这句话的,请举例说明?所有文档>>研究报告>>教育>>学习小学数学课程标准(2011年修订版)知识竞赛复习提纲 来源:本站原创发布时间:2012-11-7 14:18:42这是一篇关于小学数学教学案例,教学案例,小学数学教学案例的文章。

我们班将组织25名优秀学生进行社会实践夏令营,学校安排面包车,小轿车两种车》》》更多小学数学教学案例请查看专题《小学数学教学案例》小学数学教学案例分析题1《带分数乘法》教学片断:⒈学生根据应用题“草坪长5米,宽2米,求草坪的面积。

”列出算式:5×2⒉算式一出现,教师就立即组织四人小组交流算法。

其中一个组,在小组交流时,由于三位同学还没有想出方法,整个合作过程只好由一位同学讲了三种方法:①(5+)×(2+)②5.8×2.5③×,其他同学拍手叫好而告终。

请你根据上述教学片断进行反思(主要从合作交流与独立思考的层面分析)。

答:以上现象是教师在使用小组合作时经常出现的一种问题。

就是没有处理好小组合作和独立思考的关系。

教师要处理好合作学习与独立思考的关系强调合作学习不是不要独立思考。

独立思考应是合作学习的前提基础,合作学习应是独立思考的补充和发挥。

多数学习能通过独立思考解决的问题,就没必要组织合作学习。

而合作学习的深度和广度应远远超过独立学习的结果。

当然,宜独宜合,应和教学情景、学生实际结合,择善而用,才能日臻完美。

我们在设计学生合作学习时,能否认真的思考以下三个问题:学生在合作交流前,你让学生经历过独立思考吗?学生在合作交流时,他们有充分的时空吗?学生在合作交流时,有否进行明确的角色分工呢?》》》更多小学数学教学案例请查看专题《小学数学教学案例》小学数学教学案例分析题2记得那是一节顺利而精彩的课,上课内容是“分数的意义”。

现代城市生态与环境学考试 100之欧阳学创编

现代城市生态与环境学考试 100之欧阳学创编

一、单选题(题数:50,共 50.0 分)强调专家、官方和群众参与规划是现代城市生态设计方法1.0 分•A、公众识别•B、广泛合作•C、创造性设想•D、交换观点正确答案: B 我的答案:B1.0 分•A、低头是铺装•B、平视见喷泉•C、仰脸看雕塑•D、中轴不对称正确答案: D 我的答案:D城市生态系统健康的评价标准主要考量()个方面。

(1.01.0 分•A、6•B、7•C、8•D、9正确答案: C 我的答案:C居住小区绿化的原则中,()强调重视小区环境的文化内1.0 分•A、实用性•B、独特性•C、经济性•D、艺术观赏性正确答案: D 我的答案:D城市社会区分析规划方法中,以解决如社会系统等这类大1.0 分•A、多目标规划法•B、泛目标生态规划•C、灵敏度模型•D、系统共力学方法正确答案: D 我的答案:D游憩空间定额法提出,城市绿底的人均规划指标不低于没1.0 分•A、3•B、6•C、9•D、12正确答案: C 我的答案:C1.0 分•A、城市面积占总国土面积比重•B、城市面积与农村面积之比•C、城市人口占总人口比重•D、城市人口与农村人口之比正确答案: C 我的答案:C1.0 分•A、城市规模的扩大•B、城市基础建设提升•C、农业人口转变为城镇非农业人口•D、城市生活方式的现代化正确答案: B 我的答案:B现代城市生态与环境学一般不采用()的研究方法。

(1.01.0 分•A、个案研究和理论研究相结合•B、统计资料和现场观测资料相结合•C、定性分析与定量分析资料相结合•D、对比研究和定位研究相结合正确答案: C 我的答案:C城市水环境是一个城市所处的地球表层的空间中水圈的1.0 分•A、所有水体、水中悬浮物、水体周围环境•B、所有水体、水中悬浮物、溶解物•C、地表水、水中悬浮物、水体周围环境•D、地表水、水中悬浮物、溶解物正确答案: B 我的答案:B1.0 分•A、各类植物、地物、设计、生态化•B、各类植物、建筑物、设计、生态化•C、各类植物、地物、地理因素、生态化•D、各类植物、建筑物、地理因素、生态化正确答案: C 我的答案:C关于我国城市绿化的现状,下列说法正确的是()。

上海中考数学考试大纲之欧阳科创编

上海中考数学考试大纲之欧阳科创编

上海市初中数学学科教学基本要求第一单元数与运算一、数的整除1.内容要目数的整除性、奇数和偶数、因数和倍数、素数和合数,公因数和最大公因数、公倍数和最小公倍数、分解素因数;能被2和5整除的正整数的特征。

2.基本要求(1)知道数的整除性、奇数和偶数、素数和合数、因数和倍数、公倍数和公因素等的意义;知道能被2、5整除的正整数的特征。

(2)会用短除法分解素因数;会求两个正整数的最大公因素和最小公倍数。

3.重点和难点重点是会正确地分解素因数,并会求两个正整数的最大公因数和最小公倍数。

难点是求两个正整数的最小公倍数。

4.知识结构二、实数1.内容要目实数的概念,实数的运算。

近似计算以及科学记数法。

2.基本要求(1)理解开方及方根的意义,知道无理数的概念,知道实数与数轴上的点具有一一对应的关系。

(2)理解实数概念,掌握实数的加、减、乘、除、乘方、开方等运算的法制,会正确进行实数的运算。

(3)会用计算器进行实数的运算,初步掌握估算、近似计算的基本方法和科学记数法。

3.重点和难点重点是理解实数概念,会正确进行实数的运算。

难点是认识实数与数轴上的点的一一对应关系。

4.知识结构第二单元方程与代数 一、整式与分式 1.内容要目代数式,整式的加减法,同底数幂的乘法和除法,幂的乘方,积的乘方。

单项式的乘法和除法,单项式与多项式的乘法,多项式除以单项式,多项式的乘法。

乘法公式:22222()();()2a b a b a b a b a ab b +-=-±=±+因式分解:提取公因式法,公式法,十字相乘法,分组分解法。

分式,分式的基本性质,约分,最简分式,通分,分式的乘除法,分式的加减法,整数的指数幂,整数指数幂的运算。

2.基本要求(1)理解用字母表示数的意义;理解代数式的有关概念。

(2)通过列代数式,掌握文字语言与数学式子的表述之间的转换,领悟字母“代”数的数学思想;会求代数式的值。

(3)掌握整式的加、减、乘、除及乘方的运算法则,掌握平方差公式、两数和(差)的平方公式。

上海中考数学考纲

上海中考数学考纲

一、各章节分值情况、方程(分左右)和函数(分左右)占较大地比重函数部分所涵盖地知识点基本考查到位,但是难度降低.文档来自于网络搜索、统计地分值约占、锐角三角比板块分值与统计类似,约占、二次根式、因式分解、不等式分值统计. 因式分解分左右,不等式分值大于二次根式,关注不等式知识点复习地有效性.文档来自于网络搜索二、考点分析、方程:()解方程(组):主要是解分式方程、无理方程及二元二次方程组. ()换元(化为整式方程). ()一元二次方程根与系数关系地应用:主要是求方程中地系数. ()列方程解应用题.文档来自于网络搜索、函数()求函数值. ()二次函数与一元二次方程结合求系数地值.()函数与几何结合求值或证明. ()求函数解析式及定义域. 文档来自于网络搜索、几何证明及计算()特殊三角形地边、角计算()特殊三角形地边、角计算. ()特殊三角形、特殊四边形地性质应用()三角形中位线()全等三角形、相似三角形地判定和性质应用()正多边形地对称性问题()圆地垂径定理,圆地切线判定及性质()图形运动问题(平移、旋转、翻折)()几何图形与锐角三角比结合证明或计算()几何图形与函数结合证明或计算文档来自于网络搜索、统计()求平均数. ()求中位数. ()求数据总数. ()求频率. ()与方程结合. ()根据图像回答有关问题.如补齐图形.()用统计学知识判断某些统计方法地合理性.文档来自于网络搜索三、出现得比较多地考点、圆与正多边形知识地考查、统计方面地知识点、一元二次方程根与系数关系、根地判别式、几何图形运动:有题左右出现、几何和代数结合单纯地考查几何证明题可能性不大,很多都是与代数地内容相结合,特别是和函数地内容结合起来,综合考查数形结合、分类讨论及方程思想. 文档来自于网络搜索四、值得关注地几个问题、基础题量大,特别注意速度,但保证准确率、试题趋向简约流畅,不是拘泥于数学知识、技巧,而是突出对数学思想方法地考查.多收集类似题型.、创设具有实际背景地应用性问题,考查学生运用知识地能力,应用类试题为各种类型地应用问题,创设比较熟悉地生活背景,结合社会热点设计.文档来自于网络搜索、对学生地探究能力开始有一定地要求.总地说来,这类试题不拘一格,无现成地模式可套,突出探索、发现和创造.设问方式灵活多样,探求地结论广泛、灵活,甚至隐去结论,留出空间让学生想象、发挥和创造. 文档来自于网络搜索、几何证明题注重对探索、分析、猜想、归纳能力地考查.几何题在内容上和函数、三角比等相结合,综合考查学生地应用知识地能力.去年地第题,是一道纯粹地几何论证,考查地知识点有等腰三角形、菱形和正方形地判定.论证方法灵活,过程简单,大部分同学都有办法解决,这是今后几何证明考查地方向.尤其是本题是课本习题地条件变式,从课本习题演化而来,学生不会感觉陌生.今年地最后一道几何题还是与函数相结合地综合问题,与往年比较,难度在提高,但是在模拟考中已经有很多体现. 文档来自于网络搜索、考点地隐蔽性:有些问题进行了"改头换面"需要对问题分析后才能找到解决问题地方法.五、考试策略:确保基础题细心做,不丢分;提高题努力做,少失分;难题(最后一题)尽量做,多得分.(::)做试卷地答题原则与技巧:在数学答题过程中,要正确、仔细、认真地审题,将审题贯穿整个解题过程之中.要遵循先易后难,先简后繁,合理用时,审题要慢,答题要快,积极联想,大胆类比,立足一次成功地解题原则.最后要重视复查收尾和分段得分地环节,就一定能取得满意地成绩!文档来自于网络搜索对于压轴题:多思考关联知识点地常规图形,几何部分找函数关系时等式地建立大多数是利用勾股定理和相似三角形地性质等,最后一问地求值往往和上一问相关,多想一想数学课本中几何部分有哪些等式,从而采用方程思想来解决问题.文档来自于网络搜索总之,地中考题型在保留开放型、动手操作型、识图、阅读理解型、读图、画图、读表型、会增加方案设计型、猜想型、探索"存在"或"可能"型等新地试题形式. 几何证明题是同一体系内纵向整合,注重基本知识基本能力地融合,应用题是圆地垂径定理和列方程解应用题地横向整合,体现了实际应以用思想,压轴题把几何论证、计算和数形结合、分类讨论、运动问题联系起来,而应用题地情景将更新,如"磁悬浮、洋山深水港、东海大桥等、国际汽油涨价、台湾水果零关税进入、人民币升值、利息税、个税起征点地调整"等新地问题情境将进入命题人地视野,在技巧、方法地要求上不会过高,但运用地数学知识地难度在一元一次方程地基础上会有所加大.文档来自于网络搜索数学各单元复习结构(了解)第一单元数与运算一、数地整除知识结构数地整除两个整数间地关系公倍数最小公倍数公因数互素倍数整数因数能被整除地特征能被整除地特征文档来自于网络搜索一个整数合数分解素因数素数偶数奇数最大公因数二、实数实数实数地运算实数地分类用数轴上地点表示实数实数大小比较绝对值近似数及近似计算运算法则及运算性质第二单元方程与代数一、整式与分式代数式分式分式地运算(加、减、乘、除)分式地基本性质分式地意义整式整式地整式地运有关概算(加、念减、乘、除、乘方)文档来自于网络搜索整数指数幂地运算因式分解二、二次根式二次根式地概念二次根式地性质最简二次根式同类二次根式分母有理化二次根式地运算三、一次方程与不等式(组)一元一次方程一次方程二元一次方程三元一次方程二元一次方程组一次方程组三元一次方程组一元一次不等式不等式不等式性质一元一次不等式组文档来自于网络搜索四、一元二次方程一元二次方程应用简单地实际问题二次三项式地因式分解解法根地判别式因式分解法公式法配方法开平方法五、代数方程列方程(组)解应用题代数方程无理方程分式方程有理方程整式方程多元方程一元方程高次方程二次方程一次方程二元一次方程(组)三元一次方程(组)二元二次方程(组)第三单元图形和几何一、长方体地在认识棱和面地位置关系长方体棱、面地特点面和面地位置关系二、相交直线与平行直线文档来自于网络搜索直观图地画法棱和棱地位置关系平行、垂直地检验方法邻补角对顶角斜交同一平面内地两条直线相交直线垂直角平分线垂直地基本性质点到直线地距离线段地垂直平分线两条直线被第三条直线所截同位角、内错角、同旁内角平行线地基本性质判断方法与性质平行线间地距离三、三角形(一)三角形地概念文档来自于网络搜索平行直线三角形三角形地分类按角分类按边分类三角形地内角和定理三角形地外角和不等边三角形三角形地中位线三角形地有关线段文档来自于网络搜索钝角三角形直角三角形锐角三角形等腰三角形等边三角形三角形地高、中线、角平分线三角形三边地关系假命题公理命题真命题定理逆命题逆定理(二)等腰三角形与直角三角形等腰三角形地性质等腰三角形等边三角形等腰三角形地判定三角形直角三角形地性质直角三角形直角三角形地判定文档来自于网络搜索等边三角形地性质等边三角形地判定勾股定理勾股定理地逆定理(三)全等三角形全等三角形地概念全等三角形全等三角形地性质全等三角形地判断(四)相似三角形比例地性质全等三角形地应用文档来自于网络搜索证明线段相等证明角相等黄金分割平行线分线段成比例定理比例线段三角形重心地性质相似三角形地概念相似三角形地性质相似三角形地判定证明角相等相似三角形地应用相似三角形四、四边形平行四边形多边形四边形梯形菱形正方形矩形等腰梯形直角梯形梯形中位线五、圆与正多边形圆地面积和周长圆地定义及点与圆地位置关系扇形地面积和弧长不在同一直线上地三点确定一个圆圆地有关性质圆心角、弧、弦、弦心距之间地关系垂径定理及其推论相离圆直线与圆地位置关系相切相交相离两圆地位置关系相切内切相交正多边形地概念和性质正多边形与圆正多边形地计算文档来自于网络搜索六、锐角三角比外离内含外切两圆连心线地性质锐角地三角比地概念(正切、余切、正弦、余弦)解直角三角形已知锐角,求三角比已知锐角地一个三角比,求锐角已知一边和一锐角解直角三角形地应用已知两边文档来自于网络搜索直角三角形中地边角关系(三边之间、两锐角之间、一锐角与两边之间)七、图形运动图形地运动图形地翻折轴对称图形轴对称图形地旋转中心对称旋转对称图形中心对称图形图形地平移八、平面向量运算法则向量地加减法向量加法地运算律向量地线性组合平面向量向量地线性运算向量分解运算法则实数与向量相乘运算律平行向量定理第四单元函数与分析象限平面直角坐标系坐标平移等简单地几何问题二、函数地有关概念.知识结构函数两点地距离自变量函数值表示方法定义域值域三、正比例函数与反比例函数解析式正比例函数实际问题反比例函数图像性质实际应用四、一次函数解析式实际问题一次函数图象性质与一元一次方程、一元一次不等式地联系五、二次函数解析式实际问题二次函数图像实际应用实际应用文档来自于网络搜索图像地特征第五单元数据整理和概率统计必然事件确定事件不可能事件生活中地事件多次试验随机事件等可能试验概率概率估计值() 确定事件地概率() ()文档来自于网络搜索其他,如资料分析、经验等定性描述随机事件发生地可能性大小定量描述二、统计初步概率非随机样本抽查随机样本数据收集普查数据处理数据表示表格条形图折线图扇形图频数分布直方图频率分布直方图计算平均数计算方差、标准差计算频数、频率数据计算文档来自于网络搜索。

《数学思想与方法》形成性考核册作业答案之欧阳学创编

《数学思想与方法》形成性考核册作业答案之欧阳学创编

数学思想与方法》形成性考核册作业1答案作业1一、简答题1、分别简单叙说算术与代数的解题方法基本思想,并且比较它们的区别。

答:算术解题方法的基本思想:首先要围绕所求的数量,收集和整理各种已知的数据,并依据问题的条件列出关于这些具体数据的算式,然后通过四则运算求得算式的结果。

代数解题方法的基本思想是:首先依据问题的条件组成内含已知数和未知数的代数式,并按等量关系列出方程,然后通过对方程进行恒等变换求出未知数的值。

它们的区别在于算术解题参与的量必须是已知的量,而代数解题允许未知的量参与运算;算术方法的关键之处是列算式,而代数方法的关键之处是列方程。

2、比较决定性现象和随机性现象的特点,简单叙说确定数学的局限。

答:人们常常遇到两类截然不同的现象,一类是决定性现象,另一类是随机现象。

决定性现象的特点是:在一定的条件下,其结果可以唯一确定。

因此决定性现象的条件和结果之间存在着必然的联系,所以事先可以预知结果如何。

随机现象的特点是:在一定的条件下,可能发生某种结果,也可能不发生某种结果。

对于这类现象,由于条件和结果之间不存在必然性联系。

在数学学科中,人们常常把研究决定性现象数量规律的那些数学分支称为确定数学。

用这些的分支来定量地描述某些决定性现象的运动和变化过程,从而确定结果。

但是由于随机现象条件和结果之间不存在必然性联系,因此不能用确定数学来加以定量描述。

同时确定数学也无法定量地揭示大量同类随机现象中所蕴涵的规律性。

这些是确定数学的局限所在。

二、论述题1、论述社会科学数学化的主要原因。

答:从整个科学发展趋势来看,社会科学的数学化也是必然的趋势,其主要原因可以归结为有下面四个方面:第一,社会管理需要精确化的定量依据,这是促使社会科学数学化的最根本的因素。

第二,社会科学的各分支逐步走向成熟,社会科学理论体系的发展也需要精确化。

第三,随着数学的进一步发展,它出现了一些适合研究社会历史现象的新的数学分支。

第四,电子计算机的发展与应用,使非常复杂社会现象经过量化后可以进行数值处理。

24点计算要领技巧之欧阳学创编

24点计算要领技巧之欧阳学创编

巧算24点“算24点”是一种数学游戏,正如象棋、围棋一样是一种人们喜闻乐见的娱乐活动。

它始于何年何月已无从考究,但它以自己独具的数学魅力和丰富的内涵正逐渐被越来越多的人们所接受。

这种游戏方式简单易学,能健脑益智,是一项极为有益的活动。

“算24点”的游戏内容如下:一副牌中抽去大小王剩下52张,(如果初练也可只用1~10这40张牌)任意抽取4张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成24。

每张牌必须用一次且只能用一次,如抽出的牌是3、8、8、9,那么算式为(9—8)×8×3或(9—8÷8)×3等。

“算24点”作为一种扑克牌智力游戏,还应注意计算中的技巧问题,不能瞎碰乱凑。

这里向大家介绍几种常用的、便于学习掌握的方法: 1.利用3×8=24、4×6=24求解。

把牌面上的四个数想办法凑成3和8、4和6,再相乘求解。

如3、3、6、10可组成(10—6÷3)×3=24等。

又如2、3、3、7可组成(7+3—2)×3=24等。

实践证明,这种方法是利用率最大、命中率最高的一种方法。

2.利用0、11的运算特性求解。

如3、4、4、8可组成3×8+4—4=24等。

又如4、5、J、K可组成11×(5—4)+13=24等。

3.最为广泛的是以下七种解法(我们用a、b、c、d表示牌面上的四个数)①(a—b)×(c+d)如(10—4)×(2+2)=24等。

②(a+b)÷c×d 如(10+2)÷2×4=24等。

③(a-b÷c)×d 如(3—2÷2)×12=24等。

④(a+b-c)×d 如(9+5—2)×2=24等。

⑤a×b+c—d 如11×3+l—10=24等。

⑥(a-b)×c+d 如(4—l)×6+6=24等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市初中数学学科教学基本要求第一单元数与运算一、数的整除1.内容要目数的整除性、奇数和偶数、因数和倍数、素数和合数,公因数和最大公因数、公倍数和最小公倍数、分解素因数;能被2和5整除的正整数的特征。

2.基本要求(1)知道数的整除性、奇数和偶数、素数和合数、因数和倍数、公倍数和公因素等的意义;知道能被2、5整除的正整数的特征。

(2)会用短除法分解素因数;会求两个正整数的最大公因素和最小公倍数。

3.重点和难点重点是会正确地分解素因数,并会求两个正整数的最大公因数和最小公倍数。

难点是求两个正整数的最小公倍数。

4.知识结构二、实数1.内容要目实数的概念,实数的运算。

近似计算以及科学记数法。

2.基本要求(1)理解开方及方根的意义,知道无理数的概念,知道实数与数轴上的点具有一一对应的关系。

(2)理解实数概念,掌握实数的加、减、乘、除、乘方、开方等运算的法制,会正确进行实数的运算。

(3)会用计算器进行实数的运算,初步掌握估算、近似计算的基本方法和科学记数法。

3.重点和难点重点是理解实数概念,会正确进行实数的运算。

难点是认识实数与数轴上的点的一一对应关系。

4.知识结构第二单元方程与代数 一、整式与分式 1.内容要目代数式,整式的加减法,同底数幂的乘法和除法,幂的乘方,积的乘方。

单项式的乘法和除法,单项式与多项式的乘法,多项式除以单项式,多项式的乘法。

乘法公式:22222()();()2a b a b a b a b a ab b +-=-±=±+因式分解:提取公因式法,公式法,十字相乘法,分组分解法。

分式,分式的基本性质,约分,最简分式,通分,分式的乘除法,分式的加减法,整数的指数幂,整数指数幂的运算。

2.基本要求(1)理解用字母表示数的意义;理解代数式的有关概念。

(2)通过列代数式,掌握文字语言与数学式子的表述之间的转换,领悟字母“代”数的数学思想;会求代数式的值。

(3)掌握整式的加、减、乘、除及乘方的运算法则,掌握平方差公式、两数和(差)的平方公式。

(4)理解因式分解的意义,掌握提取公因式法、公式法、二次项系数为1时的十字相乘法、分组分解法等因式分解的基本方法。

(5)理解分式的有关概念及其基本性质,掌握分式的加、减、乘、除运算。

(6)理解正整数指数幂、零指数幂、负整数指数幂的概念,掌握有关整数指数幂的乘(除)、乘方等运算的法则。

说明①在求代数式的值时,不涉及繁难的计算;②不涉及繁难的整式运算,多项式除法中的除式限为单项式;③在因式分解中,被分解的多项式不超过四项,不涉及添项、拆项等技巧;④不涉及繁复的分式运算。

3.重点和难点重点是整式与分式的运算,因式分解的基本方法,整数指数幂的运算。

难点是选择适当的方法因式分解及代数式的混合运算。

4.知识结构二、二次根式1.内容要目二次根式的概念,二次根式的性质;最简二次根式,同类二次根式,分母有理化,二次根式的加、减、乘、除及其混合运算,分数指数幂。

2.基本要求(1)理解二次根式的概念,会根据二次根式中被开放数应满足的条件,判断或确定所含字母的取值范围。

(2)掌握二次根式的性质,会利用性质化简二次根式。

(3)理解最简二次根式、同类二次根式、分母有理化的意义,会将二次根式化为最简二次根式,会判别同类二次根式,会进行分母有理化。

(4)会进行二次根式的加、减、乘、除及其混合运算。

(5)会解系数或常数项含二次根式的一元一次方程和一元一次不等式。

(6)理解分数指数幂的概念,会求分数指数幂。

说明①关于二次根式的性质,包括:②不出现繁难的二次根式的运算;在求解其系数或常数项含二次根式的一元一次方程和一元一次不等式时,所涉及的计算不繁难。

3.重点和难点重点是二次根式的性质,二次根式的加、减、乘、除及其混合运算,分数指数幂的运算。

难点是系数或常数项含二次根式的一元一次不等式的求解。

4.知识结构三、一次方程与不等式(组)1.内容要目列方程,一元一次方程的概念,一元一次方程的解法,一元一次方程的应用。

不等式的概念,不等式的性质,不等式的解集;一元一次不等式,一元一次不等式的解法;一元一次不等式组及其解集,一元一次不等式组的解法。

二元一次方程、二元一次方程组的概念,二元一次方程组的解法,三元一次方程的概念,三元一次方程组的解法。

一次方程组的应用。

2.基本要求(1)理解一元一次方程的有关概念,掌握一元一次方程解法。

(2)理解二元一次方程和它的解以及一次方程组和它的解的概念,掌握“消元法”,会解二元、三元一次方程组。

(3)会列一次方程(组)解简单的应用题。

(4)理解不等式及不等式的基本性质,理解一元一次不等式(组)及其解的有关概念,掌握一元一次不等式的解法,会利用数轴表示不等式的解集,会解简单的一元一次不等式组。

说明不出现涉及繁难计算的解方程(组)、不等式(组)的问题。

3.重点和难点重点是一元一次方程、二元一次方程组、三元一次方程组、一元一次不等式、一元一次不等式组的解法。

难点是一次方程(组)的应用。

4.知识结构四、一元二次方程 1.内容要目一元二次方程的概念,一元二次方程的解法,一元二次方程的根的判别式,一元二次方程的应用。

2.基本要求(1)理解一元二次方程的概念。

(2)会用开平方法、因式分解法解特殊的一元二次方程,理解配方法解一元二次方程的思路,会用配方法和公式法解一元二次方程。

(3)会求一元二次方程的根的判别式的值,知道判别式与方程实数根情况之间的联系,会利用判别式判断实数根的情况。

(4)会利用一元二次方程的求根公式对二次三项式在实数范围内进行因式分解。

(5)会列一元二次方程解简单的实际问题。

不等式 不等式性质一元一次不等式 一元一次不等式组3.重点和难点重点是一元二次方程的解法。

难点是一元二次方程的简单应用。

4.知识结构五、代数方程1.内容要目含有字母系数的一元一次与一元二次方程,特殊的高次方程(二项方程、双二次方程),分式方程,无理方程,简单的二元二次方程(组),列方程(组)解应用题。

2.基本要求(1)知道整式方程的概念;会解含有一个字母系数的一元一次方程与一元二次方程。

(2)知道高次方程的概念;会用计算器求二项方程的实数根(近似跟),会用换元法解双二项方程,会用因式分解的方法解某些简单的高次方程。

(3)理解分式方程、无理方程的概念;掌握可化为一元一次方程、一元二次方程的分式方程(组)和简单的无理方程的解法,知道“验根”是解分式方程(组)和无理方程的必要步骤,掌握验根的基本方法。

(4)理解二元二次方程和二元二次方程组的概念;会用代入消元法解由一个二元一次方程与一个二元二次方程所组成的二元二次方程组,会用因式分解法解两个方程中至少有一个容易变形为二元一次方程的二元二次方程组。

(5)会列出一元二次方程、分式方程(组)、无理方程、二元二次方程组求解简单的实际问题。

3.重点和难点重点是特殊的高次方程的解法和简单的分式方程、无理方程、二元二次方程组的解法,以及有关方程(组)的基本应用。

难点是对分式方程和无理方程有可能产生增根的理解以及对实际问题中数量关系的分析。

4.知识结构第三单元图形和几何一、长方体的在认识1.内容要目长方体,长方体的画法,直线与直线、直线与平面、平面与平面的基本位置关系。

2.基本要求(1)认识长方体的顶点、棱、面等元素,会画长方体的直观图。

(2)以长方体为载体理解长方体中棱、面之间的基本位置关系的含义,知道两条直线之间三种位置关系。

(3)认识线面、画面的平行和垂直关系,知道一些简单的检验方法。

3.重点和难点重点是长方体的概念、画法,长方体中棱、面之间的位置关系。

难点是利用工具检验空间直线、平面之间的位置关系。

4.知识结构二、相交直线与平行直线 1.内容要目平面上两直线的位置关系;垂线;对顶角;邻补角。

同位角、内错角、同旁内角。

两点的距离、点到直线的距离、两条平行线间的距离。

平行线的判定、性质。

角平分线及其性质,线段的垂直平分线及其性质;轨迹。

基本作图。

2.基本要求(1)知道平面中两条直线的位置关系是相交或平行;知道两条相交直线只有一个交点,它们所成的角(小于平角)有四个,会用交角的大小描述相交直线的位置特征;知道垂线的概念及性质;理解对顶角和邻补角的概念,掌握对顶角的性质。

(2)掌握同位角、内错角、同旁内角的概念。

(3)知道两点之间线段最短,理解两点的距离的意义;知道过直线外一点到直线的垂线段最短,理解点到直线的直观图的画法 棱、面的特点长方体平行、垂直的检验方法棱和面的位置关系棱和棱的位置关系 面和面的位置关系距离的意义;知道过直线外一点能且只能画一条直线与这条直线平行,理解两条平行线间的距离的意义。

(4)掌握平行线的判定方法及其性质。

(5)掌握角的平分线、线段的垂直平分线的有关性质,知道轨迹的意义以及三条基本轨迹(圆、角平分线、线段的垂直平分线)。

(6)掌握直尺、三角板、圆规、量角器的使用方法,会画已知线段的中点和直线的垂线;会用直尺和圆规作一条线段等于已知线段,作一个角等于已知角、作角的平分线、作线段的垂直平分线等,从中体会交轨法作图。

3.重点和难点重点的平行线的判定和性质及其应用。

难点是角的平分线性质和线段的垂直平分线性质及其应用。

4.知识结构三、三角形(一)三角形的概念1.内容要目三角形的概念,三角形三边之间的关系,三角形的高、中线、角平分线,三角形中位线定理,三角形的分类,三角形的内角和定理,三角形外角的概念和性质。

命题,真命题,假命题,逆命题,定理,逆定理。

2.基本要求(1)掌握三角形的任意两边之和大于第三边的性质(2)理解三角形的高、中线、角平分线等概念,并会画这些特殊线段。

(3)知道三角形的三条中线交与一点(重心)、三条角平分线交于一点(内心)、三条高所在的直线交于一点(垂心),三条边的垂直平分线交于一点(外心)。

(4)知道三角形中位线的定义,掌握三角形中位线定理。

(5)知道三角形按边分类和按角分类的类型,体会分类讨论思想。

(6)理解三角形内角和定理的推导过程,掌握三角形的内角和定理;知道三角形的外角,初步掌握三角形外角的性质。

(7)理解命题、真命题、假命题、逆命题、定理、逆定理的意义,会叙述简单命题的逆命题,知道命题的真假与逆命题的真假无关。

3.重点和难点重点是三角形的内角和定理,以及三角形中位线定理。

难点是三角形内角和定理的证明过程和对三角形的任意两边之和大于第三边的理解。

4.知识结构(二)等腰三角形与直角三角形1.内容要目等腰三角形的概念,等腰三角形的性质和判定,等边三角形的概念,等边三角形的性质和判定,直角三角形的概念,直角三角形的性质和判定,勾股定理。

2.基本要求(1)知道等腰三角形的轴对称性及对称轴。

(2)掌握等腰三角形、等边三角形的有关性质和判定,能运用这些性质及判定定理进行有关的计算和证明(3)掌握直角三角形的判断和性质,能运用这些性质及判定定理进行有关的计算和证明。

相关文档
最新文档