浙江省温州23中2020高二数学会考辅导 第三讲 三角函数与三角恒等变换练习

合集下载

高二数学三角函数三角恒等变换解三角形试题答案及解析

高二数学三角函数三角恒等变换解三角形试题答案及解析

高二数学三角函数三角恒等变换解三角形试题答案及解析1.ABC中,已知,则ABC的形状为【答案】直角三角形【解析】略2.在中,,.(Ⅰ)求的值;(Ⅱ)设,求的面积.【答案】(1);(2).【解析】(1)利用内角和为,所以,再利用同角基本关系式求;(2),那么利用正弦定理,,求边,最后,试题解析:(1) ,,因为,所以,.(2),那么利用正弦定理,,代入数值,,所以.【考点】1.两角和的三角函数;2.正弦定理.3.(本题满分13分)已知中,点,动点满足(常数),点的轨迹为Γ.(Ⅰ)试求曲线Γ的轨迹方程;(Ⅱ)当时,过定点的直线与曲线Γ相交于两点,是曲线Γ上不同于的动点,试求面积的最大值.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)利用椭圆定义求动点轨迹,注意定义的条件要完整,不要少,另外要注意三角形中三顶点不共线,对轨迹要去杂(Ⅱ)求面积的最大值,首先要表示出面积,这要用到底乘高的一半,其中底为直线与椭圆的弦长,高为点到直线的距离,而由椭圆的几何性质知当直线与平行且与椭圆相切时,切点到直线的距离最大,因此还要求椭圆的切线,其次利用直线方程与椭圆方程联立方程组,再结合韦达定理可得弦长及切线,最后根据面积的表达式求最值,这要用到导数试题解析:(Ⅰ)在中,因为,所以(定值),且, 2分所以动点的轨迹为椭圆(除去与A、B共线的两个点).设其标准方程为,所以, 3分所以所求曲线的轨迹方程为.4分(Ⅱ)当时,椭圆方程为.5分①过定点的直线与轴重合时,面积无最大值.6分②过定点的直线不与轴重合时,设方程为:,,若,因为,故此时面积无最大值.根据椭圆的几何性质,不妨设.联立方程组消去整理得:, 7分所以则.8分因为当直线与平行且与椭圆相切时,切点到直线的距离最大,设切线,联立消去整理得,由,解得.又点到直线的距离, 9分所以, 10分所以.将代入得:,令,设函数,则,因为当时,,当时,,所以在上是增函数,在上是减函数,所以.故时,面积最大值是.所以,当的方程为时,的面积最大,最大值为.13分【考点】椭圆定义,直线与椭圆位置关系4.函数的图象的一条对称轴的方程是( )A.B.C.D.【答案】D【解析】根据余弦函数的图像和性质,可知,解得,,可知当时得到,故选D.【考点】余弦函数的图像和性质.5.已知两灯塔A和B与海洋观测站C的距离相等,灯塔A在观察站C的北偏东400,灯塔B在观察站C 的南偏东600,则灯塔A在灯塔B的()A.北偏东100B.北偏西100C.南偏东100D.南偏西100【答案】B【解析】由题意知, .由数形结合可得灯塔在灯塔的北偏西.故B正确.【考点】数形结合.6.已知函数的图象向左平移个单位长度,所得图象关于原点对称,则的最小值为()A.B.C.D.【答案】C【解析】函数,向左平移个单位长度得:,因为关于原点对称,所以,因此的最小正值为,选C.【考点】三角函数图像与性质7.角的终边上有一点,则()A.B.C.D.【答案】B【解析】【考点】三角函数定义8.三角形ABC中..则A的取值范围是.【答案】【解析】由已知不等式结合正弦定理得则A的取值范围是【考点】正余弦定理解三角形9.已知是锐角的外心,.若,则A.B.C.3D.【答案】A【解析】取AB的中点D,连接OA,OD,由三角形外接圆的性质可得OD⊥AB,∴.,代入已知,两边与作数量积得到由正弦定理可得:,化为cosB+cosCcosA=msinC,∵cosB=-cos(A+C)=-cosAcosC+sinAsinC,∴sinAsinC=msinC,∴m=sinA.∵,∴【考点】1.向量的线性运算性质及几何意义;2.正弦定理;3.三角函数基本公式10.如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A到墙面的距离为AB,某目标点P沿墙面上的射击线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角的大小.若,,,则的最大值是(仰角为直线AP与平面ABC所成角)【答案】【解析】仰角最大时即为面ACM与面ABC所成的角.过B作BC的垂线交CM于点P,过B作连接PN,则为所求的角,【考点】1、二面角的平面角;2、线面垂直的应用.【易错点晴】本题主要考查的是二面角的平面角的应用,属于中档题.本题容易犯的错误是过B作认为为所求角,从而出错.题中说目标P沿线MC运动,面ACM是确定的,仰角的最大值就是二面角M-AC-B的平面角,再应用三垂线法做出二面角的平面角.11.如图,某市新体育公园的中心广场平面图如图所示,在y轴左侧的观光道曲线段是函数,时的图象且最高点B(-1,4),在y轴右侧的曲线段是以CO为直径的半圆弧.(1)试确定A,和的值;(2)现要在右侧的半圆中修建一条步行道CDO(单位:米),在点C与半圆弧上的一点D之间设计为直线段(造价为2万元/米),从D到点O之间设计为沿半圆弧的弧形(造价为1万元/米).设(弧度),试用来表示修建步行道的造价预算,并求造价预算的最大值?(注:只考虑步行道的长度,不考虑步行道的宽度)【答案】(1);(2)造价,,在时取极大值,也即造价预算最大值为()万元.【解析】(1)由“五点法”可求得;(2)由(1)求出点坐标,得半圆的半径,用表示出弦长和弧长,由题意可得造价,,下面用导数的知识求出的最大值.试题解析:(1)因为最高点B(-1,4),所以A=4;,因为代入点B(-1,4),,又;(2)由(1)可知:,得点C即,取CO中点F,连结DF,因为弧CD为半圆弧,所以,即,则圆弧段造价预算为万元,中,,则直线段CD造价预算为万元所以步行道造价预算,.由得当时,,当时,,即在上单调递增;当时,,即在上单调递减所以在时取极大值,也即造价预算最大值为()万元.……16分【考点】“五点法”,的解析式,导数与最值.12.已知面积为,,则BC长为.【答案】【解析】由三角形面积公式可知【考点】三角形面积公式13.在△ABC中,a=3,b=5,sinA=,则sinB=()A.B.C.D.1【答案】A【解析】由正弦定理得【考点】正弦定理解三角形14.△ABC的内角A、B、C的对边分别为a、b、c.若a、b、c成等比数列且c=2a,则cosB =()A. B. C. D.【答案】A【解析】由a、b、c成等比数列且c=2,知:,所以,故选A.【考点】1、等比数列性质;2、余弦定理.15.已知中,角,所对的边分别是,且.(1)求的值;(2)若,求面积的最大值.【答案】(1);(2).【解析】(1)由条件的特点,可以考虑余弦定理求,再由半角公式求解;(2)由面积公式知,需求的最值,利用均值不等式即可.试题解析:(1)(2)又当且仅当时,△ABC面积取最大值,最大值为【考点】1、余弦定理;2、半角公式;3、基本不等式.【方法点晴】本题主要考查的是余弦定理、半角的正弦公式和三角形的面积公式及基本不等式,属于中档题.解题时一定要注意所给条件的结构特征,能主动联想余弦定理得角的余弦值,然后利用半角公式变形求解.由面积公式分析面积的最大值即求的最大值,因为考虑基本不等式来处理,注意等号成立的条件,这是易错点.16.已知角A、B、C为△ABC的三个内角,其对边分别为a、b、c,若=(-cos,sin),=(cos,sin),a=2,且·=.(1)若△ABC的面积S=,求b+c的值.(2)求b+c的取值范围.【答案】(1)b+c=4,(2)【解析】(1)由已知及余弦定理可求cosA=-,结合范围三角形内角的取值范围A∈(0,π),可求A.又由三角形面积公式可求bc,利用余弦定理即可解得b+c的值.(2)由正弦定理及三角形内角和定理可得b+c=4sin(B+),根据范围0<B<,利用正弦函数的有界性即可求得b+c的取值范围试题解析:(1)∵=(-cos,sin),=(cos,sin),且·=,∴-cos2+sin2=,即-cosA=,又A∈(0,π),∴A=.又由S=bcsinA=,所以bc=4,由余弦定理得:a2=b2+c2-2bc·cos=b2+c2+bc,△ABC∴16=(b+c)2,故b+c=4(2)由正弦定理得:==4,又B+C=π-A=,∴b+c=4sinB+4sinC=4sinB+4sin(-B)=4sin(B+),∵0<B<,则<B+<,则<sin(B+)≤1,即b+c的取值范围是.【考点】正弦定理,余弦定理,三角形面积公式.【方法点睛】(1)在三角形中处理边角关系时,一般全部转化为角的关系,或全部转化为边的关系.题中若出现边的一次式一般采用正弦定理,出现边的二次式一般采用余弦定理,应用正弦、余弦定理时,注意公式变形的应用,解决三角形问题时,注意角的限制范围;(2)在三角形中,注意隐含条件(3)解决三角形问题时,根据边角关系灵活的选用定理和公式.(3))在解决三角形的问题中,面积公式最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.17.要得到函数y = sin的图象,只要将函数y = sin2x的图象A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【答案】B【解析】,因此只需将函数y = sin2x的图象向左平移个单位【考点】三角函数图像平移18.在中,,则边的长为()A.B.3C.D.7【答案】A【解析】由三角形的面积公式,得,解得;由余弦定理,得,即;故选A.【考点】1.三角形的面积公式;2.余弦定理.19.在中,若,则的形状为.【答案】等腰三角形【解析】法一:由正弦定理可将变形为,,即.,.所以三角形为等腰三角形.法二: 由可得,整理可得,解得,即.所以三角形为等腰三角形.【考点】正弦定理,余弦定理.【方法点睛】本题主要考查的是正弦定理、余弦定理,属于容易题,本题利用正弦定理把边转化为角,变形后为正弦的两角和差公式.或是利用余弦定理将角转化为边再变形整理.即解此类题的关键是边角要统一.20.在△ABC中,已知B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.【答案】AB=.【解析】先根据余弦定理求出∠ADC的值,即可得到∠ADB的值,最后根据正弦定理可得答案.解:在△ADC中,AD=10,AC=14,DC=6,由余弦定理得cos∠ADC==,∴∠ADC=120°,∠ADB=60°在△ABD中,AD=10,∠B=45°,∠ADB=60°,由正弦定理得,∴AB=.【考点】余弦定理;正弦定理.21.(2015秋•醴陵市校级期末)正弦函数y=sinx在x=处的切线方程为.【答案】【解析】先求导函数,利用导函数在x=处可知切线的斜率,进而求出切点的坐标,即可求得切线方程.解:由题意,设f(x)=sinx,∴f′(x)=cosx当x=时,∵x=时,y=∴正弦函数y=sinx在x=处的切线方程为即故答案为:【考点】利用导数研究曲线上某点切线方程.22.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2﹣b2=bc,sinC=2sinB,则A= .【答案】30°【解析】已知sinC=2sinB利用正弦定理化简,代入第一个等式用b表示出a,再利用余弦定理列出关系式,将表示出的c与a代入求出cosA的值,即可确定出A的度数.解:将sinC=2sinB利用正弦定理化简得:c=2b,代入得a2﹣b2=bc=6b2,即a2=7b2,∴由余弦定理得:cosA===,∵A为三角形的内角,∴A=30°.故答案为:30°【考点】正弦定理.23.在△ABC中,所对的边分别为,且,则.【答案】【解析】由得【考点】正弦定理24.△ABC的内角A,B,C的对边分别为a,b,c,若,则a等于()A.B.2C.D.【答案】D【解析】先根据正弦定理求出角C的正弦值,进而得到角C的值,再根据三角形三内角和为180°确定角A=角C,所以根据正弦定理可得a=c.解:由正弦定理,∴故选D.【考点】正弦定理的应用.25.在中, 角的对边分别是,且则的形状是()A.等腰三角形B.等腰直角三角形C.直角三角形D.等边三角形【答案】C【解析】,三角形为直角三角形【考点】余弦定理及二倍角公式26.已知中,角所对的边分别,且.(Ⅰ)求;(Ⅱ)若,求面积的最大值.【答案】(Ⅰ);(Ⅱ).【解析】对于问题(Ⅰ),首先根据余弦定理把关于边的问题转化为关于角的问题,再结合降次公式以及三角函数的诱导公式,即可求得;对于问题(Ⅱ)可以根据(Ⅰ)的结论并结合基本不等式和三角形的面积公式即可求得面积的最大值.试题解析:(Ⅰ)(Ⅱ)且,,又,,,面积的最大值注:求法不唯一,只要过程、方法、结论正确,给满分。

2020年高考数学高频考点揭秘与仿真测试专题23三角函数三角恒等变换文含解析2021051038

2020年高考数学高频考点揭秘与仿真测试专题23三角函数三角恒等变换文含解析2021051038

专题23 三角函数三角恒等变换【考点讲解】(1)会用向量的数量积推导出两角差的余弦公式;(2)能利用两角差的余弦公式导出两角差的正弦、正切公式;(3)能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式 ,导出二倍角的正弦、余弦、正切公式 , 了解它们的内在联系;2.简单的三角恒等变换:能运用上述公式进行简单的恒等变换 (包括导出积化和差、和差化积、半角公式 ,但对这三组公式不要求记忆 )一、具本目标:1. 两角的正余弦 ,会求和差角的正弦、余弦、正切值.2. 会求类似于15° ,75° ,105°等特殊角的正、余弦、正切值.3. 用和差角的正弦、余弦、正切公式化简求值.4. 逆用和差角的正弦、余弦、正切公式化简求值.5. 会配凑、变形、拆角等方法进行化简与求值.二、知识概述:知识点一两角和与差的正弦、余弦、正切公式两角和与差的正弦公式: ,.两角和与差的余弦公式: ,.两角和与差的正切公式: ,.【特别提醒】公式的条件:1.两角和与差的正弦、余弦公式中的两个角α、β为任意角.2.两角和与差的正切公式中两个角有如下的条件:知识点二公式的变用1.两角和与差的正弦公式的逆用与辅助角公式:(其中φ角所在的象限由a,b的符号确定 ,φ的值由tanbaϕ=确定 ) ,在求最|值、化简时起着重要的作用.2.变形为,变形为.变形为,变形为来使用.条件为:知识点三二倍角公式:1.2.常见变形:(1 ) ,(2) ,;(3) ,.3.半角公式:,,,.【真题分析】1.【17新课标III 文】,那么=α2sin ( )A .97-B .92- C .92 D .97【答案】A2.【17新课标III 文】函数的最|大值为 ( )A .56 B .1 C .53 D .51【解析】将化简 ,利用两角和、差的正余弦公式及辅助角公式 ,三角函数 最|值的性质可以求得函数最|大值. 由,因为 ,所以函数的最|大值为56. 【答案】A3.【2021年渭南期中】向量a = (sin θ ,2- ) ,b = (1 ,cos θ ) ,且a ⊥b ,那么sin 2θ +cos 2θ的值为 ( )A .1B .2C .12D .3【答案】A4.【2021吉林二模】cos θ =-725 ,θ∈ (-π ,0 ) ,那么sin 2θ +cos 2θ= ( ) A .125 B .15± C .15 D .15-【解析】∵cos θ =-725 ,θ∈ (-π ,0 ) ,∴cos 22θ-sin 22θ = (cos 2θ +sin 2θ ) (cos 2θ-sin 2θ )<0 ,2θ∈ (π2- ,0 ) ,∴si n 2θ +cos 2θ<0 ,cos 2θ-sin 2θ>0 ,∵ (sin2θ +cos 2θ )2 =1 +sin θ =1491625- =125, ∴sin2θ +cos 2θ =15-.应选D . 【答案】D等于 ( )A .-sin αB .-cos αC .sin αD .cos α 【解析】此题考点:三角函数的恒等变换及化简求值.原式 ===cos α.应选D. 【答案】D6.【2021全国二卷15】 , ,那么sin()αβ+=__________.【解析】此题考点:同角三角函数的平方和、两角和的正弦公式. 将两式平方与,将平方后的两式相加整理得:, ,也就是.【答案】21-7.【2021(高|考)四川】.【答案】6 2.8.【2021(高|考)江苏卷】在锐角三角形ABC中 ,假设 ,那么的最|小值是 .【解析】此题考查的是三角恒等变换及正切的性质 ,此题要求会利用三角形中隐含的边角关系作为消元依据 ,同时要记住斜三角形ABC中恒有,,因此即最|小值为8.【答案】8.9.【2021秦皇岛期中】假设cos (α +β ) =45,cos (α−β ) =−45,, ,那么sin 2β = . 【解析】cos (α +β ) =45, cos (α−β ) =−45,, ,∴sin (α +β ) =−35 ,sin (α−β ) =35, ∴sin 2β =sin[α +β− (α−β )] =sin (α +β )cos (α−β )−cos (α +β )∙sin (α−β ) =3()5-×4()5-−45×35=0. 【答案】010..sin α +sin β =2165 ,cos α +cos β =2765,那么 = .所以 ==cos2sin2αβαβ++ =97. 【答案】9711.【2021江苏卷16】,αβ为锐角 ,4tan 3α=,.(1 )求cos 2α的值; (2 )求tan()αβ-的值.【解】 (1 )因为4tan 3α=,sin tan cos ααα= ,所以.因为,所以29cos 25α=, 因此 ,.【答案】D6.设α为锐角 ,假设 ,那么 ( )A .210 B .210- C .45 D .45-【答案】A7.假设 ,那么 ( )A.1B.21 C.31 D.41【解析】,应选B. 【答案】B8.以下各式中 ,值为3的是 ( )A.B.C.1tan15 1tan15 +︒-︒D.【解析】,,1tan151tan15+︒-︒,cos15=︒ ,应选C.【答案】C9.tan (π4+α ) =12,那么的值为________.【答案】2 310.【2021浙江卷18】角α的顶点与原点O重合 ,始边与x轴的非负半轴重合 ,它的终边过点P(3455 -,- ).(Ⅰ )求sin (α+π )的值;(Ⅱ )假设角β满足sin (α +β ) =513,求cosβ的值.解:. (Ⅰ )由角α的终边过点34(,)55P--得4sin5α=- ,所以.(Ⅱ )由角α的终边过点34(,)55P--得3cos5α=- ,由得.由得, 所以或.。

2020年高三数学三轮复习回归基础专题三角恒等变换与解三角形

2020年高三数学三轮复习回归基础专题三角恒等变换与解三角形
方位角
某点的指北方向线起,依顺时针方向到目标方向线之间的水平夹角。
三角恒等变换与解三角形
变换公式
正弦
和差角公式
倍角公式
余弦
正切
三角恒等变换与解三角形
正弦
定理
定理

射影定理:
变形
( 外接圆半径)。
类型
三角形两边和一边对角、三角形两角与一边。
余弦
定理
定理

变形
等。
类型
两边及一角(一角为夹角时直接使用、一角为一边对角时列方程)、三边。
面积
公式
基本
公式

导出
公式
( 外接圆半径); ( 内切圆半径)。
实际
应用
基本思想
把要求解的量归入到可解三角形中。在实际问题中,往往涉及到多个三角形,只要根据已知逐次把求解目标归入到一个可解三角形中。
常用术语
仰角
视线在水平线以上时,在视线所在的垂直平面内,视线与水平线所成的角。
俯角
视线在水平线以下时,在视线所在的垂直平面内,视线与水平线所成的角。
方向角
方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般是锐角,如北偏西30°)。

高中数学第三章三角恒等变换3.3的积化和差与和差化积例题与探究

高中数学第三章三角恒等变换3.3的积化和差与和差化积例题与探究

3.3 三角函数的积化和差与和差化积典题精讲例1 已知cos α-cos β=21,sin α-sin β=-31,求sin(α+β)的值. 思路分析:考查三角函数的和差化积公式的应用,以及万能公式.两个等式分别用和差化积公式后再相除,得tan 2βα+的值,再用万能公式求sin(α+β)的值.解:∵cos α-cos β=21,∴-2sin 2βα+sin 2βα-=21.① ∵sin α-sin β=-31,∴2cos 2βα+sin 2βα-=-31.②①÷②得-tan2βα+=-23. ∴tan2βα+=23. ∴sin(α+β)=2tan 12tan22βαβα+++=491232+⨯=1312. 绿色通道:如果出现系数绝对值相同的同名三角函数的和差时,常用到和差化积公式.如果出现弦函数的积时,常用到积化和差公式.黑色陷阱:受思维定势的影响,如果由已知sin 2α+cos 2α=1,sin 2β+cos 2β=1联立方程组,分别解得sin α,cos α,sin β,cos β的值,那么运算量就明显加大,甚至会陷入困境. 变式训练1 已知tan α、tan β是方程x 2+3x-4=0的两个根,求βαβα2sin 2sin 2cos 2cos ++的值.思路分析:利用根与系数的关系,得到tan α+tan β和tan αtan β,进而得到tan(α+β).看到cos2α+cos2β,sin2α+sin2β是系数相等的同名三角函数的和,用和差化积公式变形.解:由韦达定理得tan α+tan β=-3,tan αtan β=-4. ∴βαβα2sin 2sin 2cos 2cos ++=)cos()sin(2)cos()cos(2βαβαβαβα-+-+=βαβαβαtan tan tan tan 1)tan(1+-=+=341-+=-35.变式训练2 把cosx+cos2x+cos3x+cos4x 化成积的形式.思路分析:所给的式子是四项的和,要化为积的形式,需考虑适当分组,注意到四个角的特征,显然应将cosx 和cos4x 组到一起,将cos2x 和cos3x 组到一起,这样可以在分别化积之后产生公因式,提取公因式后再继续化积.解:cosx+cos2x+cos3x+cos4x=(cosx+cos4x)+(cos2x+cos3x)=2cos25x cos 23x +2cos 25x cos 2x =2cos 25x (cos 23x +cos 2x )=4cos 25x cosxcos 2x. 例2(2005重庆高考卷,文17)若函数f(x)=)2sin(22cos 1x x-+π+sinx+a 2sin(x+4π)的最大值为2+3,试确定常数a 的值.思路分析:考查三角函数公式,以及利用三角函数的有界性来求最值的问题.化简函数f(x)的解析式为Asin(ωx+φ)的形式,再确定常数a 的值. 解:f(x)=)2sin(2cos 22x x -π+sinx+a 2sin(x+4π) =xx cos 2cos 22+sinx+a 2sin(x+4π)=sinx+cosx+a 2sin(x+4π)=2sin(x+4π)+a 2sin(x+4π)=(2+a 2)sin(x+4π). ∵f(x)的最大值为2+3,sin(x+4π)的最大值为1,∴2+a 2=2+3.∴a=±2.绿色通道:讨论三角函数的最值问题时,经过三角恒等变换,化归为 y=Asin(ωx+φ)的形式求解,有时化归为二次函数求解. 变式训练 求函数y=cos3x·cosx 的最值.思路分析:由于是弦函数积的形式,则利用化积公式,将两个角的余弦化为一个角的三角函数值,从而转化为求二次函数的最值. 解:y=cos3x·cosx=21(cos4x+cos2x) =21(2cos 22x-1+cos2x) =cos 22x+21cos2x-21=(cos2x+41)2-169.∵cos2x∈[-1,1], ∴当cos2x=-41时,y 取得最小值-169; 当cos2x=1时,y 取得最大值1,即函数y=cos3x·cosx 的最大值是1,最小值是-169. 问题探究问题 1)试分别计算cosA+cosB+cosC-4sin2A sin 2B sin 2C的值. ①在等边三角形ABC 中;②A=60°,B=90°,C=30°;③A=120°,B=30°,C=30°.(2)由(1)你发现了什么结论?并加以证明.(3)利用(2)的结论计算-2cos10°-2cos99.8°-2cos70.2°+8sin5°sin49.9°sin35.1°的值.导思:从A+B+C 上归纳并猜想出结论. 探究:(1)①由题意得A=B=C=60°, cosA+cosB+cosC-4sin 2A sin 2B sin 2C =cos60°+cos60°+cos60°-4sin30°sin30°sin30°=21+21+21-4×21×21×21=1; ②cosA+cosB+cosC -4sin 2A sin 2B sin 2C=cos60°+cos90°+cos30°-4sin30°sin45°sin15° =21+0+23-4×21×22×2cos30-1︒=1; ③cosA+cosB+cosC -4sin 2A sin 2B sin 2C=cos120°+cos30°+cos30°-4sin60°sin15°si n15° =-21+23+23-4×23sin 215° =-21+3-3×(1-cos30°)=1. (2)在(1)①中A+B+C=180°,有cosA+cosB+cosC-4sin2A sin 2B sin 2C=1; 在(1)②中A+B+C=180°,有cosA+cosB+cosC-4sin 2A sin 2B sin 2C=1;在(1)③中A+B+C=180°,有cosA+cosB+cosC-4sin 2A sin 2B sin 2C=1.猜想:当A+B+C=180°时,有cosA+cosB+cosC=1+4sin 2A sin 2B sin 2C.证明:当A+B+C=180°时,有A+B=180°-C,即2B A +=90°-2C,∴cosA+cosB+cosC=2cos 2B A +cos 2B A -+1-2sin 22C =2cos(90°-2C )cos 2B A -+1-2sin 22C=2sin 2C cos 2B A --2sin 22C +1=2sin 2C (cos 2B A --sin 2C )+1=2sin 2C (cos 2B A --cos 2B A +)+1=2sin2C (-2)sin 2A sin(-2B)+1 =4sin 2A sin 2B sin 2C+1.∴cosA+cosB+cosC=1+4sin 2A sin 2B sin 2C.(3)∵10°+99.8°+70.2°=180°,∴cos10°+cos99.8°+cos70.2°-4sin5°sin49.9°sin35.1°=1.∴-2cos10°-2cos99.8°-2cos70.2°+8sin5°sin49.9°sin35.1°=-2.。

高二数学三角函数三角恒等变换解三角形试题

高二数学三角函数三角恒等变换解三角形试题

高二数学三角函数三角恒等变换解三角形试题1.若,则.【答案】【解析】【考点】1.二倍角公式;2.同角三角函数2.将函数的图象向右平移个单位,得到函数的图象,若在上为增函数,则的最大值为.【答案】2【解析】由题意得:,因为在上为增函数,所以,即的最大值为2【考点】三角函数图像变换与性质3.函数(其中)的图象如图所示,为了得到的图象,只需把的图象上所有点()A.向左平移个单位长度B.向右平移个单位长度C.向右平移个单位长度D.向左平移个单位长度【答案】C【解析】由图可知则,又,结合可知,即,为了得到的图象,只需把的图象上所有点向右平移个单位长度.【考点】函数图象、图象的平移.4.在中,角所对的边分别为,满足,且.(1)求角的大小;(2)求的最大值,并求取得最大值时角的值.【答案】(1);(2)当时,取到最大值.【解析】本题主要考查余弦定理、正弦定理、两角和的正弦公式、基本不等式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用三角形的内角和定理转化为A的三角函数,利用两角和的正弦公式求解,结合正弦定理把边转化为角,求出表达式,求出结果即可;第二问,由余弦定理以及基本不等式求出的最值,注意等号成立的条件即可.试题解析:(1)由,可得,即,又,所以,由正弦定理得,因为,所以0,从而,即.(2)由余弦定理,得,又,所以,于是,--10当时,取到最大值.【考点】余弦定理、正弦定理、两角和的正弦公式、基本不等式.5.下列各式中,值为的是()A.B.C.D.【答案】C【解析】A,B、,C、, D、,故选择C【考点】三角恒等变换6.在△ABC中,a,b,c分别是角A,B,C所对的边,已知则c=.【答案】【解析】由余弦定理可得【考点】余弦定理解三角形7.已知面积为,,则BC长为.【答案】【解析】由三角形面积公式可知【考点】三角形面积公式8.在锐角△ABC中,a,b,c分别为角A,B,C所对的边,又c=,b=4,且BC边上的高h=2.(1)求角C;(2)求边a的长【答案】(1);(2)5;【解析】(1)角C在直角三角形ADC中,根据定义求解即可;(2)由(1)知的值,利用余弦定理即可.本题注意活用余弦定理.试题解析:(1)由于△ABC为锐角三角形,过A作AD⊥BC于D点,,则.(2)由余弦定理,可知则,即所以或(舍)因此边长为5.【考点】1.正弦的定义;2.余弦定理;9.△ABC中,,则△ABC一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形【答案】A【解析】由正弦定理可知,,整理得,所以,则△ABC为等腰三角形.【考点】正弦定理的应用.10.在中,,则边的长为()A.B.3C.D.7【答案】A【解析】由三角形的面积公式,得,解得;由余弦定理,得,即;故选A.【考点】1.三角形的面积公式;2.余弦定理.11.(2011•安徽)已知△ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC的面积为.【答案】15【解析】因为三角形三边构成公差为4的等差数列,设中间的一条边为x,则最大的边为x+4,最小的边为x﹣4,根据余弦定理表示出cos120°的式子,将各自设出的值代入即可得到关于x的方程,求出方程的解即可得到三角形的边长,然后利用三角形的面积公式即可求出三角形ABC 的面积.解:设三角形的三边分别为x﹣4,x,x+4,则cos120°==﹣,化简得:x﹣16=4﹣x,解得x=10,所以三角形的三边分别为:6,10,14则△ABC的面积S=×6×10sin120°=15.故答案为:15【考点】余弦定理;数列的应用;正弦定理.12.(2015秋•醴陵市校级期末)正弦函数y=sinx在x=处的切线方程为.【答案】【解析】先求导函数,利用导函数在x=处可知切线的斜率,进而求出切点的坐标,即可求得切线方程.解:由题意,设f(x)=sinx,∴f′(x)=cosx当x=时,∵x=时,y=∴正弦函数y=sinx在x=处的切线方程为即故答案为:【考点】利用导数研究曲线上某点切线方程.13.如图所示,甲船以每小时30海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的南偏西75°方向的B1处,此时两船相距20海里.当甲船航行20分钟到达A2处时,乙船航行到甲船的南偏西60°方向的B2处,此时两船相距10海里.问:乙船每小时航行多少海里?【答案】【解析】连接,则∴△是等边三角形,求出,在△中使用余弦定理求出的长,除以航行时间得出速度试题解析:如图,连接A1B2,由题意知,A1B1=20,A2B2=10,A1A2=×30=10(海里)又∵∠B2A2A1=180°-120°=60°,∴△A1A2B2是等边三角形,∠B1A1B2=105-60°=45°.在△A1B2B1中,由余弦定理得=202+(10)2-2×20×10×=200,∴B1B2=10(海里).因此乙船的速度大小为×60=30(海里/小时).【考点】解三角形的实际应用;余弦定理14.(2015春•东城区期末)下列三句话按“三段论”模式排列顺序正确的是()①y=cosx(x∈R)是三角函数;②三角函数是周期函数;③y=cosx(x∈R)是周期函数.A.①②③B.②①③C.②③①D.③②①【答案】B【解析】根据三段论”的排列模式:“大前提”→“小前提”⇒“结论”,分析即可得到正确的次序.解:根据“三段论”:“大前提”→“小前提”⇒“结论”可知:①y=cosx((x∈R )是三角函数是“小前提”;②三角函数是周期函数是“大前提”;③y=cosx((x∈R )是周期函数是“结论”;故“三段论”模式排列顺序为②①③故选B【考点】演绎推理的基本方法.15.在△ABC内部有任意三点不共线的2017个点,加上A、B、C三个顶点,共有2020个点,把这2020个点连线,将△ABC分割成以这些点为顶点,且互不重叠的小三角形,则小三角形的个数为()A.4037 B.4035 C.4033 D.4032【答案】B【解析】三个点时,有1个三角形,4个点时有3个三角形,5个点时有5个三角形,每加一个点,三角形的个数加2,因此2020个点时三角形的个数为1+(2020-3)×2=4035.【考点】归纳推理.16.在锐角中,内角的对边分别为,且.(1)求角的大小;(2)若,求的面积.【答案】(1);(2).【解析】(1)由正弦定理得的值,再由题意可得的大小;(2)由已知条件代入余弦定理可求得的值,代入面积公式可得三角形的面积.试题解析:(1)∵中,,∴根据正弦定理,得∵锐角中,,∴等式两边约去,得∵是锐角的内角,∴;(2)∵,,∴由余弦定理,得,化简得,∵,平方得,∴两式相减,得,可得.因此,的面积.【考点】正弦定理、余弦定理.17.设函数,若为奇函数,则= ;【答案】【解析】,函数为奇函数,所以【考点】三角函数性质18.已知的三内角所对的边分别为,且,则.【答案】【解析】由正弦定理及得,所以,所以.【考点】正弦定理与余弦定理.19.函数的部分图像如图所示,则A.B.C.D.【答案】A【解析】由图象可知,,所以,当时,,故选A.【考点】函数的图象.20.在锐角中,分别为角所对的边,且.(1)确定角的大小;(2)若,且的面积为,求的值.【答案】(1);(2).【解析】(1)根据正弦定理化简已知的式子求出,在由锐角三角形的特征求出角的大小;(2)根据余弦定理和条件,可得,利用三角形的面积公式和条件求出和的值,由完全平方公式即可求出的值.试题解析:(1)由及正弦定理得,,∵,∴.∵是锐角三角形,∴.(2)∵,由面积公式得,即....①由余弦定理得,即,∴....②,由①②得,故.【考点】正弦定理与余弦定理.21.已知:f(x)=2cos2x+sin2x﹣+1(x∈R).求:(Ⅰ)f(x)的最小正周期;(Ⅱ)f(x)的单调增区间;(Ⅲ)若x∈[﹣,]时,求f(x)的值域.【答案】见解析【解析】解:f(x)=sin2x+(2cos2x﹣1)+1=sin2x+cos2x+1=2sin(2x+)+1(Ⅰ)函数f(x)的最小正周期为T==π(Ⅱ)由2kπ﹣≤2x+≤2kπ+得2kπ﹣≤2x≤2kπ+∴kπ﹣≤x≤kπ+,k∈Z函数f(x)的单调增区间为[kπ﹣,kπ+],k∈Z(Ⅲ)因为x∈[﹣,],∴2x+∈[﹣,],∴sin(2x+)∈[,1],∴f(x)∈[0,3].【点评】本题考查三角函数的最值,三角函数的周期性及其求法,正弦函数的单调性,考查计算能力,此类题目的解答,关键是基本的三角函数的性质的掌握熟练程度,是基础题.22.在中,三内角的对边分别为,面积为,若,则等于()A.B.C.D.【答案】A【解析】因为,所以,所以,化为,又因为,解得或(舍去),所以.【考点】余弦定理.23.已知函数,(1)求函数的单调递减区间;(2)求函数的极小值和最大值,并写明取到极小值和最大值时分别对应的值.【答案】(1);(2)详见解析.【解析】(1)先求函数的导数,并且根据辅助角公式化简函数,并求导数在的零点,同时讨论零点两侧的单调性,确定函数的单调递减区间;(2)根据(1)的讨论,可求得极值点和极值以及端点值的大小,经比较可得函数的最大值以及极小值.试题解析:(1)f′(x)=cosx+sinx+1=sin(x+)+1 ()令f′(x)=0,即sin(x+)=-,解之得x=π或x=π.x,f′(x)以及f(x)变化情况如下表:(π,π)π(π,2π)-0+∴f(x)的单调减区间为(π,π).=f()=.(2)由(1)知f (x)极小而f(π)=π+2,,所以.【考点】导数的简单应用24.在一个港口,相邻两次高潮发生的时间相距,低潮时水深为,高潮时水深为.每天潮涨潮落时,该港口水的深度()关于时间()的函数图象可以近似地看成函数的图象,其中,且时涨潮到一次高潮,则该函数的解析式可以是()A.B.C.D.【答案】A【解析】由题意分析可知函数的最大值为15,最小值为9,周期T=12,所以,又当t=3时,函数取得最大值,所以答案为A。

高二数学三角函数三角恒等变换解三角形试题答案及解析

高二数学三角函数三角恒等变换解三角形试题答案及解析

高二数学三角函数三角恒等变换解三角形试题答案及解析1.在中,内角的对边分别是,若,的面积为,则( )A.B.C.D.【答案】A【解析】根据题意有,即,结合余弦定理,可知,所以有,结合题中所给的三角形的面积,可知,化简整理可得,结合三角形内角的取值范围,可知,故选A.【考点】余弦定理,三角形的面积,辅助角公式,已知三角函数值求角.2.函数的图象的一条对称轴的方程是( )A.B.C.D.【答案】D【解析】根据余弦函数的图像和性质,可知,解得,,可知当时得到,故选D.【考点】余弦函数的图像和性质.3.已知,函数在上单调递减,则的取值范围是.【答案】【解析】由得函数的单调递减区间为.经验证当k=0时,有,解得,.【考点】三角函数的单调性,注意利用复合函数的单调性考虑.4.在中,角所对的边分别为,满足:.(Ⅰ)求的大小;(Ⅱ)若,求的最大值,并求取得最大值时角的值.【答案】(Ⅰ);(Ⅱ);.【解析】(Ⅰ)由三角函数恒等变换的应用及正弦定理化简已知等式可得:,结合范围,可得,从而解得的值.(Ⅱ)由正弦定理可得,由,可求,即可得解.试题解析:(Ⅰ)由.可得,所以,由正弦定理可得:,因为,所以,从而,即,从而解得:(Ⅱ)由正弦定理:,可得,所以:,又因为,得:,,所以,所以,此时,即【考点】余弦定理;正弦定理.5.在△中,若,则△的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形【答案】D【解析】∵,∴,∴,∴,∴,∴或,∴或,∴△的形状为等腰三角形或直角三角形.【考点】判断三角形形状、两角和与差的正弦公式.6.在△ABC中,,则()A.2∶3∶4B.14∶11∶(-4)C.4∶3∶2D.7∶11∶(-2)【答案】B【解析】∵,∴由正弦定理得:,∴设,,,∴.【考点】正弦定理和余弦定理.7.(本小题满分12分)是单位圆上的点,点是单位圆与轴正半轴的交点,点在第二象限.记且.(1)求点坐标;(2)求的值.【答案】(1);(2).【解析】(1)根据角的终边与单位交点为(),结合同角三角函数关系和,可得B点坐标;(2)由(1)中结论,结合诱导公式化简,代入可得答案试题解析:(1)∵点A是单位圆与x轴正半轴的交点,点B在第二象限.设B点坐标为(x,y),则y=sin.x=即B点坐标为:(2)【考点】1.三角函数定义;2.同角三角函数基本关系及诱导公式8.已知在△ABC中,三个内角A,B,C的对边分别为a,b,c,若△ABC的面积为S,且,则tanC等于()A.B.C.D.【答案】C【解析】【考点】1.余弦定理解三角形;2.同角间三角函数关系9.(本小题12分)在锐角△中,内角的对边分别为,且(1)求角的大小。

高三数学三角函数三角恒等变换解三角形试题答案及解析

高三数学三角函数三角恒等变换解三角形试题答案及解析

高三数学三角函数三角恒等变换解三角形试题答案及解析1.已知函数的图象上关于轴对称的点至少有3对,则实数的取值范围是()A.B.C.D.【答案】A【解析】原函数在轴左侧是一段正弦型函数图象,在轴右侧是一条对数函数的图象,要使得图象上关于轴对称的点至少有对,可将左侧的图象对称到轴右侧,即,应该与原来轴右侧的图象至少有个公共点如图,不能满足条件,只有此时,只需在时,的纵坐标大于,即,得.【考点】分段函数,函数图象,正弦型函数,对数函数2.若,则函数的最大值是___________.【答案】【解析】由题意因为,所以,所以函数的最大值是.【考点】求最大值.3.已知,,则下列不等式一定成立的是A.B.C.D.【答案】D【解析】,【考点】三角函数的性质4.若,且为第二象限角,则()A.B.C.D.【答案】B【解析】由得又为第二象限角,所以,选B.【考点】两角差余弦公式5.设函数对任意的,都有,若函数,则的值是()A.1B.-5或3C.-2D.【答案】C【解析】根据题意有是函数图像的对称轴,从而有,所以有,故选C.【考点】三角函数的性质.6.设的最小值为,则.【答案】【解析】,根据题意,结合二次函数在某个区间上的最值问题,对参数进行讨论,当时,其最小值为,所以不合题意,当时,其最小值为,解得,当时,其最小值为,无解,所以.【考点】倍角公式,二次函数在给定区间上的最值问题.7.设函数对任意的,都有,若函数,则的值是()A.1B.-5或3C.D.-2【答案】D【解析】根据题意有是函数图像的对称轴,从而有,所以有,故选D.【考点】三角函数的性质.8.下列函数中,以为最小正周期的偶函数是()A.y=sin2x+cos2xB.y=sin2xcos2xC.y=cos(4x+)D.y=sin22x﹣cos22x【答案】D【解析】因为A项为非奇非偶函数,B项是奇函数,C项是奇函数,只有D项是符合题意的,故选D.【考点】诱导公式,倍角公式,三角函数的奇偶性和周期.9.函数的最大值为.【答案】【解析】解析式表示过的直线的斜率,由几何意义,即过定点(4,3)与单位圆相切时的切线斜率为最值.所以设切线得斜率为k,则直线方程为,即 ,【考点】三角函数最值【方法点睛】本题主要考查三角函数最值问题及转化的思想,解决问题的根据是根据所给函数式子转化为直线与圆的位置关系问题,即将所给式子看做定点与单位圆上点的连线的斜率的范围问题,通过模型转化使问题定点巧妙解决,属于经典试题.10.(本题满分12分)如图,在中,边上的中线长为3,且,.(1)求的值;(2)求边的长.【答案】(1)(2)4【解析】(1)利用角的关系,再结合两角差正弦公式展开就可求解(2)先在三角形ABD中,由正弦定理解出BD长,即CD长:由正弦定理,得,即,解得…故;再在三角形ADC中由余弦定理解出AC:;AC= 4试题解析:(1)(2)在中,由正弦定理,得,即,解得…故,从而在中,由余弦定理,得;AC= 4 ;【考点】正余弦定理11.中,,则的最大值为.【答案】【解析】设,由余弦定理的推论,所以,设,代入上式得,,故,当时,此时,符合题意,因此最大值为,故答案为:.【考点】解三角形.【思路点睛】首先假设,然后再根据余弦定理的推论,可得,找到与的关系,再设,代入上式得,利用根的判别式,进而求出结果.本题的关键是利用余弦定理的推论.12.已知函数的部分图象如图所示.(1)求函数的解析式;(2)若,求函数在区间上的单调减区间.【答案】(1);(2),.【解析】(1)由图象中的最高点和最低点的纵坐标得到关于的方程组求得,再利用图象得到函数的周期,进而得到值,最后代入最低点坐标或最高点坐标结合的范围求出,即得到函数的解析式;(2)先求出,利用两角和差的正弦公式将其化为的形式,再利用整体思想求其单调递减区间.试题解析:(1)由图知,解得,又,所以,所以,将点代入,得,再由,得,所以;(2)因为由,解得;又,故所求的单调减区间为,.【考点】1.三角函数的图象与性质;2.三角恒等变形.13.已知角的终边经过点(-4,3),则= ,= ;【答案】;【解析】由题意可得.【考点】任意角三角函数的定义.14.在△ABC中,a、b、c分别是角A、B、C的对边,且.(Ⅰ)求角B的大小;(Ⅱ)若,求△ABC的面积.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)在解三角形的背景下,考查正弦定理,余弦定理,知值求值.(Ⅱ)综合余弦定理,求三角形的面积公式,需要把作为整体求之.试题解析:(Ⅰ)由正弦定理得将上式代入已知即,即.∵∵∵B为三角形的内角,∴.(Ⅱ)由余弦定理得,结合,可得,所以△ABC的面积.【考点】正弦定理,余弦定理,三角形的面积公式.15.在△中,角,,所对的边分别为,,,表示△的面积,若,,则.【答案】【解析】∵,∴,∴,∴,.∵,∴,∴,∴,∴.【考点】解三角形.【思路点睛】先利用余弦定理和三角形的面积公式可得,可得,再用正弦定理把中的边换成角的正弦,利用两角和公式化简整理可求得,最后根据三角形内角和,进而求得.16.中,角A,B,C的对边分别为a,b,c,若的面积,则 .【答案】【解析】由余弦定理,,又,,,即,,.【考点】1、余弦定理;2、同角三角函数的基本关系;3、三角形面积公式.【思路点睛】本题主要考查的是余弦定理、同角三角函数基本关系、三角形的面积公式,属于容易题.因为题目求,且的面积,边的平方的形式一般想到余弦定理,面积展开后利用余弦定理即可求得与的关系,从而利用同角三角函数的基本关系求得.17.(2012•安徽)设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=sinAcosC+cosAsinC.(Ⅰ)求角A的大小;(Ⅱ)若b=2,c=1,D为BC的中点,求AD的长.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)根据2sinBcosA=sinAcosC+cosAsinC,可得2sinBcosA=sin(A+C),从而可得2sinBcosA=sinB,由此可求求角A的大小;(Ⅱ)利用b=2,c=1,A=,可求a的值,进而可求B=,利用D为BC的中点,可求AD的长.解:(Ⅰ)∵2sinBcosA=sinAcosC+cosAsinC∴2sinBcosA=sin(A+C)∵A+C=π﹣B∴sin(A+C)=sinB>0∴2sinBcosA=sinB∴cosA=∵A∈(0,π)∴A=;(Ⅱ)∵b=2,c=1,A=∴a2=b2+c2﹣2bccosA=3∴b2=a2+c2∴B=∵D为BC的中点,∴AD=.【考点】余弦定理;三角函数的恒等变换及化简求值.18.在中,已知.(Ⅰ)求sinA与角B的值;(Ⅱ)若角A,B,C的对边分别为的值.【答案】(Ⅰ);(Ⅱ),.【解析】(I)给出了关于角的两个三角函数值,利用诱导公式和同角三角函数的基本关系式可求得其正弦、余弦,再根据三角形的性质可求得的值;(II)在第一问的基础上,利用正弦定理可求得边,再由余弦定理求边,注意利用三角形基本性质舍解.试题解析:(Ⅰ)∵,,又∵,.∵,且,.(Ⅱ)由正弦定理得,,另由得,解得或(舍去),,.【考点】三角函数的诱导公式,同角三角函数的基本关系式及利用正、余弦定理在解三角形.19.已知,则的值为.【答案】.【解析】,故填:.【考点】三角恒等变形.20.在中,角A,B,C的对边分别为,,,若,则角的值为()A.或B.或C.D.【答案】A.【解析】,,∴或,故选A.【考点】余弦定理.【思路点睛】由已知条件,可先将切化弦,再结合正弦定理,将该恒等式的边都化为角,然后进行三角函数式的恒等变形,找出角之间的关系;或将角都化成边,然后进行代数恒等变形,可一题多解,多角度思考问题,从而达到对知识的熟练掌握.21.为了得到函数的图象,只需把函数图象上的所有点()A.横坐标缩短到原来的倍,纵坐标不变B.横坐标伸长到原来的2倍,纵坐标不变C.纵坐标缩短到原来的倍,横坐标不变D.纵坐标缩短到原来的2倍,横坐标不变【答案】A【解析】这是一个三角函数的图象变换问题,一般的为了得到函数的图象,只需把函数的图象上所有点的横坐标伸长()或缩短()到原来的倍(纵坐标不变)即可,因此为了得到函数的图象,只需把函数图象上的所有点横坐标缩短到原来的倍,纵坐标不变,故选A.【考点】三角函数的图象变换.【方法点睛】本题是一个三角函数的图象变换问题,属于容易题.一般的要得到函数(其中)的图像可按以下步骤进行:先把的图象向左()或向右()平移个单位,再将所得函数的图象上各点的横坐标扩大()或缩小()为原来的(纵坐标不变),再把所得函数图象上各点的纵坐标扩大()或缩小()为原来的倍(横坐标不变),最后再将所得图像向上()或向下()平移个单位,即可得到函数的图象.22.如图,在中,,,点在边上,且,.(I)求;(II)求的长.【答案】(Ⅰ);(Ⅱ),.【解析】(Ⅰ)由图可知,所以,又,所以,再由两角差的正弦公式可求得;(Ⅱ)由题意可用正弦定理、余弦定理即可求出、的长,在中,有,又从而可求得;在中,由余弦定理得,,从而可求出.试题解析:(Ⅰ)在中,因为,所以,所以(Ⅱ)在中,由正弦定理得,在中,由余弦定理得,所以【考点】1.解三角形;2.两角差的正弦公式.23.设的内角对边分别为,已知,且.(1)求角的大小;(2)若向量与共线,求的值.【答案】(1);(2)。

高中数学三角函数及三角恒等变换精选题目(附解析)

高中数学三角函数及三角恒等变换精选题目(附解析)

高中数学三角函数及三角恒等变换精选题目(附解析) 一、三角函数的定义若角α的终边上任意一点P (x ,y )(原点除外),r =|OP |=x 2+y 2,则sin α=y r ,cos α=x r ,tan α=y x (x ≠0).1.已知角α的终边过点P (-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,则sin α=________,tan α=________.[解析] ∵θ∈⎝ ⎛⎭⎪⎫π2,π,∴cos θ<0,∴r =x 2+y 2=9cos 2θ+16cos 2θ=-5cosθ,故sin α=y r =-45,tan α=y x =-43.[答案] -45 -43 注:利用三角函数定义求函数值的方法当已知角的终边所经过的点或角的终边所在的直线时,一般先根据三角函数的定义求这个角的三角函数值,再求其他.但当角经过的点不固定时,需要进行分类讨论.求与正切函数有关问题时,不要忽略正切函数自身的定义域.2.已知点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,且角θ的终边所在的直线过点M ,则tan θ=( )A .-13 B .±13 C .-3D .±3解析:选C 因为点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,所以a =log 313=-1,即M ⎝ ⎛⎭⎪⎫13,-1,所以tan θ=-113=-3,故选C.3.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35 C.35D.45解析:选B 在角θ的终边上任取一点P (a,2a )(a ≠0). 则r 2=|OP |2=a 2+(2a )2=5a 2. 所以cos 2θ=a 25a 2=15,cos 2θ=2cos 2 θ-1=25-1=-35.4.若θ是第四象限角,则点P (sin θ,tan θ)在第________象限. 解析:∵θ是第四象限角,则sin θ<0,tan θ<0, ∴点P (sin θ,tan θ )在第三象限. 答案:三二、同角三角函数的基本关系及诱导公式①牢记两个基本关系式sin 2α+cos 2α=1及sin αcos α=tan α,并能应用两个关系式进行三角函数的求值、化简、证明.②诱导公式可概括为k ·π2±α(k ∈Z)的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍或偶数倍,变与不变是指函数名称的变化.5.已知2+tan (θ-π)1+tan (2π-θ)=-4,求(sin θ-3cos θ)(cos θ-sin θ)的值.[解] 法一:由已知得2+tan θ1-tan θ=-4,∴2+tan θ=-4(1-tan θ), 解得tan θ=2.∴(sin θ-3cos θ)(cos θ-sin θ ) =4sin θcos θ-sin 2θ-3cos 2θ =4sin θcos θ-sin 2θ-3cos 2θsin 2θ+cos 2θ=4tan θ-tan2θ-3tan2θ+1=8-4-34+1=15.法二:由已知得2+tan θ1-tan θ=-4,解得tan θ=2.即sin θcos θ=2,∴sin θ=2cos θ.∴(sin θ-3cos θ)(cos θ-sin θ)=(2cos θ-3cos θ)(cos θ-2cos θ)=cos2θ=cos2θsin2θ+cos2θ=1tan2θ+1=15.注:三角函数式的求值、化简、证明的常用技巧(1)化弦:当三角函数式中三角函数名称较多时,往往把三角函数化为弦,再化简变形.(2)化切:当三角函数式中含有正切及其他三角函数时,有时可将三角函数名称都化为正切,再变形化简.(3)“1”的代换:在三角函数式中,有些会含有常数1,常数1虽然非常简单,但有些三角函数式的化简却需要利用三角函数公式将“1”代换为三角函数式.6.若sin(π+α)=35,且α是第三象限角,则sin⎝⎛⎭⎪⎫π2+α-cos⎝⎛⎭⎪⎫π2+αsin⎝⎛⎭⎪⎫π2-α-cos⎝⎛⎭⎪⎫π2-α=()A.1B.7 C.-7 D.-1解析:选B由sin(π+α)=35,得sin α=-35.又α是第三象限角,所以cos α=-4 5,所以sin⎝⎛⎭⎪⎫π2+α-cos⎝⎛⎭⎪⎫π2+αsin⎝⎛⎭⎪⎫π2-α-cos⎝⎛⎭⎪⎫π2-α=cos α+sin αcos α-sin α=-45+⎝ ⎛⎭⎪⎫-35-45-⎝ ⎛⎭⎪⎫-35=7.7.已知sin θ+cos θ=43,且0<θ<π4,则sin θ-cos θ的值为( )A.23 B .-23 C.13D .-13解析:选B ∵sin θ+cos θ=43,∴1+2sin θcos θ=169,则2sin θcos θ=79.又0<θ<π4,所以sin θ-cos θ<0,故sin θ-cos θ=-(sin θ-cos θ)2=-1-2sin θcos θ=-23,故选B.8.已知α为第三象限角,且sin α+cos α=2m,2sin αcos α=m 2,则m 的值为________.解析:由(sin α+cos α)2=1+2sin αcos α,得4m 2=1+m 2,即m 2=13.又α为第三象限角,所以sin α<0,cos α<0,则m <0,所以m =-33.答案:-339.已知sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫3π2+β,cos(π-α)=63cos(π+β),且0<α<π,0<β<π,求sin α和cos β的值.解:由已知,得sin α=2sin β,① 3cos α=2cos β,②由①2+②2,得sin 2α+3cos 2α=2, 即sin 2α+3(1-sin 2α)=2,所以sin 2α=12. 又0<α<π,则sin α=22. 将sin α=22代入①,得sin β=12.又0<β<π,故cos β=±32.三、简单的三角恒等变换两角和与差的正弦、余弦、正切公式 ①sin(α±β)=sin αcos β±cos αsin β; ②cos(α±β)=cos αcos β∓sin αsin β; ③tan(α±β)=tan α±tan β1∓tan αtan β.二倍角的正弦、余弦、正切公式 ①sin 2α=2sin αcos α;②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; ③tan 2α=2tan α1-tan 2α.10.已知tan α=2. (1)求tan ⎝ ⎛⎭⎪⎫α+π4的值;(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.[解] (1)tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=2+11-2×1=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×24+2-2=1.注:条件求值的解题策略(1)分析已知角和未知角之间的关系,正确地用已知角来表示未知角. (2)正确地运用有关公式将所求角的三角函数值用已知角的三角函数值来表示.(3)求解三角函数中给值求角的问题时,要根据已知求这个角的某种三角函数值,然后结合角的取值范围,求出角的大小.11.若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin 2θ=378,则sin θ=( )A.35 B.45 C.74D.34解析:选D 因为θ∈⎣⎢⎡⎦⎥⎤π4,π2,所以2θ∈⎣⎢⎡⎦⎥⎤π2,π,所以cos 2θ<0,所以cos 2θ=-1-sin 22θ=-18.又cos 2θ=1-2sin 2θ=-18,所以sin 2θ=916,所以sin θ=34.12.已知sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,-π2<α<0,则cos ⎝ ⎛⎭⎪⎫α+8π3等于( )A .-45 B .-35 C.35D.45解析:选D 因为sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,所以sin ⎝ ⎛⎭⎪⎫α+π3+sin ⎝ ⎛⎭⎪⎫α+π3-π3=-435,所以sin ⎝ ⎛⎭⎪⎫α+π3+sin ⎝ ⎛⎭⎪⎫α+π3cos π3-cos ⎝ ⎛⎭⎪⎫α+π3sin π3=-435,所以32sin ⎝ ⎛⎭⎪⎫α+π3-32cos ⎝ ⎛⎭⎪⎫α+π3=-435,所以-3⎣⎢⎡⎦⎥⎤12cos ⎝ ⎛⎭⎪⎫α+π3-32sin ⎝ ⎛⎭⎪⎫α+π3=-435,即-3cos ⎝ ⎛⎭⎪⎫α+π3+π3=-435,cos ⎝ ⎛⎭⎪⎫α+2π3=45,所以cos ⎝ ⎛⎭⎪⎫α+8π3=cos ⎝ ⎛⎭⎪⎫α+2π3=45,故选D.13.(2017·全国卷Ⅲ)已知sin α-cos α=43,则sin 2α=( )A .-79B .-29 C.29D.79解析:选A 将sin α-cos α=43的两边进行平方,得sin 2 α-2sin αcos α+cos 2α=169,即sin 2α=-79.14.已知向量a =(1,-3),b =⎝ ⎛⎭⎪⎫sin x ,2cos 2x 2-1,函数f (x )=a ·b .(1)若f (θ)=0,求2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4的值;(2)当x ∈[0,π]时,求函数f (x )的值域.解:(1)∵a =(1,-3),b =⎝ ⎛⎭⎪⎫sin x ,2cos 2x 2-1,∴f (x )=a ·b =sin x -3⎝ ⎛⎭⎪⎫2cos 2x 2-1=sin x -3cos x .∵f (θ)=0,即sin θ-3cos θ=0,∴tan θ=3,∴2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4=cos θ-sin θsin θ+cos θ=1-tan θtan θ+1=1-33+1=-2+ 3.(2)由(1)知f (x )=sin x -3cos x =2sin ⎝ ⎛⎭⎪⎫x -π3,∵x ∈[0,π],∴x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π3=-π3,即x =0时,f (x )min =-3; 当x -π3=π2,即x =5π6时,f (x )max =2,∴当x ∈[0,π]时,函数f (x )的值域为[-3,2].。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三讲 三角函数与三角恒等变换
班级________姓名________
1、下列角中,终边在第四象限的角是 ( ) (A)-
3
π
(B)
3
π (C)-32π
(D)32π
2、=︒150sin ( ) A.
21 B. 23 C. 2
1
- D. 23-
3、已知sin α=
13
12
,且α是第一象限的角,则cos(π-α)= ( ) (A)1312 (B)135 (C)1312- (D)13
5
-
4、角α的终边经过点P(3,4),则sin α= ( ) (A)
5
4 (B)
5
3 (C)
3
4 (D)
4
3 5、已知cos α=1,0≤α<2π,则α= ( ) (A)0
(B)
2
π (C)π (D)
2
3π 6、己知sin α=
5
3
,则tan α= ( ) (A) 43 (B) ±43 (C) 34 (D) ±3
4
7、下列说法正确的是 ( ) (A)终边相同的角一定相等 (B)锐角是第一象限角
(C)第二象限角为钝角 (D)小于︒90的角一定为锐角
8、已知sin α=53,90o <α<180o
,那么sin2α= ( ) A .2524- B .2524 C.257 D.257
-
9、已知5
3
2sin =α,则cos α= ( )
(A)-
25
7
(B)
25
7
(C)
53
(D)5
4 10、函数 y = cos x ,∈x [-6
π
,2π]的值域是 ( ) (A )[0,1] (B )[-1,1] (C )[0,
2
3
] (D )[-
2
1
,1] 11、函数)
6
2sin(π-=x y 取得最大值时的一个x 值是 ( ) (A)
2π (B)
3
π (C)
6
π (D)0
12、f ( x ) = sin
2
x
是 ( )
(A )最小正周期为π的奇函数 (B )最小正周期为4π的奇函数 (C )最小正周期为π的偶函数 (D )最小正周期为4π的偶函数 13、将函数y =cos(
21x +6π
)的图象经过怎样的平移,可以得到函数y =cos(21x)的图( ) (A) 向左平移6π个单位长度 (B) 向右平移6
π
个单位长度
(C) 向右平移3
π
个单位长度 (D) 向左平移12π个单位长度
14、函数y=cos 2
x -sin 2
x 的最小正周期是 ( ) A. 4π B. 2π C. π D.
2
π
15、已知tan θ=
3
1
,则tan2θ= 。

16、已知21cos -
=θ,θ为第三象限角,则)3
sin(θπ
+=________ 17、=︒︒15cos 15sin ___________
18、右图表示周期函数y =f (x )的变化规律,由图象可以观察
出f (x )的最小正周期是_______.
19、如图,单摆的摆球离开平衡位置的位移S (厘米)和 时间 t (秒)的函数关系是)3
2(sin 21π
+=
t S ,则摆球往复摆动一次所 需要的时间是 秒. 20、已知tan α21
,求α
-αα+αcos 3sin cos sin 2=_______________
y
x

O
(第18题)
(第19题)。

相关文档
最新文档