小数的速算与巧算基本方法

合集下载

(完整word版)小数的速算与巧算

(完整word版)小数的速算与巧算

五年级奥数教案第一讲小数的速算与巧算第一课时教学内容:运算定律的简单运用教学目的:通过教学使学生进一步掌握乘法的交换律、结合律、乘法对加法的分配律,等运算定律.并利用这些运算定律进行巧算与速算。

教学重点:进一步理解并能运用运算定律进行计算.教学难点:在理解的基础上进行灵活运用。

教学过程:一复习运算定律1、乘法的交换律 a×b=b×a2、乘法的结合律(a×b)×c=a×(b×c)3、乘法的分配律 (a+b)×c=a×c+b×c乘法的分配律,不公适用两个加数的和,也适用于两个数的差,而且适用于多个数的和。

也可以逆向使用。

如果把乘号改成除号,不能逆向使用。

二、一些特殊的计算5×2=10 25×4=100 125×8=10000。

5×2=1 0.25×4=1 0。

125×8=1三、运用定律例1 1.25×(1.7×8)因为1.25与8的乘积为10。

=1。

25×8×1.7 先去括号,利用乘法的交换律和结合律,=10×1.7 求出1。

25与8的积.再乘1。

7.=17例2 0。

25×32×12。

5 看到25想到4,看到125想到8,=0。

25×4×8×12.5 把32看成为4与8的乘积.=0.25×4×(8×12。

5)分别求出0。

25与4的积,12。

5与8的积.=1×100100例3 12。

5×(10+0。

8)因为12。

5与0.8的乘积为整十数,=12.5×10+12。

5×0。

8 直接运用乘法的分配律。

=125+10=135例4 (20-0。

4)×2。

5 直接运用乘法的分配律=20×2。

五年级小数的速算与巧算2

五年级小数的速算与巧算2

小数的巧算2小数“巧”算的基本途径还是灵活应用小数四则运算的法则、运算定律,使题目中的数尽可能转化为整数。

在某种意义上讲,“化整”是小数运算技巧的灵魂。

当然,根据小数的特点,在乘除运算中灵活运用小数点的移位:两数相乘,两数中的小数点反向移动相同的位数,其积不变(如0.8×1.25=8×0.125);两数相除,两数中的小数点同向移动相同的位数,其商不变(如0.16÷0.04=16÷4),也是常见的简化运算方法。

另外,某些特殊小数相乘化整,应熟记于心,如上面的8×0.125=1;0.5×2=0.25×4=1;0.75×4=3;0.625×16=10等等。

同学们在平时做题时留心积累这些“窍门”会大大提高自己的运算能力。

一、例题讲解小数点的移位法则例1:计算2005×18-200.5×80+20050×0.1例2:计算75×4.7+15.9×25练习(1)计算1.25×3.14+125×0.0257+1250×0.00229 (2)计算22.8×98+45.6换成相同的乘数例3:999.90.280.666680⨯+⨯ 例4:计算999.9×0.28-0.6666×370练习1、999.90.27 6.66630.5⨯-⨯2、5.211111666660.8⨯+⨯3、3.631.443.9 6.4⨯+⨯找相同的乘数例5:计算7.816×1.45+3.14×2.184+1.69×7.816 练习:3.73 2.638.37 3.73 3.73⨯+⨯-添括号或去括号凑整数例6:320÷1.25÷8 例7: 18÷(31.25×0.9)+99.36练习:1、220÷0.25÷42、520÷12.5÷83、8÷(21.25÷1.25)4、40×(31.25×0.75)整体表示小数的和或者差1、(20.450.56)(0.450.560.84)(20.450.560.84)(0.450.56) ++⨯++-+++⨯+2、(5 2.12 4.53)(2.12 4.53 6.8)(2.12 4.53)(5 2.12 4.53 6.8) ++⨯++-++++凑整和分解数1、1.1 2.2 3.3 4.4 5.5 6.67.78.89.911.1113.1315.1517.1719.19+++++++++++++2、2012201.220.12 2.012+++二、课堂练习1、计算37.5-1.53-0.25-1.222、计算2.5×1.25×3.23、计算3.74×2.85+8.15×3.74-3.744、计算2.4×7.6+7.6×6.5+7.6×1.15、计算8÷(31.25×0.4)+99.366、计算20.05×39+200.5×4.1+40×10.0257、计算:15.48×35-154.8×1.9+15.48×84 8、计算:0.9+9.9+99.9+999.9+9999.9+99999.9+999999.9 9、计算2006+200.6+20.06+2.006 10、计算:(4.8×7.5×8.1)÷(2.4×2.5×2.7)11、计算1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.1912、计算(2+3.15+5.87)×(3.15+5.87+7.32)-(2+3.15+5.87+7.32)×(3.15+5.87)13、计算(1+0.12+0.23)×(0.12+0.23+0.34)-(1+0.12+0.23+0.34)×(0.12+0.23)作业:1.计算:100-9.9-8.8-7.7-6.6-5.5-4.4-3.3-2.2-1.1 2.计算 1.25×17.6+36÷0.8+2.64×12.5。

小数的速算与巧算基本方法

小数的速算与巧算基本方法

小数的速算与巧算基本方法【知识概述】小数的简便计算出了可以灵活运用整数四则运算中我们已经学过的许多速算与巧算的方法外,还可以运用小数本身的特点,如小数的意义、小数的数位顺序、小数的性质、小数点位置移动引起小数大小的变化等。

很多计算题,如果我们根据运算法则按部就班地计算,将会觉得很繁,也很耗费时间,有的甚至算不出结果,如果我们能够发现其中数据的特点、正确运用数的组成、运算规律,把复杂的计算转化为简便的计算将会节约很多时间。

学会巧算的一些基本方法,将有助于我们提高计算能力、发展思维能力、增强注意力与记忆力。

1、凑整法简算:例1 计算:0.125×0.25×0.5×64练习:(1)1.31×12.5×8×2 (2)1.25×32×0.25(3)1.25×882、拆拼法简算:例2 计算:(1)1.25×1.08 (2)7.5×9.9 练习:(1)2.5×10.4 (2)3.8×0.99 (3)1991+199.1+19.91+1.9914、转化法简算:例4 5.7×9.9+0.1×5.7练习:(1)4.6×99+4.6 (2)7.5×101-7.55、运用定律不用计算,根据已知条件直接写出下面题的结果。

已知0.26×4.5=1.17计算:2.6×4.5=()0.26×45=()0.026×0.45=()2.6×0.45=()260×45=()例51240×3.4+1.24×2300+12.4×430练习:4.65×32-2.5×46.5-70×0.4655.7×10.1-0.575、设数法简算:例6(2+3.15+5.87) ×(3.15+5.87+7.32)-(2+3.15+5.87+7.32) ×(3.15+5.87)练习:(1+0.23+0.34)×(0.23+0.34+0.65)-(1+0.23+0.34+0.65)×(0.23+0.34)例6计算:1.999×2003-1.998×2004练习:19.94×2010-19.93×2011训练A用简便方法计算下面各题(1)1.9×2×0.2×2.5 (2)0.8×0.04×12.5×25(3)16.08×0.125 (4)99×73.2+73.2(5)0.25×4.73×0.125×320 (6)99.6+99.8+99.9+100+100.1 (7)100×7.9+184×2.1+84×2.9训练B(1)4.7×2.8+3.6×9.4 (2)6.3×27+1.9×21(3)3.75×4.8+62.5×0.48 (4)1250×0.037+0.125×160+12.5×2.7(5)3.6×232-36×13.2-360 (6)3.42×76.3+7.63×57.6+9.18×23.7训练C(1)1.23×2.45-1.22×2.46(2)(0.1+0.12+0.123+0.1234)×(0.12+0.123+0.1234+0.12345)-(0.1+0.12+0.123+0.1234+0.12345)×(0.12+0.123+0.1234)Welcome To Download !!!欢迎您的下载,资料仅供参考!。

小数巧算

小数巧算

小数的巧算姓名小数的计算技巧指小数运算的速算与巧算。

它除了可以灵活运用整数四则计算中我们已经学过的许多速算与巧算的方法外,还可以利用小数本身的特点。

计算时要注意审题,善于观察题目中数字的特征,灵活地运用小数的性质及运算性质、运算技巧,确定合理简便的算法。

一、常用的运算定律。

1、加法交换律:2、加法结合律:3、乘法交换律:4、乘法结合律:5、乘法分配律:二、常用的运算性质。

1、积不变性质:若一个因数扩大(或缩小)若干倍,另一个因数缩小(或扩大)相同的倍数,则积不变。

2、商不变性质:被除数和除数同时乘(或除以)一个相同的数(0除外),商不变。

三、速算及巧算的一般方法。

可以运用数的分解、合并,改变原来的运算顺序而达到简算的目的。

有时也运用四则运算的定律、性质或利用和、差、积、商的变化规律,使计算简便。

例1 计算:5.32+2.06+19.4+1.84+7.68例2 计算:1-0.1-0.01-0.001-……-0.000000001 【0.888888889】例3 计算:7.63-4.98+5.26+1.89 【9.8 】例4 计算:(1)80×25×2×1.25×0.5×0.4 (2)64×12.5×0.25×0.05 【1000,10】例5 计算:0.56×9.8 【5.488】例6 计算:0.125÷(3.6÷80)×0.18 【0.5】想一想,下面各题怎样计算比较简便?(1)4.92÷0.25÷0.4 (2)47.85÷6.38×0.638(3)36.363÷(1.2121×4)(4)(0.6×1.38)÷(13.8×4.8)例7 计算:312.5×12.3-312.5×6.9+312.5 【2000】例8 计算:2000×199.9-1999×199.8 【399.8】例9 计算:12.9÷0.72+43.5÷3.6 30例10 计算:45.3×3.2+578×0.68+12×9.25 649例11 计算:(1)2.5+3.2+7.5+2.8=16(2)18.6-9.3-1.6-2.7 =5例12 计算:6.25×0.16+264×0.0625+5.2×6.25+0.625×20 =62.5例13 计算:0.125×0.25×0.5×64=1例14 计算:(1)0.525÷13.125÷4×85.2(2)(4.8×7.5×8.1)÷(2.4×2.5×2.7)=18一般应用题(一)知识要点:一般复合应用题往往是有两组或两组以上的数量关系交织在一起,有的已知条件是间接的,数量关系比较复杂,叙述的方式和顺序也比较多样。

四年级小数加减乘巧算

四年级小数加减乘巧算

小数的加减法和乘法的巧算小数混合运算法则:运算顺序与整数相同,同级运算,从左往右依次运算,两级运算,先算乘除,后算加减,有括号的先算括号里面的,再算外面的。

运算律:加法结合律、加法交换律、乘法交换律、乘法分配律、乘法结合律一、加减法中的速算与巧算1. 速算巧算的核心思想和本质:凑整2. 常用的思想方法:(1)分组凑整法。

把几个互为“补数”的数先加起来,再把他们的和相加,或者从被减数中减去,也可以先减去那些与被减数有相同尾数的减数。

((补数”就是两个数相加,如果恰好凑成整数、整十、整百、整千……,就把其中的一个数叫做另一个数的“补数”。

)注意:先符号,后计算。

(2)加补凑整法。

有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整。

(3)“基准数”法。

基准当几个数比较接近于某一整数的数相加时,选这个整数为“基准数”(要注意把多加的数减去,把少加的数加上)二、乘法凑整与运算性质思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。

例如:425100⨯=,81251000⨯=,520100⨯=例1计算0.0625+0.325+0.1875+0.25+0.675+0.8125+0.75+0.8125+0.125=变式1. 2006+200.6+20.06+2.006+994+99.4+9.94+0.994=例2计算3.17+7.48-2.38+0.53+2.52-1.62=变式1、56.43+12.96+13.57-4.33-8.96-5.67=例3计算202.93+199.97+198+212.5+188.6=变式1、91.5+88.8+90.2+270.4+89.6+86.7+91.8=2、13.997-14.996+16.053-15.804+15.95-14.2= 例4 1.2+9.7+99.7+…+9999.7=变式1、9.96+29.98+169.9+3999.5=例5 124.68+324.68+524.68+724.68+24.68=变式1、3125.24+425.24+625.24+925.24+525.24=例6计算=2.1257.532⨯⨯变式1、0.625×2.5×800=例6计算20.0931.5 2.009317200.9 3.68⨯+⨯+⨯==练习1、1999 3.14199.931.419.99314⨯+⨯+⨯=作业1、0.9+0.99+0.999+0.9999+0.99999=2、8.92+13.9+44.34+0.66+10.08+400.1=3、24.32-9.812+50.48-15.188-0.32+4.52=4、50.98+49.21+48.02+54.09+52.7=5、38.75+28.75+58.75+68.75+138.75=6、0.1250.250.564⨯⨯⨯=7、6.258.2716 3.750.8278⨯⨯+⨯⨯=。

常用的巧算和速算方法

常用的巧算和速算方法

巧算和速算方法,包括:九九乘法口诀:通过记忆乘法口诀表格,可以快速算出两个数的积。

平方差公式:对于两个整数 $a$ 和 $b$,可以快速计算 $(a+b)^2$ 和$(a-b)^2$,分别为 $a^2+2ab+b^2$ 和 $a^2-2ab+b^2$。

除法倒数法:通过求出某个数的倒数,然后用这个倒数乘以需要除的数,可以快速计算除法结果。

11乘法口诀:对于两位数相乘,可以通过将这两个数字的和放在中间,例如$24 \times 11$ 可以计算为 $2$ 和 $4+2$ 和 $4$,得到 $264$。

规律判断法:在一些数列中,如果存在规律,可以通过观察规律推算出下一个数字。

四舍五入法:在进行精确计算不必要的时候,可以使用四舍五入法,保留一定的有效数字即可。

近似取整法:在进行大致计算的时候,可以使用近似取整法,将一个数字取整到最接近的整数,例如 $23.6$ 取整到 $24$。

连加连乘法:对于一些需要进行连加或连乘的数列,可以通过提取公因子,将计算过程简化。

小数移位法:在对小数进行计算时,可以通过移位小数点来将小数转换为整数,然后进行整数运算,最后再将小数点移回原位。

分式化简法:在进行分式运算时,可以通过化简分数,将分式化为最简形式,简化运算。

凑整法:将一个数凑整为最近的整数或10的倍数,然后再进行计算,最后再进行减法运算补回凑整时的误差。

差积因式法:在进行乘法或除法时,将数字拆分为其因子的乘积,然后再进行计算。

近似数法:在进行加减运算时,将数近似为离它最近的10、100、1000等倍数,然后再进行计算。

最后,再将结果还原为原数的近似值。

线性加减法:对于两个数 $a$ 和 $b$,如果它们的差为 $k$,那么 $a\pmb$ 就等于 $a\pm k\pm (b-k)$,其中 $k$ 是某个整数,使得 $b-k$ 或$a-k$ 是一个整数。

平方法:在进行乘法时,如果两个数都离平方数的差不远,那么可以利用公式$(a+b)^2=a^2+2ab+b^2$ 来简化计算。

小学五年奥数-小数的运算技巧

小学五年奥数-小数的运算技巧

⼩学五年奥数-⼩数的运算技巧⼩数的运算技巧【知能⼤展台】⼩数的计算技巧指⼩数的速算与巧算,它除了可以灵活运⽤整数四则运算中的定律、性质外,还可以根据⼩数本⾝的特点,利⽤和、差、积、商的变化规律,使计算简便。

1.⼀个数乘以(或除以)0.5、0.25、0.125,只需要将这个数除以(或乘以)2、4、8。

2.积不变的规律:⼀个因数扩⼤若⼲倍,另⼀个因数同时缩⼩相同的倍数,积不变。

3.在没有括号的⼩数乘除法混合运算中,把乘数、除数连同它前⾯的运算符号调换位置,结果不变。

4.在有括号的⼩数乘除法混合运算中,如果括号前⾯是乘号,去掉括号结果不变;如果括号前⾯是除号,去掉括号后,应把原括号内的称号变为除号,除号变为乘号,结果才不变。

【试⾦⽯】例1:计算:9.996+29.98+169.9+3999.5【分析】这⼏个数每个数只要增加⼀点,就成为某个整⼗、整百或整千数,把这⼏个数“凑整”以后,就容易计算了。

当然要记住,“凑整”时增加了多少要减回去。

【解答】9.996+29.98+169.9+3999.5=10+30+170+4000-(0.004+0.02+0.1+0.5)=4210-0.624=4209.376【智⼒加油站】【针对性训练】计算 3.997+19.96+1.9998+199.7【试⾦⽯】例2:计算:1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01【分析】算式中的数是从1开始,依次减少0.01,直到最后⼀个数是0.01,因此,式中共有100个数⽽算式中的运算都是两个数相加接着减两个数,再加两个数,再减两个数……这样的顺序排列的。

由于数的排列、运算的排列都很有规律,按照规律可以考虑每4个数为⼀组添上括号,每组数的运算结果是否也有⼀定的规律?可以看到把每组数中第1个数减第3个数,第2个数减第4个数,各得0.02,合起来是0.04,那么,每组数(即每个括号)运算的结果都是0.04,整个算式100个数正好分成25组,它的结果就是25个0.04的和。

如何快速计算小学数学中的小数运算

如何快速计算小学数学中的小数运算

如何快速计算小学数学中的小数运算在小学数学中,小数运算是一个非常基础但又重要的部分,对于孩子来说掌握好小数运算技巧不仅可以提高他们的计算速度,也有助于他们理解数学的基本概念。

下面我将介绍一些快速计算小学数学中的小数运算的方法。

一、快速加减法运算技巧1. 对齐小数点:在进行小数的加减法运算时,首先要将小数点对齐,然后在整数部分、小数部分进行运算。

2. 补齐位数:在小数运算中,当两个数的小数部分位数不一致时,我们需要在较短的小数后面补零使其位数相同,这样方便我们进行计算。

3. 不进位加减法:当两个数的整数部分完全相同,而小数部分不同时,我们可以快速计算出它们的和或差。

例如:1.23 + 0.67 = 1.9(因为小数部分3和7之和为10,可以直接将进位的1加到整数部分上)3.42 - 2.78 = 0.64(因为小数部分2减去8不够,从整数部分借1个单位)4. 估算法:当我们进行较复杂的小数加减法运算时,可以先对数进行估算,然后再精确计算。

例如:结果的整数部分与小数部分进行相加)二、快速乘法运算技巧1. 移动小数点:当两个小数相乘时,可以通过移动小数点的位置来简化计算。

例如:2.5 × 6.4 = 25 × 0.64 = 16(先将小数点右移一位,得到整数25,再将小数点右移两位,得到小数0.64,最后按整数乘法计算,得到结果16)2. 整数乘法:当两个小数都接近整数时,可以先将小数转化为整数进行计算,再调整小数点位置得到最终结果。

例如:4.2 × 3.8 = 42 × 38 ÷ 100 = 1596 ÷ 100 = 15.96(先将两个小数都放大10倍,得到整数42和38,再将结果缩小100倍得到15.96)三、快速除法运算技巧1. 转化为整数:当进行小数除法运算时,可以将小数转化为整数进行计算,再恢复小数点位置。

例如:9.6 ÷ 1.2 = 96 ÷ 12 = 8(先将两个小数都放大10倍,得到整数96和12,再进行整数除法运算,得到结果8)2. 估算法:当进行较大的小数除法运算时,可以先进行估算,然后再精确计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小数的速算与巧算基本方法
【知识概述】
小数的简便计算出了可以灵活运用整数四则运算中我们已经学过的许多速算与巧算的方法外,还可以运用小数本身的特点,如小数的意义、小数的数位顺序、小数的性质、小数点位置移动引起小数大小的变化等。

很多计算题,如果我们根据运算法则按部就班地计算,将会觉得很繁,也很耗费时间,有的甚至算不出结果,如果我们能够发现其中数据的特点、正确运用数的组成、运算规律,把复杂的计算转化为简便的计算将会节约很多时间。

学会巧算的一些基本方法,将有助于我们提高计算能力、发展思维能力、增强注意力与记忆力。

1、凑整法简算:
例1 计算:0.125×0.25×0.5×64
练习:(1)1.31×12.5×8×2 (2)1.25×32×0.25 (3)1.25×88
2、拆拼法简算:
例2 计算:(1)1.25×1.08 (2)7.5×9.9
练习:(1)2.5×10.4 (2)3.8×0.99
(3)1991+199.1+19.91+1.991
4、转化法简算:
例4 5.7×9.9+0.1×5.7
练习:(1)4.6×99+4.6 (2)7.5×101-7.5
5、运用定律
不用计算,根据已知条件直接写出下面题的结果。

已知0.26×4.5=1.17
计算:2.6×4.5=() 0.26×45=() 0.026×0.45=() 2.6×0.45=() 260×45=()
例5 1240×3.4+1.24×2300+12.4×430
练习:4.65×32-2.5×46.5-70×0.465
5.7×10.1-0.57
5、设数法简算:
例6
(2+3.15+5.87) ×(3.15+5.87+7.32)-(2+3.15+5.87+7.32) ×(3.15+5.87)
练习:(1+0.23+0.34)×(0.23+0.34+0.65)-(1+0.23+0.34+0.65)×(0.23+0.34)
例6 计算:1.999×2003-1.998×2004
练习:19.94×2010-19.93×2011
训练A
用简便方法计算下面各题
(1)1.9×2×0.2×2.5 (2)0.8×0.04×12.5×25
(3)16.08×0.125 (4)99×73.2+73.2
(5)0.25×4.73×0.125×320 (6)99.6+99.8+99.9+100+100.1 (7)100×7.9+184×2.1+84×2.9
训练B
(1)4.7×2.8+3.6×9.4 (2)6.3×27+1.9×21
(3)3.75×4.8+62.5×0.48 (4)1250×0.037+0.125×160+12.5×2.7
(5)3.6×232-36×13.2-360 (6)3.42×76.3+7.63×57.6+9.18×23.7
训练C
(1)1.23×2.45-1.22×2.46
(2)(0.1+0.12+0.123+0.1234)×(0.12+0.123+0.1234+0.12345)-(0.1+0.12+0.123+0.1234+0.12345)×(0.12+0.123+0.1234)。

相关文档
最新文档