图形的平移练习题教学文案

合集下载

平移解决问题(教案)2023-2024学年数学 四年级下册人教版

平移解决问题(教案)2023-2024学年数学 四年级下册人教版

教案:平移解决问题课程目标:1. 让学生理解平移的概念,能够识别平移现象。

2. 培养学生运用平移方法解决问题的能力。

3. 培养学生的空间想象力和逻辑思维能力。

教学内容:1. 平移的概念2. 平移的性质3. 平移在实际问题中的应用教学重点:1. 平移的概念和性质2. 平移在实际问题中的应用教学难点:1. 平移的性质2. 平移在实际问题中的应用教学准备:1. 课件或黑板2. 平移教具或模型教学过程:一、导入1. 引入平移的概念,让学生观察一些平移现象,如电梯的运动、滑滑梯等。

2. 引导学生总结平移的特点,如方向、距离等。

二、新课导入1. 讲解平移的概念,强调平移不改变图形的形状和大小。

2. 讲解平移的性质,如平移前后图形对应点之间的关系、平移的距离和方向等。

3. 通过示例演示平移的过程,让学生更好地理解平移。

三、巩固练习1. 让学生完成一些平移练习题,巩固对平移的理解和应用。

2. 引导学生运用平移方法解决实际问题,如平移图形拼图、平移小动物等。

四、拓展提高1. 引导学生思考平移在实际生活中的应用,如建筑设计、机械运动等。

2. 让学生尝试运用平移方法解决一些复杂问题,如平移多个图形、平移立体图形等。

五、总结1. 让学生总结本节课所学的内容,加深对平移的理解和应用。

2. 强调平移在实际问题中的重要性和应用价值。

教学反思:本节课通过引入平移的概念和性质,让学生掌握了平移的基本知识。

通过示例演示和练习题,让学生更好地理解了平移的过程和应用。

在拓展提高环节,让学生思考平移在实际生活中的应用,培养了学生的空间想象力和逻辑思维能力。

整体来说,本节课达到了预期的教学目标,学生对平移有了更深入的理解和应用能力。

重点关注的细节:平移的性质及其在实际问题中的应用平移的性质是本节课的重点,因为它不仅帮助学生深入理解平移的概念,而且为他们在实际问题中应用平移方法奠定了基础。

以下是关于平移性质及其应用的详细补充和说明。

平移的性质:1. 平移前后图形的形状和大小不变:这意味着无论图形如何移动,它的内部角度、边长和面积都保持不变。

第01讲 图形的平移(知识解读+达标检测)(原卷版)

第01讲 图形的平移(知识解读+达标检测)(原卷版)

第01讲图形的平移【题型1生活中的平移现象】【题型2图形的平移】【题型3利用平移的性质求面积】【题型4利用平移的性质求长度】【题型5利用平移的性质求角度】【题型6利用平移解决实际问题】【题型7平移作图】考点:平移1.定义:在平面内,将一个图形整体沿某一方向由一个位置平移到另一个位置,图形的这种移动,叫做平移变换,简称平移。

2.平移三要素:图形的原来位置、平移的方向、平移的距离。

3.平移的性质(1)对应点的连线平行(或共线)且相等(2)对应线段平行(或共线)且相等;(3)对应角相等,对应角两边分别平行,且方向一致。

4.平移作图的步骤和方法:平行线法、对应点连线法、全等图形法(1)找关键点;(2)过每个关键点作平移方向的平行线,截取与之相等的距离,标出对应点(3)连接对应点。

将原图形的各个特征点按规定的方向平移,得到相应的对称点,再将各对称点进行相应连接,即得到平移后的图形【题型1生活中的平移现象】【典例1】(2023秋•道里区校级期中)在下列实例中,属于平移过程的有()①时针运行的过程;②电梯上升的过程;③地球自转的过程;④小汽车在平直的公路行驶.A.1个B.2个C.3个D.4个【变式1-1】(2023春•林州市期末)下列运动属于平移的是()A.荡秋千的小朋友B.转动的电风扇叶片C.正在上升的电梯D.行驶的自行车后轮【变式1-2】(2023春•富川县期末)一个图形,经过平移后,改变的是()A.颜色B.形状C.大小D.位置【变式1-3】(2023春•呼伦贝尔期末)在下列现象中,属于平移的是()A.小亮荡秋千运动B.升降电梯由一楼升到八楼C.时针的运行过程D.卫星绕地球运动【题型2图形的平移】【典例2】(2023春•罗山县期末)如图所示的图案分别是奔驰、奥迪、大众、三菱汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()A.B.C.D.【变式2-1】(2023春•启东市期末)“水是生命之源,滋润着世间万物”国家节水标志由水滴,手掌和地球变形而成.寓意:像对待掌上明珠一样,珍惜每一滴水!以下通过平移节水标志得到的图形是()A.B.C.D.【变式2-2】(2023春•扎赉特旗期末)如图,将图中的冰墩墩通过平移可得到图为()A.B.C.D.【变式2-3】(2023春•琼海期末)如图所示的各组图形中,表示平移关系的是()A.B.C.D.【题型3利用平移的性质求面积】【典例3】(2023春•惠城区校级期中)如图,长为50m,宽为30m的长方形地块上,有纵横交错的几条小路,宽均为1m,其它部分均种植草坪,则种植草坪的面积为()A.1344m2B.1421m2C.1431m2D.1341m2【变式3-1】(2023春•凉山州期末)如图在一块长为12m,宽为6m的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2m),则空白部分表示的草地面积是()A.70m2B.60m2C.48m2D.18m2【变式3-2】(2023春•南陵县期末)如图,小红家楼梯长3m,高2m,宽1m,若想铺上地毯,则所需地毯的面积()A.2m2B.3m2C.5m2D.6m2【变式3-3】(2023秋•滨州期中)如图,将Rt△ABC沿着点B到点C的方向平移到△DEF 的位置,平移距离为7,AB=13,DO=6,则图中阴影部分的面积为()A.70B.48C.84D.96【题型4利用平移的性质求长度】【典例4】(2022秋•芝罘区期末)如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cm B.22cm C.20cm D.24cm【变式4-1】(2022秋•桓台县期末)如图,△ABC沿射线BC方向平移到△DEF(点E在线段BC上).若BF=10cm,EC=4cm,则平移距离为()A.3cm B.4cm C.6cm D.10cm【变式4-2】(2023春•南山区期末)如图,将直角△ABC沿边AC的方向平移到△DEF的位置,连结BE,若CD=6,AF=14,则BE的长为()A.4B.6C.8D.12【变式4-3】(2023春•唐县期末)如图,直角三角形ABC的周长为22,在其内部有5个小直角三角形,这5个小直角三角形都有一条边与BC平行,则这5个小直角三角形的周长为()A.11B.22C.33D.44【题型5利用平移的性质求角度】【典例5】(2023春•霸州市期末)如图,点B,C在直线l上,直线l外有一点A,连接AB,AC,∠BAC=45°,∠ACB是钝角,将三角形ABC沿着直线l向右平移得到三角形A1B1C1,连接AB1,在平移过程中,当∠AB1A1=2∠CAB1时,∠CAB1的度数是()A.15°B.30°C.15°或45°D.30°或45°【变式5-1】(2023春•丰满区期末)将△ABC沿AB方向平移到△EFD的位置,若∠1=31°,∠2=57°,则∠D的度数为()A.91°B.90°C.92°D.105°【变式5-2】(2023春•凤翔县期中)如图,∠1=70°,∠2=160°直线a平移后得到直线b,则∠3=()A.20°B.30°C.40°D.50°【变式5-3】(2023春•遂川县期末)如图(1),将一副直角三角板两斜边摆放在同一直线上,且点A,D重合,固定含45°角的三角板ABC,将含角的三角板DEF从图(1)的位置,沿射线BA平移至图(2)的位置,则平移过程中,根据两个三角板的摆放位置,下列钝角:100°,105°,120°,135°,150°,165°,170°,沿三角板的边缘能直接画出的有()A.1个B.2个C.3个D.4个【题型6利用平移解决实际问题】【典例6】(2023春•南宁月考)如图,粗线A→C→B和细线A→D→E→F→G→H→B是公交车从少年宫A到体育馆B的两条行驶路线.(1)比较两条线路的长短:粗线①细线②;(填“>”、“<”或“=”)(2)如果这段路程长4.7千米,小丽坐出租车从体育馆B到少年宫A,假设出租车的收费标准为:起步价为7元,3千米以后每千米1.7元,小丽身上有10元钱,够不够坐出租车从体育馆到少年宫呢?说明理由.【变式6-1】(2022秋•路北区期末)如图,有一块长为20米,宽为10米的长方形土地,现在将三面留出宽都是x米的小路,中间余下的长方形部分做草坪(阴影部分).(1)用含字母x的式子表示:草坪的长a=米,宽b=米;(2)请求出草坪的周长;(3)当小路的宽为1米时,草坪的周长是多少?【变式6-2】(2022春•婺城区校级期中)如图是某一长方形闲置空地,宽为3a米,长为b 米,为了美化环境,准备在这个长方形空地的四个顶点处分别修建一个半径为a米的扇形花圃(阴影部分),然后在花圃内种花,中间修一条长b米,宽a米的甬路,剩余部分种草.(提示:π取3)(1)甬路的面积为平方米;种花的面积为平方米.(2)当a=2,b=10时,请计算该长方形场地上种草的面积.(3)在(2)的条件下,种花的费用为每平方米30元,种草的费用为每平方米20元,甬路的费用为每平方米10元.那么美化这块空地共需要资金多少元?【变式6-3】(2023春•莱州市期末)如图,某市修建了一个大正方形休闲场所,在大正方形内规划了一个正方形活动区,连接绿地到大正方形四边的笔直小路如图所示.已知大正方形休闲场所的边长为6a米,四条小路的长与宽都为b米和米.阴影区域铺设草坪,草坪的造价为每平米30元.(1)用含a、b的代数式表示草坪(阴影)面积并化简.(2)若a=10,b=5,计算草坪的造价.【题型7平移作图】【典例7】(2022秋•蚌山区期末)已知△ABC在平面直角坐标系中的位置如图所示.将△ABC向右平移6个单位长度,再向下平移6个单位长度得到△A1B1C1.(图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的△A1B1C1;(2)直接写出△A1B1C1各顶点的坐标.A1;B1;C1;(3)求出△ABC的面积.【变式7-1】(2023秋•崇左期中)如图,在平面直角坐标系中,点A(﹣1,4),B(﹣2,1),C(﹣4,1),将△ABC向右平移3个单位再向下平移2个单位得到△A1B1C1,点A、B、C的对应点分别为点A1、B1、C1.(1)在图上画出△A1B1C1,并写出点A1,B1,C1的坐标;(2)设点P(m,n)为△ABC内一点,经过平移后,请写出点P在△A1B1C1内的对应点P1的坐标.【变式7-2】(2023秋•铜陵期中)如图,在正方形网格中有一个格点三角形ABC(△ABC 的各顶点都在格点上).(1)画出△ABC中AB边上的高CD;(2)将△ABC先向上平移3格,再向右平移4格,画出平移后的△A′B′C′;(3)在图中画出一个锐角格点三角形ABP,使得其面积等于△ABC的面积,并回答满足条件的点P有多少个.【变式7-3】(2023秋•蚌山区期中)如图,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为A(﹣2,﹣2),B(3,1),C(0,2),将△ABC先向左平移2个单位,再向上平移3个单位得到△A'B'C'.(1)在图中画出平移后的△A'B'C';(2)求△ABC的面积.一.选择题(共10小题)1.(2023春•高邮市期中)下列图形中,不能通过其中一个四边形平移得到的是()A.B.C.D.2.(2023秋•长汀县期中)小芳和小明在手工课上各自制作楼梯模型,他们用的材料如图,则()A.一样多B.小明多C.小芳多D.不能确定3.(2022春•当涂县期末)下列生活现象中,属于平移现象的是()A.急刹车时汽车在地面滑行B.足球在草地上跳动C.投影片的文字经投影转换到屏幕上D.钟摆的摆动4.(2023秋•金安区校级月考)将点P(﹣3,2)先向右平移2个单位,再向下平移4个单位,得到的点的坐标为()A.(﹣1,﹣4)B.(﹣1,﹣2)C.(﹣5,﹣4)D.(﹣5,﹣2)5.(2022•陵水县二模)如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.48B.96C.84D.42 6.(2022•定海区校级模拟)如图,△ABC沿BC所在直线向右平移得到△DEF,已知EC=2,BF=8,则平移的距离为()A.3B.4C.5D.6 7.(2022春•甘井子区校级期末)线段CD是由线段AB平移得到的,点A(3,﹣1)的对应点C的坐标是(﹣2,5),则点B(0,4)的对应点D的坐标是()A.(5,﹣7)B.(4,3)C.(﹣5,10)D.(﹣3,7)8.(2022春•古城区期末)如图,图1与图2中的三角形相比,图2中的三角形发生的变化是()A.向左平移3个单位长度B.向左平移1个单位长度C.向上平移3个单位长度D.向下平移1个单位长度9.(2022春•淮南期末)线段CD是由线段AB平移得到的,点A(﹣2,3)的对应点为C (2,﹣1),则点B(1,1)的对应点D的坐标为()A.(﹣1,﹣3)B.(5,3)C.(5,﹣3)D.(0,3)10.(2022春•曲靖期末)如图是一块长方形ABCD的场地,长AB=102m,宽AD=51m,从A、B两处入口的中路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪面积为()A.5050m2B.5000m2C.4900m2D.4998m2二.填空题(共6小题)11.(2021•鞍山)如图,△ABC沿BC所在直线向右平移得到△DEF,已知EC=2,BF=8,则平移的距离为.12.(2022春•兴庆区期末)将点A(﹣2,﹣3)先向右平移3个单位长度再向上平移2个单位长度得到点B,则点B所在象限是第象限.13.(2020春•德州期末)某景点拟在如图的矩形荷塘上架设小桥,若荷塘中小桥的总长为100米,则荷塘周长为.14.(2022春•清河县期末)如图,把边长为3cm的正方形ABCD先向右平移1cm,再向上平移1cm,得到正方形EFGH,则阴影部分的面积为.15.(2022春•连平县校级期末)如图,长方形ABCD的边AB=6,BC=8,则图中五个小长方形的周长之和为.16.(2023春•康巴什期末)如图,将三角形ABE向右平移1cm得到三角形DCF,如果三角形ABE的周长是10cm,那么四边形ABFD的周长是.三.解答题(共3小题)17.(2022春•饶平县校级月考)宾馆重新装修后,准备在大厅的主楼梯上铺设一种红地毯,已知这种地毯每平方米售价40元,主楼梯道宽2米,其侧面如图所示,求买地毯至少需要多少元?18.(2022秋•大祥区期末)如图,已知A(﹣4,﹣1),B(﹣5,﹣4),C(﹣1,﹣3),△ABC经过平移得到的△A′B′C′,△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4).(1)请在图中作出△A′B′C′;(2)写出点A′、B′、C′的坐标.19.(2022春•上海期末)如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD.;(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC=S四边形ABDC?若存在这样一点,(2)在y轴上是否存在一点P,连接PA,PB,使S△P AB求出点P的坐标;若不存在,试说明理由;(3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)给出下列结论:①的值不变,②的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.。

(新人教版)数学七年级下册:5.4《平移》教案和习题(含答案)

(新人教版)数学七年级下册:5.4《平移》教案和习题(含答案)

《平移》教案一、教学目标1.经历观察、分析、操作、欣赏以及抽象、归纳等过程,以及与他人合作交流探索的过程,进一步发展空间观念,增强审美意识,学会用运动的观点分析问题.2.通过实例,认识图形平移,了解平移的特征,理解平移的含义,会进行点的平移.3.理解平移前后两个图形对应点连线平行且相等的性质,能解决简单的平移问题.二、教学重点与难点重点:图形平移的特征和作平移图形.难点:平移的性质探索和理解.三、教学过程(一)创设情境,引入新课1.感受平移,体验新知你坐过公车和搭过电梯吗?它是一种什么样的运动?这样的运动在生活中还有哪些现象?(活动1:学生讨论)2.观察图形,形成印象生活中有许多美丽的图案,他们都有着共同的特点,请同学们欣赏下面图案.观察上面图形,我们发现他们都有一个局部和其他部分重复,如果给你一个局部,你能复制他们吗?学生思考讨论,并回答问题.(1)它们有什么共同的特点?(2)能否根据其中的一部分绘制出整个图案?(活动2:师生交流.)这些美丽的图案是由若干个相同的图案组合而成的,每个图形都有“基本图形”,而“基本图形”是什么?如第一个图形是中间一个正方形,上、下有正立与倒立的正三角形,下排的左图中的“基本图形”是鸽子与橄榄枝;下排右图中的“基本图形”是上、下一对面朝右与面朝左的人头像组成的图案.3.实践探索,得出新知探究:设计一个简单的图案,利用一张半透明的纸附在上面,绘制一排形状,大小完全一样的图案如:引导学生找规律,发现平移特征,回答下面问题:1、图形经过平移后,_______图形的位置,________图形的形状,________图形的大小.(填“改变”或“不改变”)2、经过平移,每一组对应点所连成的线段________.归纳 (活动3:分组讨论)平移:(1)把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同. (2)新图形中的每一点,都是由原图形中的某一个点移动后得到的,这两个点是对应点. (3)连接各组对应的线段平行且相等.图形的这种变换,叫做平移变换,简称平移简单归纳为两点:1.平移的方向. 2.平移的距离四、典例剖析,深化巩固1. 把鱼往左平移8cm.(假设每小格是1cm2)五、小结(学生回答):这节课你学了什么?知道了什么?学会了什么?六、课后作业必做题:教科书习题:3.6题《平移》习题1、决定平移的基本要素是____和____。

平移典型例题及练习含标准答案

平移典型例题及练习含标准答案

平移一、知识点复习知识点1:平移的定义:在平面内,一个图形沿某个方向移动一定的距离,这种图形的变换叫做平移。

知识点2:平移的要素1.平移的方向:原图上的点指向它的对应点的射线方向;2.平移的距离:连接原图与平移后图形上的一对对应点的线段的长度。

知识点3:平移的性质1.性质(1)平移只改变图形的位置,不改变图形的形状和大小。

(2)平移后的图形与原图形上对应点连成的线段,①数量关系是相等 .②位置关系是平行或在同一条直线上。

2.判断一组图形能不能通过平移得到的方法(1)看对应点连线是否平行或在同一条直线上;(2)看它的形状、大小是否发生变化,位置的变化是否由平移产生。

★★★特别注意:平移是由平移的方向和距离决定的,平移必须指明平移的方向和距离;平移是在平面内,整个图形沿着某一直线平行移动的过程,原图上的每个点都沿同一方向移动相同的距离;平移的距离不能为0;平移的方向是任意的,但就一次平移而言,只能有一个方向,一次平移完成后可以改变方向进行下一次平移。

二、典型例题题型1:生活中平移现象【例题1】(2017春•乌海期末)下列运动属于平移的是()A.荡秋千 B.推开教室的门 C.风筝在空中随风飘动 D.急刹车时,汽车在地面上的滑动【例题2】:(2016春•淮安期中)下列现象:①电梯的升降运动,②飞机在地面上沿直线滑行,③风车的转动,④冷水加热过程中气泡的上升.其中属于平移的是()A.①② B.①③ C.②③ D.③④题型2:平移的性质【例题4】:(2016春•沧州期末)在下列说法中:①△ABC在平移过程中,对应线段一定相等;②△ABC 在平移过程中,对应线段一定平行;③△ABC在平移过程中,周长保持不变;④△ABC在平移过程中,对应边中点所连线段的长等于平移的距离;⑤△ABC在平移过程中,面积不变,其中正确的有()A.①②③④ B.①②③④⑤ C.①②③⑤ D.①③④⑤题型3:与平移有关的计算【例题5】:(2015春•石家庄期末)如图,将△ABC沿射线BC方向移动,使点B移动到点C,得到△DCE,连接AE,若△ABC的面积为2,则△ACE的面积为()A .2B .4C .8D .16【例题6】:(2017秋•兴化市期末)如图,将△ABE 向右平移2cm 得到△DCF ,AE 、DC 交于点G .如果△ABE 的周长是16cm ,那么△ADG 与△CEG 的周长之和是 cm 。

《图形平移》导学案有答案.docx

《图形平移》导学案有答案.docx

1.5 图形的平移导学案【学习目标】1.通过具体实例认识图形的平移变换.探索它的基本性质 .理解平移不改变图形的形状和大小,平移前后两个图形对应点连线平行且相等的性质.2.能按要求画出简单的平面图形平移后的图形.【课前学习,课中交流】利用 8 分钟时间认真学习书本P21-P23 的内容,完成下列问题 .1.日常生活中经常可以看到的一些现象,如下图,都给了我们平移的大致形象.哪位同学能说—说什么叫平移 ?子传人电送梯带上上的的箱车索运一的从道动个方远上正队处方好看的缆形象行在是进在平面内,我们将一个图形沿着移动,在移动的过程中,原图形上的距离,这样的图形运动叫做图形的平移 .2.做一做:下面两组图形的运动,哪一个属于平移?3.当我们如图所示的那样使用直尺与三角板画平行线时,△ABC 沿着直尺 PQ 平移到△ A'B'C ′,,就可以画出 AB 的平行线 A′B了′.我们把点 A 与点 A′叫做对应点,线段 AB 与线段 A′ B叫′做对应线段,∠ A与∠ A′叫做对应角 .此时,点 B 的对应点是点;点C的对应点是点;线段 AC 的对应线段是线段;线段BC 的对应线段是线段;∠ B的对应角是;∠ C 的对应角是.△ ABC 平移的方向就是由点 B 到点 B′的方向,平移的距离就是线段BB'的长度 .4.参考书本 P22 例题作图 .如图 ,平移三角形 ABC, 使点 A 运动到 A`,画出平移后的三角形A`B`C`.想一想:原图形与平移后所得的图形相比,哪些改变了?哪些保持不变?连接对应点的线段之间有什么关系?5.一般地,图形的平移有下面的性质:注意:要描述一个平移,必须指出平移的和.6.△ ABC 在网格中如图所示,请根据下列提示作图(1)先向上平移 2 个单位长度得△ A 1B1C1.A(2)再向右移 3 个单位长度△ A 2B2C2..B C【当堂检测】如图所示,△ ABE 沿 GH 方向平移一定距离后记为△CDF,找到图中平行且相等的线段 .HCGDF AB E【课后反思】。

第三章-图形的平移与旋转复习学案

第三章-图形的平移与旋转复习学案

第三章《图形的平移与旋转》复习学案学习目标:1.能判断实例中的平移和旋转。

2.能根据平移、旋转的基本性质解决实际问题。

3.能作出简单的平面图形平移、旋转后的图形。

4.能够运用平移、旋转、轴对称及其组合进行图案设计。

【知识整理】1. 平移的定义:在平面内将一个图形沿某个方向移动一定的距离,这种图形变换称为平移.平移变换的两个要素:________________、________________.2. 平移变换的性质:(1)平移前、后的图形_____,即:平移只改变图形的_____,不改变图形的_____________;(2)对应线段平行(或共线)且相等;(3)对应点所连的线段平行(或共线)且相等.3. 旋转的定义:在平面内,将一个图形绕一个定点沿某个方向(逆时针或顺时针)转动一定的角度,这样的图形变换叫做旋转.这个定点叫做_________,转动的角称为_________.旋转变换的三个要素:_________,_________,_________.4. 旋转变换的性质:(1)旋转前、后的图形_____;(2)对应点到旋转中心的距离_____,即:旋转中心在对应点所连线段的_____________上;(3)对应点与旋转中心所连线段的夹角等于_________.例题解析例1如图,在平面直角坐标系内有一个△ABC.(1) 在平面直角坐标系内画出△ABC向下平移4个单位得到的△A1B1C1;(2) 在平面直角坐标系内画出△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2;(3) 分别写出△A1B1C1与△A2B2C2各顶点的坐标.例2 如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=a,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当a=150°时,试判断△AOD的形状,并说明理由;例3 如图,两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=1,固定△ABC不动,将△DEF进行如下操作:(1) 如图(a),△DEF沿AB向右平移,连接DC、CF、FB,四边形CDBF的形状在不断的变化,问:四边形CDBF的面积是否发生变化,若有变化,请举例说明;若不变化,请求出它的面积.(注:D点在AB内,不包括A、B两点)(2) 如图(b)当D点移动到AB得中点时,请你猜想四边形CDBF的形状,并说明理由.(3) 如图(c)△DEF的D点固定在AB的中点时然后绕D点按顺时针方向旋转△DEF,使DF落在AB上,此时F点恰好与B点重合,连接AE,求AE的值.测试题1.将线段AB=2cm向右平移1cm,得到线段DE,则对应点A与D的距离为_____cm. 2. 将正六边形绕其对称中心旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是______.3.如图所示是重叠的两个直角三角形.将其中一个直角三角形沿BC方向平移得到△DEF.如果AB=8cm,BE=4cm,DH=3cm,则图中阴影部分面积为______cm2.4. 如图,阴影部分为2m宽的道路,则余下的部分面积为______m2.第3题第4题第5题5. 如图,△ACE,△ABF均为等腰直角三角形,∠BAF=∠EAC=90°,那么△AFC以点A为旋转中心逆时针旋转90°之后与________重合,其中点F与点____对应,点C与点____对应.6. 如图,在直角坐标系中,AO=AB,点A的坐标是(2,2),点O的坐标是(0,0),将△AOB平移得到△A′O′B′,使得点A′在y轴上,点O′、B′在x轴上. 则点B′的坐标是_______.第6题第7题第8题7. 如图,当半径为30cm的转动轮转过120°角时,传送带上的物体A平移的距离为___cm.8. 如图,将正方形ABCD中的△ABP绕点B顺时针旋转90°,使得AB与CB重合,若BP=4,则点P所走过的路径长为_____.9. 下列图案中,不能由一个图形通过旋转而构成的是( )A. B. C. D.10. 下列各组图形,可经过平移变换由一个图形得到另一个图形的是( )A. B. C. D.11. 在下列现象中,是平移现象的是( )①方向盘的转动②电梯的上下移动③保持一定姿势滑行④钟摆的运动A. ①②B. ②③C. ③④D. ①④12. 在5×5方格纸中,将图1中的图形N平移后的位置如图2中所示,那么正确的平移方法是( )A. 先向下移动1格,再向左移动1格B. 先向下移动1格,再向左移动2格C. 先向下移动2格,再向左移动1格D. 先向下移动2格,再向左移动2格13.如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕B点按顺时针方向转动一个角度α到A1BC1的位置,使得点A、B、C1在同一条直线上,那么这个角度α等于( )A.120° B.90° C.60° D.30°14.在13题中,若BC的长为15cm,那么顶点A从开始到结束所经过的路径长为( )A. 10πcmB. 103πcmC. 303cmD. 20πcm15.△ABC在平面直角坐标系中的位置如图所示.(1) 将△ABC向右平移6个单位得到△A1B1C1,请画出△A1B1C1,并写出点C1的坐标;(2) 将△ABC绕点C顺时针旋转90°得到△A2B2C,请画出△A2B2C,并写出点A2的坐标.16.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm.把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),这时AB 与CD1相交于点O,与D1E1相交于点F.(1) 求∠OFE1的度数;(2) 求线段AD1的长;(3) 若把三角板D1CE1绕着点C顺时针再旋转30°得△D2CE2,这时点B在△D2CE2的内部、外部、还是边上?说明理由.。

图形的平移和旋转(教案和习题)

图形的平移和旋转(教案和习题)

图形的平移和旋转教学目标:1. 理解平移和旋转的概念。

2. 学会用平移和旋转的方法来变换图形。

3. 能够判断图形是否发生了平移或旋转。

教学重点:1. 平移和旋转的定义。

2. 平移和旋转的方法。

3. 平移和旋转的性质。

教学难点:1. 理解平移和旋转的本质区别。

2. 学会用平移和旋转的方法来变换复杂图形。

教学准备:1. 教学PPT。

2. 图形卡片。

3. 练习题。

教学过程:第一章:平移的概念和性质1.1 引入平移的概念教师展示一些平移的实例,如滑滑梯、电梯等,引导学生感受平移的特点。

1.2 学习平移的性质学生通过观察和操作,发现平移不改变图形的形状和大小,只改变图形的位置。

1.3 练习平移学生分组合作,用图形卡片进行平移操作,体会平移的方法。

第二章:旋转的概念和性质2.1 引入旋转的概念教师展示一些旋转的实例,如旋转门、风车等,引导学生感受旋转的特点。

2.2 学习旋转的性质学生通过观察和操作,发现旋转不改变图形的大小,只改变图形的位置和方向。

2.3 练习旋转学生分组合作,用图形卡片进行旋转操作,体会旋转的方法。

第三章:平移和旋转的判定3.1 学习平移的判定方法学生通过观察和操作,学会判断图形是否发生了平移。

3.2 学习旋转的判定方法学生通过观察和操作,学会判断图形是否发生了旋转。

3.3 练习判断学生独立完成判断题目,巩固平移和旋转的判定方法。

第四章:平移和旋转的应用4.1 学习用平移和旋转的方法来变换图形学生通过观察和操作,学会用平移和旋转的方法来变换图形。

4.2 练习变换学生独立完成变换题目,巩固平移和旋转的变换方法。

第五章:总结与拓展5.1 总结平移和旋转的概念、性质和判定方法学生通过回顾本节课的内容,总结平移和旋转的概念、性质和判定方法。

5.2 拓展平移和旋转的应用学生分组合作,用平移和旋转的方法来创作有趣的图形图案。

教学评价:1. 通过课堂观察,评价学生对平移和旋转概念的理解程度。

2. 通过练习题,评价学生对平移和旋转性质的掌握程度。

1-1 平移 苏教版(含解析)

1-1 平移 苏教版(含解析)

学霸笔记—苏教版2021-2022学年苏教版数学四年级下册同步重难点讲练第一单元平移、旋转和轴对称1.1 平移教学目标1.通过观察、比较,掌握图形平移的方法,能在方格纸上将简单图形进行平移。

2.培养学生的操作能力和分析能力,发展学生的空间观念。

3.通过图形的平移,激发学生学习数学的兴趣,积累成功的体验。

教学重难点教学重点:掌握图形平移的方法,在方格纸上将简单图形进行平移。

教学难点:能对图形平移过程中的距离进行准确判断。

【重点剖析】1.在平面内,将一个图形沿着某个方向移动一定的距离,但不改变图形的形状和大小,像这样的运动现象叫平移。

2.图形的平移包括平移的方向和距离这两个关键要素。

3.判断图形平移的方向和距离的方法:根据箭头指向确定平移的方向;根据平移前后图形中一组对应线段或对应点之间的格数确定平移的距离。

【典例分析1】想一想,选一选。

(右面的哪个图形是通过平移左面的图案得到的?画“√”)(1)(2)【分析】平移:在平面内,将一个图形上的所有点都按照某个方向作相同距离移动的图形运动。

平移后图形的位置改变,形状、大小、方向不变。

【解答】解:(1)(2)【点评】此题考查了平移的意义及在实际当中的运用。

【典例分析2】移一移,填一填。

(1)从图①到图②向右平移了4格。

(2)从图③到图④向下平移了4格。

(3)从图⑤到图⑥可以先向下平移2格,再向右平移9格。

【分析】平移:在平面内,将一个图形上的所有点都按照某个方向作相同距离移动的图形运动。

平移后图形的位置改变,形状、大小、方向不变。

据此解答即可。

【解答】解:(1)从图①到图②向右平移了4格。

(2)从图③到图④向下平移了4格。

(3)从图⑤到图⑥可以先向下平移2格,再向右平移9格。

故答案为:4,下,4,2,右。

【点评】此题考查了平移的意义及在实际当中的运用。

【题干】如图4只蝴蝶中,哪一只通过平移可以与右面方框中的蝴蝶重合?圈出来吧。

【题干】(1)小车图向上平移了4格,房子图向左平移了5格.(2)请你把小船图向左平移5格.【题干】请你用平移和旋转的方法,将图二恢复到图一的样子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形的平移练习题
仅供学习与交流,如有侵权请联系网站删除 谢谢
2
第一周 图形的平移练习
班级_____________ 姓名:_____________ 1.图形的平移只改变图形的________,不改变图形的_______、________。

2.图形平移的决定因素:平移的_______和_______。

3.平移的方向是图形上的某一点到它_____点的方向;平移的距离是图形上的某一点
到它对应点的连线的______。

平移的对应点所连线段 。

4.一个图形先向右平移5个单位,再向左平移7个单位,所得到的图形,可以看作是
原来位置的图形一次向 平移 个单位得到的 5.如果三角形ABC 沿着北偏东300的方向移动了2cm ,那么三角形ABC 的一条边AB
边上的一点P向__________移动了______cm 。

6.在下列说法中:①△ABC 在平移过程中,对应线段一定相等;
②△ABC 在平移过程中,对应线段一定平行;③△ABC 在平移过程中,周长不变;
④△ABC 在平移过程中,面积不变。

其中正确的有____________________。

7.下列说法中正确的是( )
A .一个图形经过平移后,与原图形成轴对称
B .如果两个图形成轴对称,那么一个图形可由另一个图形经过平移变换得到
C .一个图形经过平移后,它的性质都发生了变化
D .图形的平移由平移的方向和距离决定 8.在以下现象中,属于平移的是( )
① 在挡秋千的小朋友;② 打气筒打气时,活塞的运动;
仅供学习与交流,如有侵权请联系网站删除 谢谢3
③ 钟摆的摆动; ④ 传送带上,瓶装饮料的移动 A . ①② B . ①③ C . ②③ D . ②④ 9.如图,大矩形的长是10cm ,宽是8cm ,阴影的宽为2cm ,则空白部分的面积是( ) A.36cm 2 B.40cm 2 C.32cm 2 D.48 cm 2
10.如图,△ABC 经过平移之后得△DEF ,
请你在两三角形的内角中找出图中相等的线段
写出图中互相平行的线段
写出图中相等的角
11.如图,△ABC 经过平移后称为△A ′B ′C ′,画出平移的方向,量出平移的距离。

思路点拔:先找出一组对应点,确定平移方向,测量平移的距离.
12.(1)已知△ABC 和线段PQ ,画出△ABC 沿线段PQ 的方向平移2cm 后的图形;
E
D B
C
F
A O
仅供学习与交流,如有侵权请联系网站删除 谢谢4
13.如图,已知平行四边形ABCD ,作DE ⊥AB ,垂足为E ,把三角形AED 沿AB 方向 平移AB 长个单位. ①作出平移后的图形.
②经过这样的平移后,原来的图形变成了什么图形? 等吗?
③这两个图形的面积相
E D B
C
A。

相关文档
最新文档